scispace - formally typeset
Search or ask a question

Showing papers in "Applied and Environmental Microbiology in 1996"


Journal ArticleDOI
TL;DR: Four methods for purifying crude DNA were evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization and in general, all methods produced DNA pure enough for PCR amplification.
Abstract: A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.

2,826 citations


Journal ArticleDOI
TL;DR: Three rRNA gene standards were prepared by PCR, mixed in known proportions, and amplified a second time by using primer pairs in which one primer was labeled with a fluorescent nucleotide derivative to fit a kinetic model in which the reannealing of genes progressively inhibits the formation of template-primer hybrids.
Abstract: The PCR is used widely for the study of rRNA genes amplified from mixed microbial populations. These studies resemble quantitative applications of PCR in that the templates are mixtures of homologs and the relative abundance of amplicons is thought to provide some measure of the gene ratios in the starting mixture. Although such studies have established the presence of novel rRNA genes in many natural ecosystems, inferences about gene abundance have been limited by uncertainties about the relative efficiency of gene amplification in the PCR. To address this question, three rRNA gene standards were prepared by PCR, mixed in known proportions, and amplified a second time by using primer pairs in which one primer was labeled with a fluorescent nucleotide derivative. The PCR products were digested with restriction endonucleases, and the frequencies of genes in the products were determined by electrophoresis on an Applied Biosystems 373A automated DNA sequencer in Genescan mode. Mixtures of two templates amplified with the 519F-1406R primer pair yielded products in the predicted proportions. A second primer pair (27F-338R) resulted in strong bias towards 1:1 mixtures of genes in final products, regardless of the initial proportions of the templates. This bias was strongly dependent on the number of cycles of replication. The results fit a kinetic model in which the reannealing of genes progressively inhibits the formation of template-primer hybrids.

1,898 citations


Journal ArticleDOI
TL;DR: Volume 62, no. 6, p. 2157, Table 1: the sequence for probe Nso1225, 5(prm1)-CGCGATTGTATTACGTGTGTGA-3( prm1), should read 5(PRm1-CGCCATTGTattACGT GTGA- 3(prM1).
Abstract: A hierarchical set of five 16S rRNA-targeted oligonucleotide DNA probes for phylogenetically defined groups of autotrophic ammonia- and nitrite-oxidizing bacteria was developed for environmental and determinative studies. Hybridization conditions were established for each probe by using temperature dissociation profiles of target and closely related nontarget organisms to document specificity. Environmental application was demonstrated by quantitative slot blot hybridization and whole-cell hybridization of nitrifying activated sludge and biofilm samples. Results obtained with both techniques suggested the occurrence of novel populations of ammonia oxidizers. In situ hybridization experiments revealed that Nitrobacter and Nitrosomonas species occurred in clusters and frequently were in contact with each other within sludge flocs.

934 citations


Journal ArticleDOI
TL;DR: DGGE of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park, to suggest that adaptation to temperature has occurred among cyanobacteria which are phylogenetically very similar.
Abstract: Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park. DGGE allowed a rapid evaluation of the distributions of amplifiable sequence types. Profiles were essentially identical within regions of the mat defined by one temperature range but varied between sites with different temperature ranges. Individual DGGE bands were sequenced, and the sequences were compared with those previously obtained from the mat by cloning and from cultivated Octopus Spring isolates. Two known cyanobacterial populations and one known green nonsulfur bacterium-like population were detected by DGGE, as were many new cyanobacterial and green nonsulfur and green sulfur bacterium-like populations and a novel bacterial population of uncertain phylogenetic affiliation. The distributions of several cyanobacterial populations compared favorably with results obtained previously by oligonucleotide probe analyses and suggest that adaptation to temperature has occurred among cyanobacteria which are phylogenetically very similar.

917 citations


Journal ArticleDOI
TL;DR: Use of BSA and gp32 together offered no more relief of inhibition than either alone at its optimal level, and neither protein had any noticeable effect on amplification in the absence of inhibitors.
Abstract: The benefits of adding bovine serum albumin (BSA) or T4 gene 32 protein (gp32) to PCR were evaluated with reaction mixtures containing substances that inhibit amplification. Whereas 10- to 1,000-fold more FeCl3, hemin, fulvic acids, humic acids, tannic acids, or extracts from feces, freshwater, or marine water were accommodated in PCR when either 400 ng of BSA per microl or 150 ng of gp32 per microl was included in the reactions, neither BSA nor gp32 relieved interference significantly when minimum inhibitory levels of bile salts, bilirubin, EDTA, NaCl, sodium dodecyl sulfate, or Triton X-100 were present. Use of BSA and gp32 together offered no more relief of inhibition than either alone at its optimal level, and neither protein had any noticeable effect on amplification in the absence of inhibitors.

877 citations


Journal ArticleDOI
TL;DR: The kinetics, control, and efficiency of nisin-induced expression directed by the nisA promoter region were studied in Lactococcus lactis with transcriptional and translational fusions to the gusA reporter genes.
Abstract: The kinetics, control, and efficiency of nisin-induced expression directed by the nisA promoter region were studied in Lactococcus lactis with transcriptional and translational fusions to the gusA reporter genes. In the nisin-producing L. lactis strain NZ9700, the specific beta-glucuronidase activity increased very rapidly after mid-exponential growth until the maximum level at the start of the stationary phase was reached. Expression of the gusA gene was also studied in L. lactis NZ9800, an NZ9700 derivative carrying a deletion in the structural nisA gene that abolishes nisin production, and in L. lactis NZ3900, an MG1363 derivative containing the regulatory nisRK genes integrated in the chromosome. In both strains, beta-glucuronidase activity was linearly dependent on the amount of nisin added to the medium. Without nisin, no beta-glucuronidase production was observed. To optimize translation initiation, an expression vector was constructed by fusing the gusA gene translationally to the start codon of the nisA gene. Use of the translational fusion vector yielded up to six times more beta-glucuronidase activity than the transcriptional fusion vector in these strains after induction by nisin. In this way, gene expression can be achieved in a dynamic range of more than 1,000-fold. The beta-glucuronidase activity was found to be up to 25-fold higher in extracts of strain NZ3900 than in extracts of strain NZ9800. This translational fusion vector was used for high-level production of aminopeptidase N, up to 47% of the total intracellular protein. These results clearly illustrate the potential of the nisin-inducible expression system for overproduction of desired proteins.

866 citations


Journal ArticleDOI
TL;DR: The newly observed bacterial process may significantly contribute to ferric iron formation in the suboxic zone of aquatic sediments.
Abstract: Enrichment and pure cultures of nitrate-reducing bacteria were shown to grow anaerobically with ferrous iron as the only electron donor or as the additional electron donor in the presence of acetate. The newly observed bacterial process may significantly contribute to ferric iron formation in the suboxic zone of aquatic sediments.

860 citations


Journal ArticleDOI
TL;DR: The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases and a single predominant laccase and a lack of lignin- or manganese-type peroxidase make this organism an interesting model for further studies of possible alternative pathways of ligningin degradation by white rot fungi.
Abstract: The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases. Laccase was produced as the predominant extracellular phenoloxidase in conjunction with low amounts of an unusual peroxidase. Neither lignin peroxidase nor manganese peroxidase was detected. Laccase was produced constitutively during primary metabolism. Addition of the most effective inducer, 2,5-xylidine, enhanced laccase production ninefold without altering the isoenzyme pattern of the enzyme. Laccase purified to apparent homogeneity was a single polypeptide having a molecular mass of approximately 81,000 Da, as determined by calibrated gel filtration chromatography, and a carbohydrate content of 9%. The enzyme displayed an unusual behavior on isoelectric focusing gels; the activity was split into one major band (pI, 3.7) and several minor bands of decreasing intensity which appeared at regular, closely spaced intervals toward the alkaline end of the gel. Repeated electrophoresis of the major band under identical conditions produced the same pattern, suggesting that the laccase was secreted as a single acidic isoform with a pI of about 3.7 and that the multiband pattern was an artifact produced by electrophoresis. This appeared to be confirmed by N-terminal amino acid sequencing of the purified enzyme, which yielded a single sequence for the first 21 residues. Spectroscopic analysis indicated a typical laccase active site in the P. cinnabarinus enzyme since all three typical Cu(II)-type centers were identified. Substrate specificity and inhibitor studies also indicated the enzyme to be a typical fungal laccase. The N-terminal amino acid sequence of the P. cinnabarinus laccase showed close homology to the N-terminal sequences determined for laccases from Trametes versicolor, Coriolus hirsutus, and an unidentified basidiomycete, PM1. The principal features of the P. cinnabarinus enzyme system, a single predominant laccase and a lack of lignin- or manganese-type peroxidase, make this organism an interesting model for further studies of possible alternative pathways of lignin degradation by white rot fungi.

749 citations


Journal ArticleDOI
TL;DR: The Oligonucleotide Probe Database (OPD) is designed and modified to include multiple probe versions and also to provide additional identifying information, and a method of standardizing the nomenclature for oligon nucleotide probes and PCR primers that is both unambiguous and informative is suggested.
Abstract: The use of oligonucleotide hybridization probes and PCR primers has become widespread in microbial ecology and environmental microbiology (for reviews, see references 3, 5, 7, 17, and 21), and descriptions of probe applications are abundant in the literature. We have encountered, however, a number of difficulties when relying on the literature for information on probes and primers: (i) probe design, characterization, and application data are scattered throughout the literature and therefore are not easily available; (ii) probe nomenclature is not standardized, making it difficult to recognize a particular probe and evaluate results obtained with that probe; (iii) probes are often designed empirically and used without thorough experimental characterization, making it difficult to interpret experimental results; and (iv) information on the application of individual probes is often not published in detail in the original probe description since the value of some data becomes apparent only as a result of observations made subsequent to publication (e.g., hybridization buffer composition, formamide concentration, membrane supplier and lot number, target group specificity). We designed the Oligonucleotide Probe Database (OPD) to address these concerns. The OPD centralizes information related to the design and use of oligonucleotide probes and PCR primers. The database was originally designed in Microsoft Access Version 2.0 and then converted to Hypertext Transfer Markup Language with PERL scripts. The current data set contains 96 hybridization probes and PCR primers used in microbial ecology and environmental microbiology, published by the authors as well as from direct on-line submissions to OPD. The majority of the probes in the current data set target rRNA, but the database is designed to accommodate probes targeting other gene families. For each probe or primer, the information in the OPD includes design and characterization data important for probe and primer use, including a standardized name, probe sequence, nucleotide position within the target gene, optimal hybridization and wash conditions (or annealing conditions for PCR primers), intended target group, experimentally validated target group specificity, and original citations. Much of the experimental data available in the database were not included in the original publications describing the probes. Standardization of oligonucleotide probe nomenclature. A source of much confusion and frustration during the use of probes or PCR primers designed and characterized in different laboratories has been the absence of a standardized probe nomenclature. Stahl and Amann (18) have previously attempted to address this problem for phylogenetic probes with a nomenclature consisting of three to five letters representing phylogenetic specificity, followed by a number indicating the 59 position on the rRNA complementary to the 39 end of an antisense probe or PCR primer or identical to the 59 end of a sense primer. Limitations to this nomenclature system are apparent when several versions of a probe that have the same target specificity and nucleotide position exist. We modified the nomenclature originally utilized by Stahl and Amann to include multiple probe versions and also to provide additional identifying information. We suggest a method of standardizing the nomenclature for oligonucleotide probes and PCR primers that is both unambiguous and informative. The name for an oligonucleotide probe consists of seven components combined sequentially. These components are discussed below. An example demonstrating construction of probe nomenclature for a small-subunit rRNA-targeted probe is given in parentheses.

608 citations


Journal ArticleDOI
TL;DR: A culture-independent survey of the soil microbial diversity in a clover-grass pasture in southern Wisconsin was conducted by sequence analysis of a universal clone library of genes coding for small-subunit rRNA (rDNA), finding the enormous microbial diversity found in this soil in two ways, as phylogenetic trees and as multidimensional-scaling plots.
Abstract: A culture-independent survey of the soil microbial diversity in a clover-grass pasture in southern Wisconsin was conducted by sequence analysis of a universal clone library of genes coding for small-subunit rRNA (rDNA). A rapid and efficient method for extraction of DNA from soils which resulted in highly purified DNA with minimal shearing was developed. Universal small-subunit-rRNA primers were used to amplify DNA extracted from the pasture soil. The PCR products were cloned into pGEM-T, and either hypervariable or conserved regions were sequenced. The relationships of 124 sequences to those of cultured organisms of known phylogeny were determined. Of the 124 clones sequenced, 98.4% were from the domain Bacteria. Two of the rDNA sequences were derived from eukaryotic organelles. Two of the 124 sequences were of nuclear origin, one being fungal and the other a plant sequence. No sequences of the domain Archaea were found. Within the domain, Bacteria, three kingdoms were highly represented: the Proteobacteria (16.1%), the Cytophaga-Flexibacter-Bacteroides group (21.8%), and the low G+C-content gram-positive group (21.8%). Some kingdoms, such as the Thermotogales, the green nonsulfur group, Fusobacteria, and the Spirochaetes, were absent. A large number of the sequences (39.4%) were distributed among several clades that are not among the major taxa described by Olsen et al. (G.J. Olsen, C.R. Woese, and R. Overbeek, J. Bacteriol., 176:1-6, 1994). From the alignments of the sequence data, distance matrices were calculated to display the enormous microbial diversity found in this soil in two ways, as phylogenetic trees and as multidimensional-scaling plots.

602 citations


Journal ArticleDOI
TL;DR: In order to develop a diagnostic tool to identify phytoplasmas and classify them according to their phylogenetic group, the sequence diversity of the 16S-23S intergenic spacer regions (SRs) of phy toplasmas was taken advantage.
Abstract: In order to develop a diagnostic tool to identify phytoplasmas and classify them according to their phylogenetic group, we took advantage of the sequence diversity of the 16S-23S intergenic spacer regions (SRs) of phytoplasmas. Ten PCR primers were developed from the SR sequences and were shown to amplify in a group-specific fashion. For some groups of phytoplasmas, such as elm yellows, ash yellows, and pear decline, the SR primer was paired with a specific primer from within the 16S rRNA gene. Each of these primer pairs was specific for a specific phytoplasma group, and they did not produce PCR products of the correct size from any other phytoplasma group. One primer was designed to anneal within the conserved tRNA(Ile) and, when paired with a universal primer, amplified all phytoplasmas tested. None of the primers produced PCR amplification products of the correct size from healthy plant DNA. These primers can serve as effective tools for identifying particular phytoplasmas in field samples.

Journal ArticleDOI
TL;DR: The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach and the intestine and that once induced, these systems will remain active for prolonged periods of cold storage at 4 degrees C.
Abstract: Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously characterized acid resistance systems were tested. These included an acid-induced oxidative system, an acid-induced arginine-dependent system, and a glutamate-dependent system. When challenged at pH 2.0, the arginine-dependent system provided more protection in the EHEC strains than in commensal strains. However, the glutamate-dependent system provided better protection than the arginine system and appeared equally effective in all strains. Because E. coli must also endure acid stress imposed by the presence of weak acids in intestinal contents at a pH less acidic than that of the stomach, the ability of specific acid resistance systems to protect against weak acids was examined. The arginine- and glutamate-dependent systems were both effective in protecting E. coli against the bactericidal effects of a variety of weak acids. The acids tested include benzoic acid (20 mM; pH 4.0) and a volatile fatty acid cocktail composed of acetic, propionic, and butyric acids at levels approximating those present in the intestine. The oxidative system was much less effective. Several genetic aspects of E. coli acid resistance were also characterized. The alternate sigma factor RpoS was shown to be required for oxidative acid resistance but was only partially involved with the arginine- and glutamate-dependent acid resistance systems. The arginine decarboxylase system (including adi and its regulators cysB and adiY) was responsible for arginine-dependent acid resistance. The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach (pH 1 to 3) and the intestine (pH 4.5 to 7 with high concentrations of volatile fatty acids). Of particular importance to the food industry was the finding that once induced, the acid resistance systems will remain active for prolonged periods of cold storage at 4 degrees C.

Journal ArticleDOI
TL;DR: The results, the first for planktonic diazotroph populations of the Baltic, confirm the validity of the C( inf2)H(inf2) reduction method as a quantitative measure of N(inf 2) fixation in this system.
Abstract: We describe a simple, precise, and sensitive experimental protocol for direct measurement of N(inf2) fixation using the conversion of (sup15)N(inf2) to organic N Our protocol greatly reduces the limit of detection for N(inf2) fixation by taking advantage of the high sensitivity of a modern, multiple-collector isotope ratio mass spectrometer This instrument allowed measurement of N(inf2) fixation by natural assemblages of plankton in incubations lasting several hours in the presence of relatively low-level (ca 10 atom%) tracer additions of (sup15)N(inf2) to the ambient pool of N(inf2) The sensitivity and precision of this tracer method are comparable to or better than those associated with the C(inf2)H(inf2) reduction assay Data obtained in a series of experiments in the Gotland Basin of the Baltic Sea showed excellent agreement between (sup15)N(inf2) tracer and C(inf2)H(inf2) reduction measurements, with the largest discrepancies between the methods occurring at very low fixation rates The ratio of C(inf2)H(inf2) reduced to N(inf2) fixed was 468 (plusmn) 011 (mean (plusmn) standard error, n = 39) In these experiments, the rate of C(inf2)H(inf2) reduction was relatively insensitive to assay volume Our results, the first for planktonic diazotroph populations of the Baltic, confirm the validity of the C(inf2)H(inf2) reduction method as a quantitative measure of N(inf2) fixation in this system Our (sup15)N(inf2) protocols are comparable to standard C(inf2)H(inf2) reduction procedures, which should promote use of direct (sup15)N(inf2) fixation measurements in other systems

Journal ArticleDOI
TL;DR: The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters.
Abstract: An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem.

Journal ArticleDOI
TL;DR: An established culture-based method with direct amplification and partial sequencing of cloned 16S rRNA genes from a human fecal specimen was compared, and there was good agreement between culturing bacteria and sampling rDNA directly.
Abstract: Human colonic biota is a complex microbial ecosystem that serves as a host defense. Unlike most microbial ecosystems, its composition has been studied extensively by relatively efficient culture methods. We have compared an established culture-based method with direct amplification and partial sequencing of cloned 16S rRNA genes from a human fecal specimen. Nine cycles of PCR were also compared with 35 cycles. Colonies and cloned amplicons were classified by comparing their ribosomal DNA (rDNA; DNA coding for rRNA) sequences with rDNA sequences of known phylogeny. Quantitative culture recovered 58% of the microscopic count. The 48 colonies identified gave 21 rDNA sequences; it was estimated that 72% of the rDNA sequences from the total population of culturable cells would match these 21 sampled sequences (72% coverage). Fifty 9-cycle clones gave 27 sequences and 59% coverage of cloned rDNAs. Thirty-nine rDNAs cloned after 35 cycles of PCR gave 13 sequences for 74% coverage. Thus, the representation of the ecosystem after 35 cycles of PCR was distorted and lacked diversity. However, when the number of temperature cycles was minimized, biodiversity was preserved, and there was good agreement between culturing bacteria and sampling rDNA directly.

Journal ArticleDOI
TL;DR: PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human and animal fecal samples tested.
Abstract: PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.

Journal ArticleDOI
TL;DR: The presence of methanogenic bacteria was assessed in peat and soil cores taken from upland moors and formed two clusters on the end of long branches within the methanogen radiation that are distinct from each other.
Abstract: The presence of methanogenic bacteria was assessed in peat and soil cores taken from upland moors. The sampling area was largely covered by blanket bog peat together with small areas of red-brown limestone and peaty gley. A 30-cm-deep core of each soil type was taken, and DNA was extracted from 5-cm transverse sections. Purified DNA was subjected to PCR amplification with primers IAf and 1100Ar, which specifically amplify 1.1 kb of the archaeal 16S rRNA gene, and ME1 and ME2, which were designed to amplify a 0.75-kb region of the alpha-subunit gene for methyl coenzyme M reductase (MCR). Amplification with both primer pairs was obtained only with DNA extracted from the two deepest sections of the blanket bog peat core. This is consistent with the notion that anaerobiosis is required for activity and survival of the methanogen population. PCR products from both amplifications were cloned, and the resulting transformants were screened with specific oligonucleotide probes internal to the MCR or archaeal 16S rRNA PCR product. Plasmid DNA was extracted from probe-positive clones of both types and the insert was sequenced. The DNA sequences of 8 MCR clones were identical, as were those of 16 of the 17 16S rRNA clones. One clone showed marked variation from the remainder in specific regions of the sequence. From a comparison of these two different 16S rRNA sequences, an oligonucleotide was synthesized that was 100% homologous to a sequence region of the first 16 clones but had six mismatches with the variant. This probe was used to screen primary populations of PCR clones, and all of those that were probe negative were checked for the presence of inserts, which were then sequenced. By using this strategy, further novel methanogen 16S rRNA variants were identified and analyzed. The sequences recovered from the peat formed two clusters on the end of long branches within the methanogen radiation that are distinct from each other. These cannot be placed directly with sequences from any cultured taxa for which sequence information is available.

Journal ArticleDOI
TL;DR: Results indicate that E. coli O157:H7 can survive in feces for a long period of time and retain its ability to produce verotoxins, Hence, bovine feces are a potential vehicle for transmitting E. bacteria to cattle, food, and the environment.
Abstract: Dairy cattle have been identified as a principal reservoir of Escherichia coli O157:H7. The fate of this pathogen in bovine feces at 5, 22, and 37 degrees C was determined. Two levels of inocula (10(3) and 10(5) CFU/g) of a mixture of five nalidixic acid-resistant E. coli O157:H7 strains were used. E. coli O157:H7 survived at 37 degrees C for 42 and 49 days with low and high inocula, respectively, and at 22 degrees C for 49 and 56 days with low and high inocula, respectively. Fecal samples at both temperatures had low moisture contents (about 10%) and water activities ( < 0.5) near the end of the study. E. coli O157:H7 at 5 degrees C survived for 63 to 70 days, with the moisture content (74%) of feces remaining high through the study. Chromosomal DNA fingerprinting of E. coli O157:H7 isolates surviving near the completion of the study revealed that the human isolate strain 932 was the only surviving strain at 22 or 37 degrees C. All five strains were isolated near the end of incubation from feces held at 5 degrees C. Isolates at each temperature were still capable of producing both verotoxin 1 and verotoxin 2. Results indicate that E. coli O157:H7 can survive in feces for a long period of time and retain its ability to produce verotoxins. Hence, bovine feces are a potential vehicle for transmitting E. coli O157:H7 to cattle, food, and the environment. Appropriate handling of bovine feces is important to control the spread of this pathogen.

Journal ArticleDOI
TL;DR: Results show that the antibiotics iturin A and surfactin produced by RB14 play a major role in the suppression of damping-off caused by R. solani.
Abstract: Bacillus subtilis RB14, which showed antibiotic activities against several phytopathogens in vitro by producing the antibiotics iturin A and surfactin, was subjected to a pot test to investigate its ability to suppress damping-off of tomato seedlings caused by Rhizoctonia solani. To facilitate recovery from soil, B. subtilis RB14-C, a spontaneous streptomycin-resistant mutant of RB14, was used. Damping-off was suppressed when the culture broth, cell suspension, or cell-free culture broth of RB14-C was inoculated into soil. Iturin A and surfactin were recovered from the soils inoculated with the cell suspension of RB14-C, confirming that RB14-C produced them in soil. The gene lpa-14, which was cloned from RB14 and required for the production of both antibiotics, was mutated in RB14-C, and a mutant, R(Delta)1, was constructed. The level of disease suppressibility of R(Delta)1 was low, but R(Delta)1(pC115), a transformant of R(Delta)1 with the plasmid pC115 carrying lpa-14, was restored in suppressibility. These results show that the antibiotics iturin A and surfactin produced by RB14 play a major role in the suppression of damping-off caused by R. solani. RB14-C, R(Delta)1, and R(Delta)1(pC115) persisted in soil during the experimental period and were recovered from the soil, mostly as spores.

Journal ArticleDOI
TL;DR: The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations.
Abstract: The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio- and Desulfobulbus-related strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N.B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ.

Journal ArticleDOI
TL;DR: A new method based on single-strand-conformation polymorphism (SSCP) analysis of PCR products of 16S rRNA genes from complex bacterial populations provides a useful tool to study bacterial community structures in various ecosystems.
Abstract: We describe a new method for studying the structure and diversity of bacterial communities in the natural ecosystem. Our approach is based on single-strand-conformation polymorphism (SSCP) analysis of PCR products of 16S rRNA genes from complex bacterial populations. A pair of eubacterial universal primers for amplification of the variable V3 region were designed from the 16S rRNA sequences of 1,262 bacterial strains. The PCR conditions were optimized by using genomic DNAs from five gram-positive and seven gram-negative strains. The SSCP analysis of the PCR products demonstrated that a bacterial strain generated its characteristic band pattern and that other strains generated other band patterns, so that the relative diversity in bacterial communities could be measured. In addition, this method was sensitive enough to detect a bacterial population that made up less than 1.5% of a bacterial community. The distinctive differences between bacterial populations were observed in an oligotrophic lake and a eutrophic pond in a field study. The method presented here, using combined PCR amplification and SSCP pattern analyses of 16S rRNA genes, provides a useful tool to study bacterial community structures in various ecosystems.

Journal ArticleDOI
TL;DR: The phylogenetic compositions of bacterioplankton assemblages from San Francisco Bay and Tomales Bay, Calif., differed substantially when analyzed by PCR-denaturing gradient gel electrophoresis; these differences are consistent with the results of previous studies demonstrating differences in their metabolic capabilities.
Abstract: The phylogenetic compositions of bacterioplankton assemblages from San Francisco Bay and Tomales Bay, Calif., differed substantially when analyzed by PCR-denaturing gradient gel electrophoresis; these differences are consistent with the results of previous studies demonstrating differences in their metabolic capabilities. PCR-denaturing gradient gel electrophoresis analysis of complex microbial assemblages was sensitive and reliable, and the results were reproducible as shown by experiments with constructed and naturally occurring assemblages.

Journal ArticleDOI
TL;DR: The data suggest that low-pH conditions may have the potential to select for L. monocytogenes mutants with increased natural acid tolerance and increased virulence.
Abstract: The ability of Listeria monocytogenes to tolerate low-pH environments is of particular importance because the pathogen encounters such environments in vivo, both during passage through the stomach and within the macrophage phagosome. In our study, L. monocytogenes was shown to exhibit a significant adaptive acid tolerance response following a 1-h exposure to mild acid (pH 5.5), which is capable of protecting cells from severe acid stress (pH 3.5). Susceptibility to pH 3.5 acid is growth phase dependent. Stationary-phase Listeria cultures are naturally resistant to the challenge pH (pH 3.5), while exponential-phase cultures require adaptation at pH 5.5 to induce acid tolerance. Adaptation requires protein synthesis, since treatment with chloramphenicol prevents the development of acid tolerance. Induction of the acid tolerance response also protects L. monocytogenes against the effect of other environmental stresses. Acid-adapted cells demonstrate increased tolerance toward thermal stress, osmotic stress, crystal violet, and ethanol. Following prolonged exposure of L. monocytogenes to pH 3.5, we isolated mutants which constitutively demonstrate increased acid tolerance at all stages of the growth cycle. These mutants do not display full acid tolerance, but their resistance to low pH can be further increased following adaptation to mild-acid conditions. The mutants demonstrated increased lethality for mice relative to that of the wild type when inoculated by the intraperitoneal route. When administered as lower inocula, the mutants reached higher levels in the spleens of infected mice than did the wild type. The data suggest that low-pH conditions may have the potential to select for L. monocytogenes mutants with increased natural acid tolerance and increased virulence.

Journal ArticleDOI
TL;DR: A new bacteriocin has been isolated from an Enterococcus faecium strain and was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and mass spectrometry analysis.
Abstract: A new bacteriocin has been isolated from an Enterococcus faecium strain. The bacteriocin, termed enterocin A, was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and mass spectrometry analysis. By combining the data obtained from amino acid and DNA sequencing, the primary structure of enterocin A was determined. It consists of 47 amino acid residues, and the molecular weight was calculated to be 4,829, assuming that the four cysteine residues form intramolecular disulfide bridges. This molecular weight was confirmed by mass spectrometry analysis. The amino acid sequence of enterocin A shared significant homology with a group of bacteriocins (now termed pediocin-like bacteriocins) isolated from a variety of lactic acid-producing bacteria, which include members of the genera Lactobacillus, Pediococcus, Leuconostoc, and Carnobacterium. Sequencing of the structural gene of enterocin A, which is located on the bacterial chromosome, revealed an N-terminal leader sequence of 18 amino acid residues, which was removed during the maturation process. The enterocin A leader belongs to the double-glycine leaders which are found among most other small nonlantibiotic bacteriocins, some lantibiotics, and colicin V. Downstream of the enterocin A gene was located a second open reading frame, encoding a putative protein of 103 amino acid residues. This gene may encode the immunity factor of enterocin A, and it shares 40% identity with a similar open reading frame in the operon of leucocin AUL 187, another pediocin-like bacteriocin.

Journal ArticleDOI
John R. Stephen1, A E McCaig1, Z Smith1, James I. Prosser1, T M Embley1 
TL;DR: A preliminary phylogenetic survey of ammonia-oxidizing beta-proteobacteria, using 16S rRNA gene libraries prepared by selective PCR and DNA from acid and neutral soils and polluted and nonpolluted marine sediments, suggests that some related strains may be present in both samples, but further work is needed to resolve whether there is selection due to pH for particular sequence types.
Abstract: We have conducted a preliminary phylogenetic survey of ammonia-oxidizing beta-proteobacteria, using 16S rRNA gene libraries prepared by selective PCR and DNA from acid and neutral soils and polluted and nonpolluted marine sediments. Enrichment cultures were established from samples and analyzed by PCR. Analysis of 111 partial sequences of c. 300 bases revealed that the environmental sequences formed seven clusters, four of which are novel, within the phylogenetic radiation defined by cultured autotrophic ammonia oxidizers. Longer sequences from 13 cluster representatives support their phylogenetic positions relative to cultured taxa. These data suggest that known taxa may not be representative of the ammonia-oxidizing beta-proteobacteria in our samples. Our data provide further evidence that molecular and culture-based enrichment methods can select for different community members. Most enrichments contained novel Nitrosomonas-like sequences whereas novel Nitrosospira-like sequences were more common from gene libraries of soils and marine sediments. This is the first evidence for the occurrence of Nitrosospira-like strains in marine samples. Clear differences between the sequences of soil and marine sediment libraries were detected. Comparison of 16S rRNA sequences from polluted and nonpolluted sediments provided no strong evidence that the community composition was determined by the degree of pollution. Soil clone sequences fell into four clusters, each containing sequences from acid and neutral soils in varying proportions. Our data suggest that some related strains may be present in both samples, but further work is needed to resolve whether there is selection due to pH for particular sequence types.

Journal ArticleDOI
TL;DR: The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria, suggesting that these starters provide a means of controlling developing microflora in ripened fermented products.
Abstract: Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products.

Journal ArticleDOI
TL;DR: Phospholipid fatty acid (PLFA) analysis revealed a gradual change in soil microbial communities along both pollution gradients, and most of the individual PLFAs changed similarly to metal pollution at both sites.
Abstract: The effects of long-term heavy metal deposition on microbial community structure and the level of bacterial community tolerance were studied along two different gradients in Scandinavian coniferous forest soils. One was near the Harjavalta smelter in Finland, and one was at Ronnskar in Sweden. Phospholipid fatty acid (PLFA) analysis revealed a gradual change in soil microbial communities along both pollution gradients, and most of the individual PLFAs changed similarly to metal pollution at both sites. The relative quantities of the PLFAs br18:0, br17:0, i16:0, and i16:1 increased with increasing heavy metal concentration, while those of 20:4 and 18:2(omega)6, which is a predominant PLFA in many fungi, decreased. The fungal part of the microbial biomass was found to be more sensitive to heavy metals. This resulted in a decreased fungal/bacterial biomass ratio along the pollution gradient towards the smelters. The thymidine incorporation technique was used to study the heavy metal tolerance of the bacteria. The bacterial community at the Harjavalta smelter, exposed mainly to Cu deposition, exhibited an increased tolerance to Cu but not to Cd, Ni, and Zn. At the Ronnskar smelter the deposition consisting of a mixture of metals increased the bacterial community tolerance to all tested metals. Both the PLFA pattern and the bacterial community tolerance were affected at lower soil metal concentrations than were bacterial counts and bacterial activities. At Harjavalta the increased Cu tolerance of the bacteria and the change in the PLFA pattern of the microbial community were found at the same soil Cu concentrations. This indicated that the altered PLFA pattern was at least partly due to an altered, more metal-tolerant bacterial community. At Ronnskar, where the PLFA data varied more, a correlation between bacterial community tolerance and an altered PLFA pattern was found up to 10 to 15 km from the smelter. Farther away changes in the PLFA pattern could not be explained by an increased community tolerance to metals.

Journal ArticleDOI
TL;DR: Microprofiles of O2 and NO3- were measured in nitrifying biofilms from the trickling filter of an aquaculture water recirculation system by use of a newly developed biosensor for NO3-, and nitrification was restricted to a narrow zone of 50 microns on the very top of the film.
Abstract: Microprofiles of O2 and NO3- were measured in nitrifying biofilms from the trickling filter of an aquaculture water recirculation system. By use of a newly developed biosensor for NO3-, it was possible to avoid conventional interference from other ions. Nitrification was restricted to a narrow zone of 50 microns on the very top of the film. In the same biofilms, the vertical distributions of members of the lithoautotrophic ammonia-oxidizing genus Nitrosomonas and of the nitrite-oxidizing genus Nitrobacter were investigated by applying fluorescence in situ hybridization of whole fixed cells with 16S rRNA-targeted oligonucleotide probes in combination with confocal laser-scanning microscopy. Ammonia oxidizers formed a dense layer of cell clusters in the upper part of the biofilm, whereas the nitrite oxidizers showed less-dense aggregates in close vicinity to the Nitrosomonas clusters. Both species were not restricted to the oxic zone of the biofilm but were also detected in substantially lower numbers in the anoxic layers and even occasionally at the bottom of the biofilm.

Journal ArticleDOI
TL;DR: The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass, and it was found that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation.
Abstract: The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass. Five genes, encoding L-arabinose isomerase (araA), L-ribulokinase (araB), L-ribulose-5-phosphate-4-epimerase (araD), transaldolase (talB), and transketolase (tktA), were isolated from Escherichia coli and introduced into Z. mobilis under the control of constitutive promoters that permitted their expression even in the presence of glucose. The engineered strain grew on and produced ethanol from L-arabinose as a sole C source at 98% of the maximum theoretical ethanol yield, based on the amount of consumed sugar. This indicates that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation. Although no diauxic growth pattern was evident, the microorganism preferentially utilized glucose before arabinose, apparently reflecting the specificity of the indigenous facilitated diffusion transport system. This microorganism may be useful, along with the previously developed xylose-fermenting Z. mobilis (M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Science 267:240-243, 1995), in a mixed culture for efficient fermentation of the predominant hexose and pentose sugars in agricultural residues and other lignocellulosic feedstocks to ethanol.

Journal ArticleDOI
TL;DR: The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.
Abstract: To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.