scispace - formally typeset
Search or ask a question

Showing papers in "Applied and Environmental Microbiology in 1992"


Journal ArticleDOI
TL;DR: The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active bacteria in environmental samples, and actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths.
Abstract: The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was employed for direct epifluorescent microscopic enumeration of respiring bacteria in environmental samples. Oxidized CTC is nearly colorless and is nonfluorescent; however, the compound is readily reduced via electron transport activity to fluorescent, insoluble CTC-formazan, which accumulates intracellularly. Bacteria containing CTC-formazan were visualized by epifluorescence microscopy in wet-mount preparations, on polycarbonate membrane filter surfaces, or in biofilms associated with optically opaque surfaces. Counterstaining of CTC-treated samples with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole allowed enumeration of active and total bacterial subpopulations within the same preparation. Municipal wastewater, groundwater, and seawater samples supplied with exogenous nutrients yielded CTC counts that were generally lower than total 4',6-diamidino-2-phenylindole counts but typically equal to or greater than standard heterotrophic (aerobic) plate counts. In unsupplemented water samples, CTC counts were typically lower than those obtained with the heterotrophic plate count method. Reduction of CTC by planktonic or biofilm-associated bacteria was suppressed by formaldehyde, presumably because of inhibition of electron transport activity and other metabolic processes. Because of their bright red fluorescence (emission maximum, 602 nm), actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths. The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active (i.e., respiring) bacteria in environmental samples.

811 citations


Journal ArticleDOI
TL;DR: Isolates which had been postulated to beclosely related bymultilocus enzyme electrophoresis alsorevealed similar REP andERICPCR patterns, suggesting that theREP andERicPCR sequences are closely related.
Abstract: Thedistribution ofdispersed repetitive DNA (repetitive extragenic palindromic [REP]andenterobacterial repetitive intergenic consensus[ERIC]) sequencesinthegenomesofa numberofgram-negative soil bacteria was examined byusing conserved primers corresponding toREP andERICsequencesandthepolymerase chain reaction (PCR). Thepatterns oftheresulting PCRproducts wereanalyzed on agarosegels andfoundto behighly specific foreachstrain. TheREPandERICPCR patterns ofa series ofRhizobium meliloti isolates, previously ordered ina phylogenetic treebased on allelic variations at14enzyme loci (B.D.Eardly, L.A. Materon, N.H.Smith, D.A.Johnson, M.D.Rumbaugh, andR.K.Selander, Appl.Environ. Microbiol. 56:187-194), were determined. Isolates whichhadbeenpostulated tobeclosely related bymultilocus enzyme electrophoresis alsorevealed similar REP andERICPCR patterns, suggesting thattheREP andERICPCR

761 citations


Journal ArticleDOI
TL;DR: A polymerase chain reaction primer (VANS1) is developed that enables the specific amplification of a portion of the vesicular-arbuscular endomycorrhizal fungus small subunit rRNA directly from a mixture of plant and fungal tissues.
Abstract: The first DNA sequences obtained from arbuscular endomycorrhizal fungi are reported. They were obtained by directly sequencing overlapping amplified fragments of the nuclear genes coding for the small subunit rRNA. These sequences were used to develop a polymerase chain reaction primer (VANS1) that enables the specific amplification of a portion of the vesicular-arbuscular endomycorrhizal fungus small subunit rRNA directly from a mixture of plant and fungal tissues. The specificity of this primer for arbuscular endomycorrhizal fungi was demonstrated by testing it on a number of organisms and by sequencing the fragment amplified from colonized leek (Allium porum) roots. This approach, coupled with other molecular techniques, will facilitate rapid detection, identification, and possibly quantitation of arbuscular endomycorrhizal fungi.

721 citations


Journal ArticleDOI
TL;DR: This work has found that the addition of 5% (wt/vol) acetamide to a PCR mixture containing both archaebacterial and yeast DNA templates minimized nonspecific annealing of the primers and prevented preferential amplification of the yeast small-subunit rRNA genes.
Abstract: The polymerase chain reaction (PCR) is used widely to recover rRNA genes from naturally occurring communities for analysis of population constituents. We have found that this method can result in differential amplification of different rRNA genes. In particular, rDNAs of extremely thermophilic archaebacteria often cannot be amplified by the usual PCR methods. The addition of 5% (wt/vol) acetamide to a PCR mixture containing both archaebacterial and yeast DNA templates minimized nonspecific annealing of the primers and prevented preferential amplification of the yeast small-subunit rRNA genes.

669 citations


Journal ArticleDOI
TL;DR: It is concluded that bacteria may use EPS production to alter their microenvironment to enhance survival of desiccation, and an EPS matrix may buffer bacterial colonies from some effects of Desiccation.
Abstract: The relationship between desiccation and the production of extracellular polysaccharides (EPS) by soil bacteria was investigated by using a Pseudomonas species isolated from soil. Cultures subjected to desiccation while growing in a sand matrix contained more EPS and less protein than those growing at high water potential, suggesting that resources were allocated to EPS production in response to desiccation. Desiccation did not have a significant effect on activity as measured by reduction of iodonitrotetrazolium. Purified EPS produced by the Pseudomonas culture contained several times its weight in water at low water potential. Sand amended with EPS held significantly more water and dried significantly more slowly than unamended sand, implying that an EPS matrix may buffer bacterial colonies from some effects of desiccation. We conclude that bacteria may use EPS production to alter their microenvironment to enhance survival of desiccation.

608 citations


Journal ArticleDOI
TL;DR: DNA direct extraction coupled with this technique to remove interference by humic substances and followed by the PCR can be a powerful tool to detect low numbers of bacterial cells in environmental samples containing humic Substances.
Abstract: The polymerase chain reaction (PCR) was used to amplify an Escherichia coli 16S ribosomal gene fragment from sediments with high contents of humic substances. Total DNA was extracted from 1 g of E. coli seeded or unseeded samples by a rapid freeze-and-thaw method. Several approaches (use of Bio-Gel P-6 and P-30 and Sephadex G-50 and G-200 columns, as well as use of the Stoffel fragment) were used to reduce interference with the PCR. The best results were obtained when crude DNA extracts containing humic substances were purified by using Sephadex G-200 spun columns saturated with Tris-EDTA buffer (pH 8.0). Eluted fractions were collected for PCR analyses. The amplified DNA fragment was obtained from seeded sediments containing fewer than 70 E. coli cells per g. Because only 1/100 of the eluted fractions containing DNA extracts from 70 cells per g was used for the PCR, the sensitivity of detection was determined to be less than 1 E. coli cell. Thus, DNA direct extraction coupled with this technique to remove interference by humic substances and followed by the PCR can be a powerful tool to detect low numbers of bacterial cells in environmental samples containing humic substances. Images

601 citations


Journal ArticleDOI
TL;DR: The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments and D. desulfuricans might be a useful organism for recovering uranium from contaminated waters and waste streams.
Abstract: The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organism for recovering uranium from contaminated waters and waste streams.

587 citations


Journal ArticleDOI
TL;DR: A novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria that produced preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated.
Abstract: Antimicrobial peptides, bacteriocins, produced by lactic acid bacteria were adsorbed on the cells of producing strains and other gram-positive bacteria. pH was a crucial factor in determining the degree of adsorption of these peptides onto cell surfaces. In general, between 93 and 100% of the bacteriocin molecules were adsorbed at pHs near 6.0, and the lowest (< or = 5%) adsorption took place at pH 1.5 to 2.0. On the basis of this property, a novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria. By using this method we made preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated. This method produced a higher yield than isolation procedures, which rely on precipitation of the bacteriocins from the cell-free culture liquor. It is simple and can be used to produce large quantities of bacteriocins from lactic acid bacteria to be used as food biopreservatives.

548 citations


Journal ArticleDOI
TL;DR: The results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility.
Abstract: A microbial surfactant (biosurfactant) was investigated for its potential to enhance bioavailability and, hence, the biodegradation of octadecane. The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa ATCC 9027 in phosphate-limited proteose peptone-glucose-ammonium salts medium. Dispersion of octadecane in aqueous solutions was dramatically enhanced by 300 mg of the rhamnolipid biosurfactant per liter, increasing by a factor of more than 4 orders of magnitude, from 0.009 to > 250 mg/liter. The relative enhancement of octadecane dispersion was much greater at low rhamnolipid concentrations than at high concentrations. Rhamnolipid-enhanced octadecane dispersion was found to be dependent on pH and shaking speed. Biodegradation experiments done with an initial octadecane concentration of 1,500 mg/liter showed that 20% of the octadecane was mineralized in 84 h in the presence of 300 mg of rhamnolipid per liter, compared with only 5% octadecane mineralization when no surfactant was present. These results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility.

545 citations


Journal ArticleDOI
TL;DR: A rapid and specific detection test for bacteria in soil is developed based on the polymerase chain reaction (PCR), and the strong correlation the authors observed between the size of the inocula and the results of the PCR reactions permitted assessment of the validity of the protocol in enumerating the number of microbial cells present in a soil sample.
Abstract: In order to develop a rapid and specific detection test for bacteria in soil, we improved a method based on the polymerase chain reaction (PCR). Each step of the protocol, including direct lysis of cells, DNA purification, and PCR amplification, was optimized. To increase the efficiency of lysis, a step particularly critical for some microorganisms which resist classical techniques, we used small soil samples (100 mg) and various lytic treatments, including sonication, microwave heating, and thermal shocks. Purification of nucleic acids was achieved by passage through up to three Elutip d columns. Finally, PCR amplifications were optimized via biphasic protocols using booster conditions, lower denaturation temperatures, and addition of formamide. Two microorganisms were used as models: Agrobacterium tumefaciens, which is naturally absent from the soil used and was inoculated to calibrate the validity of the protocol, and Frankia spp., an actinomycete indigenous to the soil used. Specific primers were characterized either in the plasmid-borne vir genes for A. tumefaciens or in the variable regions of the 16S ribosomal gene for Frankia spp. Specific detection of the inoculated A. tumefaciens strain was routinely obtained when inocula ranged from 10(7) to 10(3) cells. Moreover, the strong correlation we observed between the size of the inocula and the results of the PCR reactions permitted assessment of the validity of the protocol in enumerating the number of microbial cells present in a soil sample. This allowed us to estimate the indigenous population of Frankia spp. at 0.2 x 10(5) genomes (i.e., amplifiable target sequences) per g of soil. Images

523 citations


Journal ArticleDOI
TL;DR: Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures.
Abstract: The survival of various isolates of Cryptosporidium parvum oocysts under a range of environmental pressures including freezing, desiccation, and water treatment processes and in physical environments commonly associated with oocysts such as feces and various water types was monitored. Oocyst viability was assessed by in vitro excystation and by a viability assay based on the exclusion or inclusion of two fluorogenic vital dyes. Although desiccation was found to be lethal, a small proportion of oocysts were able to withstand exposure to temperatures as low as -22 degrees C. The water treatment processes investigated did not affect the survival of oocysts when pH was corrected. However, contact with lime, ferric sulfate, or alum had a significant impact on oocyst survival if the pH was not corrected. Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures.

Journal ArticleDOI
TL;DR: Pseudomonas sp.
Abstract: Pseudomonas sp. strain F113 was isolated from the rhizosphere of sugar beets and shown to inhibit a range of plant pathogenic fungi by producing an antibioticlike compound. An antibiotic-negative mutant strain, F113G22, was generated by transposon mutagenesis. This mutant has lost the ability to inhibit both bacterial and fungal microorganisms on high-iron medium. The antibioticlike compound was subsequently identified as 2,4-diacetylphloroglucinol (DAPG), and a high-pressure liquid chromatographic assay was developed for to detect it quantitatively in growth culture media and soil. The growth temperature had a direct bearing on DAPG production by strain F113, with maximum production at 12 degrees C. The iron concentration, pH, and oxygen had no influence on DAPG production by strain F113 under the assay conditions used. However, a low ratio of culture volume to surface area available to the microbe in the growth container was critical for optimum DAPG production. Different types of carbon sources influenced DAPG production by strain F113 to various degrees. For example, sucrose, fructose, and mannitol promoted high yields of DAPG by strain F113, whereas glucose and sorbose resulted in very poor DAPG production.

Journal ArticleDOI
TL;DR: It is demonstrated that the inoculated strain is really responsible for the fermentation but does not suppress significant development of natural strains during the first stages, which could have important effects on wine flavor.
Abstract: A simple and rapid method of yeast strain characterization based on mitochondrial DNA restriction analysis was applied to the control of wine fermentations conducted by active dry yeast strains. This molecular approach allows us to understand several important aspects of this process, such as the role of the active dry yeast strain and that of the natural Saccharomyces cerevisiae flora during vinification. In this paper, we demonstrate that the inoculated strain is really responsible for the fermentation but does not suppress significant development of natural strains during the first stages. During this early period, natural strains could have important effects on wine flavor.

Journal ArticleDOI
TL;DR: The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy and Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to design both general and specific hybridization probes.
Abstract: The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to design both general and specific hybridization probes. Fluorescent versions of these probes were used in combination with fluorescence microscopy to visualize specific sulfate-reducing bacterial populations within developing and established biofilms.

Journal ArticleDOI
TL;DR: Systematic computer alignment of mycoplasmal 16S rRNA sequences allowed the identification of variable regions with both genus- and species-specific sequences, and Mycoplasma collis proved to be species specific in the polymerase chain reaction.
Abstract: Systematic computer alignment of mycoplasmal 16S rRNA sequences allowed the identification of variable regions with both genus- and species-specific sequences. Species-specific sequences of Mycoplasma collis were elucidated by asymmetric amplification and dideoxynucleotide sequencing of variable regions, using primers complementary to conserved regions of 16S rRNA. Primers selected for Mycoplasma pneumoniae, M. hominis, M. fermentans, Ureaplasma urealyticum, M. pulmonis, M. arthritidis, M. neurolyticum, M. muris, and M. collis proved to be species specific in the polymerase chain reaction. The genus-specific primers reacted with all mycoplasmal species investigated as well as with members of the genera Ureaplasma, Spiroplasma, and Acholeplasma. No cross-reaction was observed with members of the closely related genera Streptococcus, Lactobacillus, Bacillus, and Clostridium or with any other microorganism tested. On the basis of the high copy number of rRNA, a highly sensitive polymerase chain reaction assay was developed in which the nucleic acid content equivalent to a single organism could be detected.

Journal ArticleDOI
TL;DR: Calculations suggest that in clear oceanic waters exposed to full sunlight, most of the virus decay, averaged over a depth of 200 m, would be attributable to solar radiation.
Abstract: Loss rates and loss processes for viruses in coastal seawater from the Gulf of Mexico were estimated with three different marine bacteriophages. Decay rates in the absence of sunlight ranged from 0.009 to 0.028 h-1, with different viruses decaying at different rates. In part, decay was attributed to adsorption by heat-labile particles, since viruses did not decay or decayed very slowly in seawater filtered through a 0.2-μm-pore-size filter (0.2-μm-filtered seawater) and in autoclaved or ultracentrifuged seawater but continued to decay in cyanide-treated seawater. Cyanide did cause decay rates to decrease, however, indicating that biological processes were also involved. The observations that decay rates were often greatly reduced in 0.8- or 1.0-μm-filtered seawater, whereas bacterial numbers were not, suggested that most bacteria were not responsible for the decay. Decay rates were also reduced in 3-μm-filtered or cycloheximide-treated seawater but not in 8-μm-filtered seawater, implying that flagellates consumed viruses. Viruses added to flagellate cultures decayed at 0.15 h-1, corresponding to 3.3 viruses ingested flagellate-1 h-1. Infectivity was very sensitive to solar radiation and, in full sunlight, decay rates were 0.4 to 0.8 h-1. Even when UV-B radiation was blocked, rates were as high as 0.17 h-1. Calculations suggest that in clear oceanic waters exposed to full sunlight, most of the virus decay, averaged over a depth of 200 m, would be attributable to solar radiation. When decay rates were averaged over 24 h for a 10-m coastal water column, loss rates of infectivity attributable to sunlight were similar to those resulting from all other processes combined. Consequently, there should be a strong diel signal in the concentration of infectious viruses. In addition, since sunlight destroys infectivity more quickly than virus particles, a large proportion of the viruses in seawater is probably not infective. Images

Journal ArticleDOI
TL;DR: The tolerance of C. pasteurianum to Glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol), and increasing glycerl concentrations favored the production of 1,3-propanediol.
Abstract: The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

Journal ArticleDOI
TL;DR: The cis-to-trans modification of the fatty acids studied here apparently is a new way of adapting the membrane fluidity to the presence of phenols, thereby compensating for the elevation of membrane permeability induced by these toxic substances.
Abstract: A trans unsaturated fatty acid was found as a major constituent in the lipids of Pseudomonas putida P8. The fatty acid was identified as 9-trans-hexadecenoic acid by gas chromatography, argentation thin-layer chromatography, and infrared absorption spectrometry. Growing cells of P. putida P8 reacted to the presence of sublethal concentrations of phenol in the medium with changes in the fatty acid composition of the lipids, thereby increasing the degree of saturation. At phenol concentrations which completely inhibited the growth of P. putida, the cells were still able to increase the content of the trans unsaturated fatty acid and simultaneously to decrease the proportion of the corresponding 9-cis-hexadecenoic acid. This conversion of fatty acids was also induced by 4-chlorophenol in nongrowing cells in which the de novo synthesis of lipids had stopped, as shown by incorporation experiments with labeled acetate. The isomerization of the double bond in the presence of chloramphenicol indicates a constitutively operating enzyme system. The cis-to-trans modification of the fatty acids studied here apparently is a new way of adapting the membrane fluidity to the presence of phenols, thereby compensating for the elevation of membrane permeability induced by these toxic substances.

Journal ArticleDOI
TL;DR: In this paper, a viability assay for oocysts of Cryptosporidium parvum based on the inclusion or exclusion of two fluorogenic vital dyes, 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide, was developed.
Abstract: A viability assay for oocysts of Cryptosporidium parvum based on the inclusion or exclusion of two fluorogenic vital dyes, 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide, was developed by using several different isolates of oocysts. Correlation of this assay with viability measured by in vitro excystation was highly statistically significant, with a calculated correlation coefficient of 0.997. In this research, two similar excystation protocols were utilized, and no significant difference between excystation protocols was detected. Percent excystation of oocyst suspensions could be increased or reduced by inclusion of a preincubation treatment in either excystation protocol, and this alteration was also demonstrated in the viability assay. Oocysts which excluded both dyes would not excyst in vitro unless a further trigger was provided and were more resistant to acid or alkali treatment. The results of this research provide a reproducible, user-friendly assay which is applicable to individual oocysts and also provides a useful adjunct for identification of oocysts in water and environmental samples.

Journal ArticleDOI
TL;DR: The results indicate that production of phenazine antibiotics by strains 2-79 and 30-84 can contribute to the ecological competence of these strains and that the reduced survival of the Phz- strains is due to a diminished ability to compete with the resident microflora.
Abstract: Phenazine antibiotics produced by Pseudomonas fluorescens 2-79 and Pseudomonas aureofaciens 30-84, previously shown to be the principal factors enabling these bacteria to suppress take-all of wheat caused by Gaeumannomyces graminis var. tritici, also contribute to the ecological competence of these strains in soil and in the rhizosphere of wheat. Strains 2-79 and 30-84, their Tn5 mutants defective in phenazine production (Phz-), or the mutant strains genetically restored for phenazine production (Phz+) were introduced into Thatuna silt loam (TSL) or TSL amended with G. graminis var. tritici. Soils were planted with three or five successive 20-day plant-harvest cycles of wheat. Population sizes of Phz- derivatives declined more rapidly than did population sizes of the corresponding parental or restored Phz+ strains. Antibiotic biosynthesis was particularly critical to survival of these strains during the fourth and fifth cycles of wheat in the presence of G. graminis var. tritici and during all five cycles of wheat in the absence of take-all. In pasteurized TSL, a Phz- derivative of strain 30-84 colonized the rhizosphere of wheat to the same extent that the parental strain did. The results indicate that production of phenazine antibiotics by strains 2-79 and 30-84 can contribute to the ecological competence of these strains and that the reduced survival of the Phz- strains is due to a diminished ability to compete with the resident microflora.

Journal ArticleDOI
TL;DR: Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains.
Abstract: Eight rapid Poly R-478 dye-decolorizing isolates from The Netherlands were screened in this study for the biodegradation of polycyclic aromatic hydrocarbons (PAH) supplied at 10 mg liter(-1). Several well-known ligninolytic culture collection strains, Phanerochaete chrysosporium BKM-F-1767, Trametes versicolor Paprican 52, and Bjerkandera adusta CBS 595.78 were tested in parallel. All of the strains significantly removed anthracene, and nine of the strains significantly removed benzo(a)pyrene beyond the limited losses observed in sterile liquid and HgCl2-poisoned fungus controls. One of the new isolates, Bjerkandera sp. strain Bos 55, was the best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these compounds after 28 days, respectively. Half of the strains, exemplified by strains of the genera Bjerkandera and Phanerochaete, converted anthracene to anthraquinone, which was found to be a dead-end metabolite, in high yields. The extracellular fluids of selected strains were shown to be implicated in this conversion. In contrast, four Trametes strains removed anthracene without significant accumulation of the quinone. The ability of Trametes strains to degrade anthraquinone was confirmed in this study. None of the strains accumulated PAH quinones during benzo(a)pyrene degradation. Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains.

Journal ArticleDOI
TL;DR: An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied and the major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid.
Abstract: An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied. Using agar media with calcium phosphate and the pH indicator alizarin red S, the influence of the medium composition on phosphate solubility and medium acidification was recorded. The major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid. Citric acid production was promoted under nitrogen-limited conditions, while oxalic acid production was promoted under carbon-limited conditions. Citric acid was produced in both growth and stationary phases, but oxalic acid production occurred only in stationary phase. When submerged cultures which normally produce acid were induced to sporulate, the culture medium shifted toward alkaline rather than acid reaction with growth.

Journal ArticleDOI
TL;DR: Coupling polymerase chain reaction to direct DNA extraction improves sensitivity by 1 and 2 orders of magnitude for sediments and soils, respectively, and could become a powerful tool for genetic ecology studies.
Abstract: Polymerase chain reaction was used to amplify the low copy number of two 16S ribosomal gene fragments from soil and sediment extracts Total DNA for polymerase chain reaction was extracted from 1 g of seeded or unseeded samples by a rapid freeze-and-thaw method Amplified DNA fragments can be detected in DNA fractions isolated from seeded soil containing less than 3 Escherichia coli cells and from seeded sediments containing less than 10 cells This research demonstrated that coupling polymerase chain reaction to direct DNA extraction improves sensitivity by 1 and 2 orders of magnitude for sediments and soils, respectively This technique could become a powerful tool for genetic ecology studies

Journal ArticleDOI
TL;DR: The purified keratinase hydrolyzes a broad range of substrates and displays higher proteolytic activity than most proteases and is a useful enzyme for promoting the hydrolysis of feather keratin and improving the digestibility of feather meal.
Abstract: A keratinase was isolated from the culture medium of feather-degrading Bacillus licheniformis PWD-1 by use of an assay of the hydrolysis of azokeratin. Membrane ultrafiltration and carboxymethyl cellulose ion-exchange and Sephadex G-75 gel chromatographies were used to purify the enzyme. The specific activity of the purified keratinase relative to that in the original medium was approximately 70-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Sephadex G-75 chromatography indicated that the purified keratinase is monomeric and has a molecular mass of 33 kDa. The optimum pH and the pI were determined to be 7.5 and 7.25, respectively. Under standard assay conditions, the apparent temperature optimum was 50°C. The enzyme is stable when stored at −20°C. The purified keratinase hydrolyzes a broad range of substrates and displays higher proteolytic activity than most proteases. In practical applications, keratinase is a useful enzyme for promoting the hydrolysis of feather keratin and improving the digestibility of feather meal. Images

Journal ArticleDOI
TL;DR: Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture of anaerobic sediment from the Rhine river and an aerobic granular sludge, and demonstrated an almost complete conversion.
Abstract: Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes.

Journal ArticleDOI
TL;DR: There are important organism-specific properties which make generalizations regarding the bioavailability of sorbed substrates inappropriate, and a simple kinetic method to examine the rates and extents of naphthalene degradation in soil-free and soil-containing systems is developed.
Abstract: Prediction of the fate of hydrophobic organic contaminants in soils is complicated by the competing processes of sorption and biodegradation. To test the hypothesis that sorbed naphthalene is unavailable to degradative microorganisms, we developed a simple kinetic method to examine the rates and extents of naphthalene degradation in soil-free and soil-containing systems in a comparison of two bacterial species. The method is predicated on the first-order dependence of the initial mineralization rate on the naphthalene concentration when the latter is below the Michaelis-Menten half-saturation constant (Km) for naphthalene for the organism under study. Rates and extents of mineralization were estimated by nonlinear regression analysis of data by using both a simple first-order model and a three-parameter, coupled degradation-desorption model described for the first time here. Bioavailability assays with two bacterial species (Pseudomonas putida ATCC 17484 and a gram-negative soil isolate, designated NP-Alk) gave dramatically different results. For NP-Alk, sorption limited both the rate and extent of naphthalene mineralization, in accordance with values predicted on the basis of the equilibrium aqueous-phase naphthalene concentrations. For strain 17484, both the rates and extents of naphthalene mineralization exceeded the predicted values and resulted in enhanced rates of naphthalene desorption from the soils. We conclude that there are important organism-specific properties which make generalizations regarding the bioavailability of sorbed substrates inappropriate.

Journal ArticleDOI
TL;DR: The results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.
Abstract: Under nitrogen-limiting, secondary metabolic conditions, the white rat basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically [sup 14]C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4[prime]-acetamidophenylaso)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4[prime]-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-[sup 14]C] phenol and 4-phenylazo-[U-[sup 14]C] 2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.

Journal ArticleDOI
TL;DR: The importance of using beef containing low populations or no E. coli O157:H7 in sausage batter, because when initially present at 10(4) CFU/g, this organism can survive fermentation, drying, and storage of fermented sausage regardless of whether an added starter culture is used.
Abstract: The influence of pH adjusted with lactic acid or HCl or sodium chloride concentration on survival or growth of Escherichia coli O157:H7 in Trypticase soy broth (TSB) was determined. Studies also determined the fate of E. coli O157:H7 during the production and storage of fermented, dry sausage. The organism grew in TSB containing less than or equal to 6.5% NaCl or at a pH of 4.5 to 9.0, adjusted with HCl. When TSB was acidified with lactic acid, the organism grew at pH 4.6 but not at pH 4.5. A commercial sausage batter inoculated with 4.8 x 10(4) E. coli O157:H7 per g was fermented to pH 4.8 and dried until the moisture/protein ratio was less than or equal to 1.9:1. The sausage chubs were then vacuum packaged and stored at 4 degrees C for 2 months. The organism survived but did not grow during fermentation, drying, or subsequent storage at 4 degrees C and decreased by about 2 log10 CFU/g by the end of storage. These studies reveal the importance of using beef containing low populations or no E. coli O157:H7 in sausage batter, because when initially present at 10(4) CFU/g, this organism can survive fermentation, drying, and storage of fermented sausage regardless of whether an added starter culture was used.

Journal ArticleDOI
TL;DR: Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.
Abstract: A method for quantifying eubacterial cell densities in dilute communities of small bacterioplankton is presented. Cells in water samples were stained with 4',6-diamidino-2-phenylindole (DAPI), transferred to gelatin-coated slides, and hybridized with rhodamine-labeled oligonucleotide probes specific for kingdom-level 16S rRNA sequences. Between 48 and 69% of the cells captured on membrane filters were transferred to gelatin-coated slides. The number of DAPI-stained cells that were visualized with eubacterial probes varied from 35 to 67%. Only 2 to 4% of these cells also fluoresced following hybridization with a probe designed to target a eukaryotic 16S rRNA sequence. Between 0.1 and 6% of the bacterioplankton in these samples were autofluorescent and may have been mistaken as cells that hybridized with fluorescent oligonucleotide probes. Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.

Journal ArticleDOI
TL;DR: It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells.
Abstract: The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)