scispace - formally typeset
Search or ask a question

Showing papers in "Applied and Environmental Microbiology in 2017"


Journal ArticleDOI
TL;DR: This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs.
Abstract: Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Our aim was therefore to characterize the intestinal microbiota of pigs ranked as low, medium and high residual feed intake (RFI; a metric for FE), where genetic, nutritional and management effects were minimized, in order to explore a possible link between the intestinal microbiota and FE. Eighty one pigs were ranked on RFI between weaning and day 126 post-weaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, 10 high). Intestinal microbiota diversity, composition and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes , and predominantly in faeces at slaughter (albeit mainly for low abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g. Christensenellaceae, Oscillibacter , Cellulosilyticum ) were enriched in low RFI (more feed efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably Nocardiaceae ( Rhodococcus ) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in more efficient pigs. Overall, differences observed within the intestinal microbiota of low RFI pigs compared to their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs. IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may, at least in part, explain improved FE in low RFI pigs. One of the main findings is that, although microbial diversity did not differ among animals of varying FE, specific intestinal microbes could potentially be linked with porcine FE. However, as the factors impacting FE are still not fully understood, intestinal microbiota composition may not be a major factor determining differences in FE. Nonetheless, this work has provided a potential set of microbial biomarkers for FE in pigs. Although culturability could be a limiting factor, and intervention studies are required, these taxa could potentially be targeted in the future, in order to manipulate the intestinal microbiome so as to improve FE in pigs. If successful, this has the potential to reduce both production costs and the environmental impact of pig production.

241 citations


Journal ArticleDOI
TL;DR: The results suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp.
Abstract: The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili.IMPORTANCEMethanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.

229 citations


Journal ArticleDOI
TL;DR: The findings that the active rumen microbiome may contribute to variations in feed efficiency of beef cattle highlight the possibility of enhancing nutrient utilization and improve cattle feed efficiency through modification of rumen microbial functions.
Abstract: Exploring compositional and functional characteristics of the rumen microbiome can improve the understanding of its role in rumen function and cattle feed efficiency. In this study, we applied metatranscriptomics to characterize the active rumen microbiomes of beef cattle with different feed efficiencies (efficient, n = 10; inefficient, n = 10) using total RNA sequencing. Active bacterial and archaeal compositions were estimated based on 16S rRNAs, and active microbial metabolic functions including carbohydrate-active enzymes (CAZymes) were assessed based on mRNAs from the same metatranscriptomic data sets. In total, six bacterial phyla (Proteobacteria, Firmicutes, Bacteroidetes, Spirochaetes, Cyanobacteria, and Synergistetes), eight bacterial families (Succinivibrionaceae, Prevotellaceae, Ruminococcaceae, Lachnospiraceae, Veillonellaceae, Spirochaetaceae, Dethiosulfovibrionaceae, and Mogibacteriaceae), four archaeal clades (Methanomassiliicoccales, Methanobrevibacter ruminantium, Methanobrevibacter gottschalkii, and Methanosphaera), 112 metabolic pathways, and 126 CAZymes were identified as core components of the active rumen microbiome. As determined by comparative analysis, three bacterial families (Lachnospiraceae, Lactobacillaceae, and Veillonellaceae) tended to be more abundant in low-feed-efficiency (inefficient) animals (P 2 with a P value of <0.05) between two groups. Among them, 30 metabolic pathways and 11 CAZymes were more abundant in the rumen of inefficient cattle, while 2 metabolic pathways and 1 CAZyme were more abundant in efficient animals. These findings suggest that the rumen microbiomes of inefficient cattle have more diverse activities than those of efficient cattle, which may be related to the host feed efficiency variation.IMPORTANCE This study applied total RNA-based metatranscriptomics and showed the linkage between the active rumen microbiome and feed efficiency (residual feed intake) in beef cattle. The data generated from the current study provide fundamental information on active rumen microbiome at both compositional and functional levels, which serve as a foundation to study rumen function and its role in cattle feed efficiency. The findings that the active rumen microbiome may contribute to variations in feed efficiency of beef cattle highlight the possibility of enhancing nutrient utilization and improve cattle feed efficiency through modification of rumen microbial functions.

204 citations


Journal ArticleDOI
TL;DR: This comprehensive minireview evaluates the effect of natural antimicrobials on pathogens in biofilms when used instead of, or in combination with, commonly prescribed antibiotics.
Abstract: Biofilm-associated bacteria are less sensitive to antibiotics than free-living (planktonic) cells. Furthermore, with variations in the concentration of antibiotics throughout a biofilm, microbial cells are often exposed to levels below inhibitory concentrations and may develop resistance. This, as well as the irresponsible use of antibiotics, leads to the selection of pathogens that are difficult to eradicate. The Centers for Disease Control and Prevention use the terms "antibiotic" and "antimicrobial agent" interchangeably. However, a clear distinction between these two terms is required for the purpose of this assessment. Therefore, we define "antibiotics" as pharmaceutically formulated and medically administered substances and "antimicrobials" as a broad category of substances which are not regulated as drugs. This comprehensive minireview evaluates the effect of natural antimicrobials on pathogens in biofilms when used instead of, or in combination with, commonly prescribed antibiotics.

195 citations


Journal ArticleDOI
TL;DR: Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species and was less diverse, with increased representation of Gram-negative bacteria.
Abstract: Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes/Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort.IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a group of SLE patients with active disease.

194 citations


Journal ArticleDOI
TL;DR: Key differences between soil bacteria and fungi during the restoration of reclaimed mine soils are highlighted in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks.
Abstract: Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities.IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages.

164 citations


Journal ArticleDOI
TL;DR: A genome-scale metabolic model is constructed and its validation by transcriptomic and proteomic approaches on bacterial cells grown on mucus and glucose, a nonmucus sugar provides detailed molecular insight into the mucus-degrading lifestyle of A. muciniphila and confirms its role as a mucin specialist in the gut.
Abstract: The composition and activity of the microbiota in the human gastrointestinal tract are primarily shaped by nutrients derived from either food or the host. Bacteria colonizing the mucus layer have evolved to use mucin as a carbon and energy source. One of the members of the mucosa-associated microbiota is Akkermansia muciniphila, which is capable of producing an extensive repertoire of mucin-degrading enzymes. To further study the substrate utilization abilities of A. muciniphila, we constructed a genome-scale metabolic model to test amino acid auxotrophy, vitamin biosynthesis, and sugar-degrading capacities. The model-supported predictions were validated by in vitro experiments, which showed A. muciniphila to be able to utilize the mucin-derived monosaccharides fucose, galactose, and N-acetylglucosamine. Growth was also observed on N-acetylgalactosamine, even though the metabolic model did not predict this. The uptake of these sugars, as well as the nonmucin sugar glucose, was enhanced in the presence of mucin, indicating that additional mucin-derived components are needed for optimal growth. An analysis of whole-transcriptome sequencing (RNA-Seq) comparing the gene expression of A. muciniphila grown on mucin with that of the same bacterium grown on glucose confirmed the activity of the genes involved in mucin degradation and revealed most of these to be upregulated in the presence of mucin. The transcriptional response was confirmed by a proteome analysis, altogether revealing a hierarchy in the use of sugars and reflecting the adaptation of A. muciniphila to the mucosal environment. In conclusion, these findings provide molecular insights into the lifestyle of A. muciniphila and further confirm its role as a mucin specialist in the gut.IMPORTANCEAkkermansia muciniphila is among the most abundant mucosal bacteria in humans and in a wide range of other animals. Recently, A. muciniphila has attracted considerable attention because of its capacity to protect against diet-induced obesity in mouse models. However, the physiology of A. muciniphila has not been studied in detail. Hence, we constructed a genome-scale model and describe its validation by transcriptomic and proteomic approaches on bacterial cells grown on mucus and glucose, a nonmucus sugar. The results provide detailed molecular insight into the mucus-degrading lifestyle of A. muciniphila and further confirm the role of this mucin specialist in producing propionate and acetate under conditions of the intestinal tract.

147 citations


Journal ArticleDOI
TL;DR: The environmental microbiota was an important source of fermentation microbiota and could drive both microbial succession and metabolic profiles during liquor fermentation, showing that the environmental microbiota influences the quality of fermented foods and beverages, especially for Chinese liquors.
Abstract: Many microorganisms in the environment participate in the fermentation process of Chinese liquor. However, it is unknown to what extent the environmental microbiota influences fermentation. In this study, high-throughput sequencing combined with multiphasic metabolite target analysis was applied to study the microbial succession and metabolism changes during Chinese liquor fermentation from two environments (old and new workshops). SourceTracker was applied to evaluate the contribution of environmental microbiota to fermentation. Results showed that Daqu contributed 9.10 to 27.39% of bacterial communities and 61.06 to 80.00% of fungal communities to fermentation, whereas environments (outdoor ground, indoor ground, tools, and other unknown environments) contributed 62.61 to 90.90% of bacterial communities and 20.00 to 38.94% of fungal communities to fermentation. In the old workshop, six bacterial genera (Lactobacillus [11.73% average relative abundance], Bacillus [20.78%], Pseudomonas [6.13%], Kroppenstedtia [10.99%], Weissella [16.64%], and Pantoea [3.40%]) and five fungal genera (Pichia [55.10%], Candida [1.47%], Aspergillus [10.66%], Saccharomycopsis [22.11%], and Wickerhamomyces [3.35%]) were abundant at the beginning of fermentation. However, in the new workshop, the change of environmental microbiota decreased the abundances of Bacillus (5.74%), Weissella (6.64%), Pichia (33.91%), Aspergillus (7.08%), and Wickerhamomyces (0.12%), and increased the abundances of Pseudomonas (17.04%), Kroppenstedtia (13.31%), Pantoea (11.41%), Acinetobacter (3.02%), Candida (16.47%), and Kazachstania (1.31%). Meanwhile, in the new workshop, the changes of microbial community resulted in the increase of acetic acid, lactic acid, malic acid, and ethyl acetate, and the decrease of ethyl lactate during fermentation. This study showed that the environmental microbiota was an important source of fermentation microbiota and could drive both microbial succession and metabolic profiles during liquor fermentation.IMPORTANCE Traditional solid-state fermentation of foods and beverages is mainly carried out by complex microbial communities from raw materials, starters, and the processing environments. However, it is still unclear how the environmental microbiota influences the quality of fermented foods and beverages, especially for Chinese liquors. In this study, we utilized high-throughput sequencing, microbial source tracking, and multiphasic metabolite target analysis to analyze the origins of microbiota and the metabolic profiles during liquor fermentation. This study contributes to a deeper understanding of the role of environmental microbiota during fermentation.

145 citations


Journal ArticleDOI
TL;DR: The mechanism of the antifungal action of bacillomycin D is revealed and the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against F. graminearum is highlighted.
Abstract: Fusarium graminearum (teleomorph: Ascomycota, Hypocreales, Gibberella, Gibberella zeae) is a destructive fungal pathogen that threatens the production and quality of wheat and barley worldwide. Controlling this toxin-producing pathogen is a significant challenge. In the present study, the commercially available strain Bacillus amyloliquefaciens (Bacteria, Firmicutes, Bacillales, Bacillus) FZB42 showed strong activity against F. graminearum The lipopeptide bacillomycin D, produced by FZB42, was shown to contribute to the antifungal activity. Purified bacillomycin D showed strong activity against F. graminearum, and its 50% effective concentration was determined to be approximately 30 μg/ml. Analyses using scanning and transmission electron microscopy revealed that bacillomycin D caused morphological changes in the plasma membranes and cell walls of F. graminearum hyphae and conidia. Fluorescence microscopy combined with different dyes showed that bacillomycin D induced the accumulation of reactive oxygen species and caused cell death in F. graminearum hyphae and conidia. F. graminearum secondary metabolism also responded to bacillomycin D challenge, by increasing the production of deoxynivalenol. Biological control experiments demonstrated that bacillomycin D exerted good control of F. graminearum on corn silks, wheat seedlings, and wheat heads. In response to bacillomycin D, F. graminearum genes involved in scavenging reactive oxygen species were downregulated, whereas genes involved in the synthesis of deoxynivalenol were upregulated. Phosphorylation of MGV1 and HOG1, the mitogen-activated protein kinases of F. graminearum, was increased in response to bacillomycin D. Taken together, these findings reveal the mechanism of the antifungal action of bacillomycin D.IMPORTANCE Biological control of plant disease caused by Fusarium graminearum is desirable. Bacillus amyloliquefaciens FZB42 is a representative of the biocontrol bacterial strains. In this work, the lipopeptide bacillomycin D, produced by FZB42, showed strong fungicidal activity against F. graminearum Bacillomycin D caused morphological changes in the plasma membrane and cell wall of F. graminearum, induced accumulation of reactive oxygen species, and ultimately caused cell death in F. graminearum Interestingly, when F. graminearum was challenged with bacillomycin D, the deoxynivalenol production, gene expression, mitogen-activated protein kinase phosphorylation, and pathogenicity of F. graminearum were significantly altered. These findings clarified the mechanisms of the activity of bacillomycin D against F. graminearum and highlighted the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against F. graminearum.

141 citations


Journal ArticleDOI
TL;DR: The study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish and demonstrated substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria.
Abstract: The present study aimed to investigate whether alternative dietary protein sources modulate the microbial communities in the distal intestine (DI) of Atlantic salmon, and whether alterations in microbiota profiles are reflected in modifications in host intestinal function and health status. A 48-day feeding trial was conducted, in which groups of fish received one of five diets: a reference diet in which fishmeal (diet FM) was the only protein source and four experimental diets with commercially relevant compositions containing alternative ingredients as partial replacements of fishmeal, i.e., poultry meal (diet PM), a mix of soybean meal and wheat gluten (diet SBMWG), a mix of soy protein concentrate and poultry meal (diet SPCPM), and guar meal and wheat gluten (diet GMWG). Samples were taken of DI digesta and mucosa for microbial profiling using high-throughput sequencing and from DI whole tissue for immunohistochemistry and expression profiling of marker genes for gut health. Regardless of diet, there were significant differences between the microbial populations in the digesta and the mucosa in the salmon DI. Microbial richness was higher in the digesta than the mucosa. The digesta-associated bacterial communities were more affected by the diet than the mucosa-associated microbiota. Interestingly, both legume-based diets (SBMWG and GMWG) presented high relative abundance of lactic acid bacteria in addition to alteration in the expression of a salmon gene related to cell proliferation (pcna). It was, however, not possible to ascertain the cause-effect relationship between changes in bacterial communities and the host's intestinal responses to the diets.IMPORTANCE The intestine of cultivated Atlantic salmon shows symptoms of compromised function, which are most likely caused by imbalances related to the use of new feed ingredients. Intestinal microbiota profiling may become in the future a valuable endpoint measurement in order to assess fish intestinal health status and effects of diet. The present study aimed to gain information about whether alternative dietary protein sources modulate the microbial communities in the Atlantic salmon intestine and whether alterations in microbiota profiles are reflected in alterations in host intestinal function and health status. We demonstrate here that there are substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria. The digesta-associated microbiota showed clear dependence on the diet composition, whereas mucosa-associated microbiota appeared to be less affected by diet composition. Most important, the study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish.

135 citations


Journal ArticleDOI
TL;DR: A CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria and the findings will guide efficient Cas 12a-mediated genome editing in bacteria are developed and optimized.
Abstract: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.IMPORTANCE The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.

Journal ArticleDOI
TL;DR: The infection rate of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe, was evaluated and showed that the infection rate was significantly higher in adults than in nymphs and in females than in males.
Abstract: Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent Borrelia burgdorferi sensu lato, is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi s.l. spirochetes in questing I. ricinus . The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region and detection method, as well as to investigate any changes in prevalence over time. The obtained data was compared to findings of a previous meta-study. The literature search identified data from 24 countries with 115,028 ticks in total inspected for infection with B. burgdorferi s.l. We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii , despite a negative correlation of their prevalence rates. There were no statistically significant differences found among the prevalence rates determined by conventional polymerase chain reaction (PCR), nested PCR or real-time PCR. IMPORTANCE Borrelia burgdorferi sensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here, we provide summarized information about the prevalence of the B. burgdorferi s.l. spirochetes in the host-seeking Ixodes ricinus ticks, its principal tick vector in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection.

Journal ArticleDOI
TL;DR: The data suggest that SNP/allele counts should always be combined with WGS clustering analysis generated by phylogenetically meaningful algorithms on a sufficient number of isolates, and the SNP-allele threshold alone does not provide sufficient evidence to delineate an outbreak.
Abstract: Epidemiological findings of a listeriosis outbreak in 2013 implicated Hispanic-style cheese produced by Company A, and pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed on clinical isolates and representative isolates collected from Company A cheese and environmental samples during the investigation. The results strengthened the evidence for cheese as the vehicle. Surveillance sampling and WGS three months later revealed that the equipment purchased by Company B from Company A yielded an environmental isolate highly similar to all outbreak isolates. The whole genome and core genome multilocus sequence typing and single nucleotide polymorphism (SNP) analyses were compared to demonstrate the maximum discriminatory power obtained by using multiple analyses, which were needed to differentiate outbreak-associated isolates from a PFGE-indistinguishable isolate collected in a non-implicated food source in 2012. This unrelated isolate differed from the outbreak isolates by only 7 to 14 SNPs, and as a result, minimum spanning tree by the whole genome analyses and certain variant calling approach and phylogenetic algorithm for core genome-based analyses could not provide the differentiation between unrelated isolates. Our data also suggest that SNP/allele counts should always be combined with WGS clustering generated by phylogenetically meaningful algorithms on sufficient number of isolates, and SNP/allele threshold alone is not sufficient evidence to delineate an outbreak. The putative prophages were conserved across all the outbreak isolates. All outbreak isolates belonged to clonal complex 5 and serotype 1/2b, had an identical inlA sequence, which did not have premature stop codons. IMPORTANCE In this outbreak, multiple analytical approaches were used for maximum discriminatory power. A PFGE-matched, epidemiologically unrelated isolate had high genetic similarity to the outbreak-associated isolates, with as few as only 7 SNP differences. Therefore, the SNP/allele threshold should not be used as the only evidence to define the scope of an outbreak. It is critical that the SNP/allele counts be complemented by WGS clustering generated by phylogenetically meaningful algorithms to distinguish outbreak-associated isolates from epidemiologically unrelated isolates. Careful selection of a variant calling approach and phylogenetic algorithm is critical for core genome-based analyses. The whole genome-based analyses were able to construct the highly resolved phylogeny needed to support the findings of the outbreak investigation. Ultimately, epidemiologic evidence and multiple WGS analyses should be combined to increase the confidence in outbreak investigations.

Journal ArticleDOI
TL;DR: The extensive application of high-throughput DNA sequencing technologies to study the relationship between the milk production environment and the raw milk microbiota showed that the environment in which the herd was kept was the primary driver of the composition of the milk microbiota composition.
Abstract: In pasture-based systems, changes in dairy herd habitat due to seasonality results in the exposure of animals to different environmental niches. These niches contain distinct microbial communities that may be transferred to raw milk, with potentially important food quality and safety implications for milk producers. It is postulated that the extent to which these microorganisms are transferred could be limited by the inclusion of a teat preparation step prior to milking. Here high-throughput sequencing, of a variety of microbial niches on the farm, is employed to study the patterns of microbial movement through the dairy production chain and, in the process, investigate the impact of seasonal housing and inclusion/exclusion of teat preparation regime on the raw milk microbiota from the same herd over two sampling periods, i.e., indoor and outdoor. Beta diversity and network analyses showed that environmental and milk microbiotas separated depending on whether they were sourced from an indoor or outdoor environment. Within these respective habitats, similarities between the milk microbiota and that of teat swab samples and, to a lesser extent, faecal samples were apparent. Indeed, SourceTracker identified the teat surface as the most significant source of contamination, with herd faeces being the next most prevalent source of contamination. In milk from cows grazing outdoors, teat prep significantly increased the numbers of total bacteria present. In summary, sequence-based microbiota analysis identified possible sources of raw milk contamination, and highlighted the influence of environment and farm management practices on the raw milk microbiota. Importance The composition of the raw milk microbiota is an important consideration from both a spoilage and food safety perspective and has implications for milk targeted for direct consumption and for downstream processing. Factors which influence contamination have been examined previously, primarily through the use of culture-based techniques. This manuscript describes the extensive application of high throughput DNA sequencing technologies to study the relationship between the milk production environment and the raw milk microbiota. Results highlight that the environment in which the herd was kept was the primary driver of the composition of the milk microbiota composition.

Journal ArticleDOI
TL;DR: This study revealed that bio-heat functioned as a primary endogenous driver promoting the formation of functional MT-Daqu microbiota and provided useful information for the temperature-based modulation of microbiota function during the fermentation of Daqu.
Abstract: "Daqu" is a saccharifying and fermenting agent commonly used in the traditional solid-state fermentation industry (e.g., baijiu and vinegar). The patterns of microbial community succession and flavor formation are highly similar among batches, yet the mechanisms promoting temporal succession in the Daqu microbial ecology remain unclear. Here, we first correlated temporal profiles of microbial community succession with environmental variables (temperature, moisture, and titratable acidity) in medium temperature Daqu (MT-Daqu) throughout fermentation. Temperature dynamics significantly correlated (P < 0.05) with the quick succession of MT-Daqu microbiota in the first 12 d of fermentation, while the community structure was relatively stable after 12 d. Then, we explored the effect of temperature on the MT-Daqu community assembly. In the first 4 d of fermentation, the rapid propagation of most bacterial taxa and several fungal taxa, including Candida, Wickerhamomyces, and unclassified Dipodascaceae and Saccharomycetales species, significantly increased MT-Daqu temperature to 55°C. Subsequently, sustained bio-heat generated by microbial metabolism (53 to 56°C) within MT-Daqu inhibited the growth of most microbes from day 4 to day 12, while thermotolerant taxa, including Bacillus, unclassified Streptophyta, Weissella, Thermoactinomyces, Thermoascus, and Thermomyces survived or kept on growing. Furthermore, temperature as a major driving force on the shaping of MT-Daqu microbiota was validated. Lowering the fermentation temperature by placing the MT-Daqu in a 37°C incubator resulted in decreased relative abundances of thermotolerant taxa, including Bacillus, Thermoactinomyces, and Thermoascus, in the MT-Daqu microbiota. This study revealed that bio-heat functioned as a primary endogenous driver promoting the formation of functional MT-Daqu microbiota.IMPORTANCE Humans have mastered the Daqu preparation technique of cultivating functional microbiota on starchy grains over thousands of years, and it is well known that the metabolic activity of these microbes is key to the flavor production of Chinese baijiu. The pattern of microbial community succession and flavor formation remains highly similar between batches, yet mechanistic insight into these patterns and into microbial population fidelity to specific environmental conditions remains unclear. Our study revealed that bio-heat was generated within Daqu bricks in the first 4 d of fermentation, concomitant with rapid microbial propagation and metabolism. The sustained bio-heat may then function as a major endogenous driving force promoting the formation of the MT-Daqu microbiota from day 4 to day 12. The bio-heat-driven growth of thermotolerant microorganisms might contribute to the formation of flavor metabolites. This study provides useful information for the temperature-based modulation of microbiota function during the fermentation of Daqu.

Journal ArticleDOI
TL;DR: The CRISPR-Cas9D10A nickase-based genome editing in Lactobacillus casei, an important food industrial microorganism, was demonstrated and this genetic tool allows efficient single-gene deletion and insertion to be accomplished by one-step transformation, and the cycle time is reduced to 9 days.
Abstract: Lactobacillus casei has drawn increasing attention as a health-promoting probiotic, while effective genetic manipulation tools are often not available, e.g., the single-gene knockout in L. casei still depends on the classic homologous recombination-dependent double-crossover strategy, which is quite labor-intensive and time-consuming. In the present study, a rapid and precise genome editing plasmid, pLCNICK, was established for L. casei genome engineering based on CRISPR-Cas9D10A In addition to the P23-Cas9D10A and Pldh-sgRNA (single guide RNA) expression cassettes, pLCNICK includes the homologous arms of the target gene as repair templates. The ability and efficiency of chromosomal engineering using pLCNICK were evaluated by in-frame deletions of four independent genes and chromosomal insertion of an enhanced green fluorescent protein (eGFP) expression cassette at the LC2W_1628 locus. The efficiencies associated with in-frame deletions and chromosomal insertion is 25 to 62%. pLCNICK has been proved to be an effective, rapid, and precise tool for genome editing in L. casei, and its potential application in other lactic acid bacteria (LAB) is also discussed in this study.IMPORTANCE The lack of efficient genetic tools has limited the investigation and biotechnological application of many LAB. The CRISPR-Cas9D10A nickase-based genome editing in Lactobacillus casei, an important food industrial microorganism, was demonstrated in this study. This genetic tool allows efficient single-gene deletion and insertion to be accomplished by one-step transformation, and the cycle time is reduced to 9 days. It facilitates a rapid and precise chromosomal manipulation in L. casei and overcomes some limitations of previous methods. This editing system can serve as a basic technological platform and offers the possibility to start a comprehensive investigation on L. casei As a broad-host-range plasmid, pLCNICK has the potential to be adapted to other Lactobacillus species for genome editing.

Journal ArticleDOI
TL;DR: A designated hand-washing sink lab gallery is used to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient.
Abstract: There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient.IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients.

Journal ArticleDOI
TL;DR: With the exception of one report from Spain, erm(B)-mediated macrolide resistance has been restricted to Campylobacter spp.
Abstract: Campylobacter spp., especially Campylobacter jejuni and C. coli , are leading bacterial foodborne pathogens worldwide. In the United States, an estimated 0.8 million cases of campylobacteriosis occur annually, mostly involving C. jejuni. Campylobacteriosis is generally self-limiting but in severe cases treatment with antibiotics may be mandated. Increasing incidence of fluoroquinolone resistance in Campylobacter has rendered macrolides like erythromycin and azithromycin the drugs of choice for human campylobacteriosis. Prevalence of macrolide resistance in C. jejuni remains low, but can be common in C. coli . Substitutions in the 23S rRNA gene, specifically A2075G, and less frequently A2074C/G, remain the most common mechanism for high-level resistance to macrolides. In C. jejuni , resistance mediated by such substitutions is accompanied by reduced ability to colonize chickens and other fitness costs, potentially contributing to the low incidence of macrolide resistance. Interestingly, similar fitness impacts have not been noted in C. coli . Also noteworthy is a novel mechanism first reported in 2014 in C. coli from China and mediated by erm (B) harbored on multidrug-resistance genomic islands. Incidence of erm (B) appears to reflect clonal expansion of certain strains and whole-genome sequencing has been critical to the elucidation of erm (B)-associated macrolide resistance in Campylobacter spp. Except for one report from Spain, erm (B)-mediated macrolide resistance has been restricted to Campylobacter, mostly C. coli , of animal and human origin from China. If erm (B)-mediated macrolide resistance does not confer fitness costs in C. jejuni the range of this gene may expand in C. jejuni , threatening to compromise treatment effectiveness of severe campylobacteriosis cases.

Journal ArticleDOI
TL;DR: The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.
Abstract: RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identif ...

Journal ArticleDOI
TL;DR: It is shown that aggregates are exposed to steep oxygen gradients, with zones of oxygen depletion, and that nitrate may serve as an alternative to oxygen, enabling growth in oxygen-depleted zones and adds to the comprehension that biofilms do not depend on a surface for formation.
Abstract: Alginate beads represent a simple and highly reproducible in vitro model system for diffusion-limited bacterial growth. In this study, alginate beads were inoculated with Pseudomonas aeruginosa and followed for up to 72 h. Confocal microscopy revealed that P. aeruginosa formed dense clusters similar in size to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Bacterial aggregates primarily grew in the bead periphery and decreased in size and abundance toward the center of the bead. Microsensor measurements showed that the O2 concentration decreased rapidly and reached anoxia ∼100 μm below the alginate bead surface. This gradient was relieved in beads supplemented with NO3- as an alternative electron acceptor allowing for deeper growth into the beads. A comparison of gene expression profiles between planktonic and alginate-encapsulated P. aeruginosa confirmed that the bacteria experienced hypoxic and anoxic growth conditions. Furthermore, alginate-encapsulated P. aeruginosa exhibited a lower respiration rate than the planktonic counterpart and showed a high tolerance toward antibiotics. The inoculation and growth of P. aeruginosa in alginate beads represent a simple and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3- as an alternative electron acceptor, and by reduced respiration rates, as well as an enhanced tolerance to antibiotic treatment.IMPORTANCEPseudomonas aeruginosa has been studied intensively for decades due to its involvement in chronic infections, such as cystic fibrosis and chronic wounds, where it forms biofilms. Much research has been dedicated to biofilm formation on surfaces; however, in chronic infections, most biofilms form small aggregates of cells not attached to a surface, but embedded in host material. In this study, bacteria were encapsulated in small alginate beads and formed aggregates similar to what is observed in chronic bacterial infections. Our findings show that aggregates are exposed to steep oxygen gradients, with zones of oxygen depletion, and that nitrate may serve as an alternative to oxygen, enabling growth in oxygen-depleted zones. This is important, as slow growth under low-oxygen conditions may render the bacteria tolerant toward antibiotics. This model provides an alternative to surface biofilm models and adds to the comprehension that biofilms do not depend on a surface for formation.

Journal ArticleDOI
TL;DR: It is suggested that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands, a novel avenue within the carbon cycle in which slowly decaying NOM in organotrophic environments fuels AOM by serving as a terminal electron acceptor.
Abstract: Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm-3 · day-1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year-1 in coastal wetlands and more than 1,300 Tg · year-1, considering the global wetland area.IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor.

Journal ArticleDOI
TL;DR: It is shown that reconstructed metagenome-assembled genomes (MAGs) are relatively stable in their abundance and functional gene content year round, and seasonal nitrogen fertilization has selected for novel Thaumarchaeota and comammox Nitrospira nitrifiers that are potentially less oligotrophic than their marine counterparts previously studied.
Abstract: The dynamics of individual microbial populations and their gene functions in agricultural soils, especially after major activities such as nitrogen (N) fertilization, remain elusive but are important for a better understanding of nutrient cycling. Here, we analyzed 20 short-read metagenomes collected at four time points during 1 year from two depths (0 to 5 and 20 to 30 cm) in two Midwestern agricultural sites representing contrasting soil textures (sandy versus silty loam) with similar cropping histories. Although the microbial community taxonomic and functional compositions differed between the two locations and depths, they were more stable within a depth/site throughout the year than communities in natural aquatic ecosystems. For example, among the 69 population genomes assembled from the metagenomes, 75% showed a less than 2-fold change in abundance between any two sampling points. Interestingly, six deep-branching Thaumarchaeota and three complete ammonia oxidizer (comammox) Nitrospira populations increased up to 5-fold in abundance upon the addition of N fertilizer. These results indicated that indigenous archaeal ammonia oxidizers may respond faster (are more copiotrophic) to N fertilization than previously thought. None of 29 recovered putative denitrifier genomes encoded the complete denitrification pathway, suggesting that denitrification is carried out by a collection of different populations. Altogether, our study identified novel microbial populations and genes responding to seasonal and human-induced perturbations in agricultural soils that should facilitate future monitoring efforts and N-related studies.IMPORTANCE Even though the impact of agricultural management on the microbial community structure has been recognized, an understanding of the dynamics of individual microbial populations and what functions each population carries are limited. Yet, this information is important for a better understanding of nutrient cycling, with potentially important implications for preserving nitrogen in soils and sustainability. Here, we show that reconstructed metagenome-assembled genomes (MAGs) are relatively stable in their abundance and functional gene content year round, and seasonal nitrogen fertilization has selected for novel Thaumarchaeota and comammox Nitrospira nitrifiers that are potentially less oligotrophic than their marine counterparts previously studied.

Journal ArticleDOI
Doyoung Park1, Hayeon Kim1, Sukhwan Yoon1
TL;DR: N2O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and a novel regulation mechanism for N2O reduction in this organism is suggested, which may also be applicable to other obligates aerobic organisms possessing nosZ genes.
Abstract: N 2 O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N 2 O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated to the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N 2 O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated to Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N 2 O and/or O 2 as the electron acceptor. Significant N 2 O reduction was observed only when O 2 was initially present. When batch cultures of strain T-27 were amended with O 2 and N 2 O, N 2 O reduction commenced after O 2 was depleted. In a long-term incubation with addition of N 2 O upon depletion, N 2 O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O 2 resulted in the resuscitation of N 2 O reduction activity, supporting the hypothesis that N 2 O reduction by strain T-27 required the transient presence of O 2 . The highest level of nosZ transcription (8.97 nosZ transcripts/ recA transcript) was observed immediately after O 2 depletion and transcription decreased ∼25-fold within 85 hours, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N 2 O to O 2 starvation suggested that N 2 O helped sustain viability of strain T-27 during temporary anoxia, although N 2 O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N 2 O as a temporary surrogate for O 2 to survive periodic anoxia. Importance Emission of N 2 O, a potent greenhouse gas and ozone depletion agent, from soil environment is largely determined by microbial sources and sinks. N 2 O reduction by organisms with N 2 O reductases (NosZ) is the only known biological sink of N 2 O at environmentally relevant concentrations (up to ∼1000 ppmv). Although a large fraction of nosZ genes recovered from soil is affiliated to nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes , N 2 O reduction has not yet been confirmed in any of these organisms. This study demonstrates N 2 O reduction by an obligate aerobic bacterium Gemmatimonas aurantiaca strain T-27 and suggests a novel regulation mechanism for N 2 O reduction identified in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance understanding of N 2 O dynamics in environments with frequent transitions between oxic and anoxic conditions.

Journal ArticleDOI
TL;DR: It is demonstrated that environmental bacteria can survive foam cleaning and disinfection (C&D) at concentrations used in the industrial environment and supports other recent research suggesting that strain-to-strain variation cannot explain why certain subtypes of Listeria monocytogenes persist in food processing environments while others are found only sporadically.
Abstract: Surfaces of food processing premises are exposed to regular cleaning and disinfection (C&D) regimes, using biocides that are highly effective against bacteria growing as planktonic cells. However, bacteria growing in surface-associated communities (biofilms) are typically more tolerant toward C&D than their individual free-cell counterparts, and survival of pathogens such as Listeria monocytogenes may be affected by interspecies interactions within biofilms. In this study, Pseudomonas and Acinetobacter were the most frequently isolated genera surviving on conveyor belts subjected to C&D in meat processing plants. In the laboratory, Pseudomonas, Acinetobacter, and L. monocytogenes dominated the community, both in suspensions and in biofilms formed on conveyor belts, when cultures were inoculated with eleven-genus cocktails of representative bacterial strains from the identified background flora. When biofilms were exposed to daily C&D cycles mimicking treatments used in food industry, the levels of Acinetobacter and Pseudomonas mandelii diminished, and biofilms were instead dominated by Pseudomonas putida (65 to 76%), Pseudomonas fluorescens (11 to 15%) and L. monocytogenes (3 to 11%). The dominance of certain species after daily C&D correlated with high planktonic growth rates at 12°C and tolerance to C&D. In single-species biofilms, L. monocytogenes developed higher tolerance to C&D over time, for both the peracetic acid and quaternary ammonium disinfectants, indicating that a broad-spectrum mechanism was involved. Survival after C&D appeared to be a common property of L. monocytogenes strains, as persistent and sporadic subtypes showed equal survival rates in complex biofilms. Biofilms established preferentially in surface irregularities of conveyor belts, potentially constituting harborage sites for persistent contamination.IMPORTANCE In the food industry, efficient production hygiene is a key measure to avoid the accumulation of spoilage bacteria and eliminate pathogens. However, the persistence of bacteria is an enduring problem in food processing environments. This study demonstrated that environmental bacteria can survive foam cleaning and disinfection (C&D) at concentrations used in the industrial environment. The phenomenon was replicated in laboratory experiments. Important characteristics of persisting bacteria were a high growth rate at low temperature, a tolerance to the cleaning agent, and the ability to form biofilms. This study also supports other recent research suggesting that strain-to-strain variation cannot explain why certain subtypes of Listeria monocytogenes persist in food processing environments while others are found only sporadically. The present investigation highlights the failure of regular C&D and a need for research on improved agents that efficiently detach the biofilm matrix.

Journal ArticleDOI
TL;DR: DG-EPS is a bacterial macromolecule with the ability to boost the immune system either as a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall, which greatly limits a more appropriate use of each single probiotic strain.
Abstract: Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the capability of strain DG to interact with the host is, at least partly, associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon NMR and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of L-rhamnose, D-galactose, and N-acetyl-D-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that the DG-EPS displays immunostimulating properties by enhancing the gene expression of the pro-inflammatory cytokines TNF-α and IL-6, and, particularly, the chemokines IL-8 and CCL20 in the THP-1 human monocytic cell line. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, the DG-EPS is a bacterial macromolecule with the potential ability to boost the immune system as either a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross-talk between L. paracasei DG and the host.

Journal ArticleDOI
TL;DR: It is demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies.
Abstract: Target-gene amplicon sequencing is the most exploited high-throughput sequencing application in microbial ecology. The targets are taxonomically relevant genes, with 16S rRNA being the gold standard for bacteria. As for fungi, the most commonly used target is the internal transcribed spacer (ITS). However, the uneven ITS length among species may promote preferential amplification and sequencing and incorrect estimation of their abundance. Therefore, the use of different targets is desirable. We evaluated the use of three different target amplicons for the characterization of fungal diversity. After an in silico primer evaluation, we compared three amplicons (the ITS1-ITS2 region [ITS1-2], 18S ribosomal small subunit RNA, and the D1/D2 domain of the 26S ribosomal large subunit RNA), using biological samples and a mock community of common fungal species. All three targets allowed for accurate identification of the species present. Nevertheless, high heterogeneity in ITS1-2 length was found, and this caused an overestimation of the abundance of species with a shorter ITS, while both 18S and 26S amplicons allowed for more reliable quantification. We demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies.IMPORTANCE Amplicon-sequencing approaches for fungi may rely on different targets affecting the diversity and abundance of the fungal species. An increasing number of studies will address fungal diversity by high-throughput amplicon sequencing. The description of the communities must be accurate and reliable in order to draw useful insights and to address both ecological and biological questions. By analyzing a mock community and several biological samples, we demonstrate that using different amplicon targets may change the results of fungal microbiota analysis, and we highlight how a careful choice of the target is fundamental for a thorough description of the fungal communities.

Journal ArticleDOI
TL;DR: The results demonstrate the value of phylocentric pangenomic surveys for understanding the global ecological distribution and panmetabolic abilities of yet-uncultured microbial lineages since they provide broader and more complementary insights than those gained from single-cell genomic and/or metagenomic-enabled genome recovery efforts focusing on a single sampling site.
Abstract: We investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" (WS3) in 16S rRNA gene as well as metagenomic data sets. We document distinct distribution patterns for various "Latescibacteria" orders in 16S rRNA gene data sets, with prevalence of orders sediment_1 in terrestrial, PBSIII_9 in groundwater and temperate freshwater, and GN03 in pelagic marine, saline-hypersaline, and wastewater habitats. Using a fragment recruitment approach, we identified 68.9 Mb of "Latescibacteria"-affiliated contigs in publicly available metagenomic data sets comprising 73,079 proteins. Metabolic reconstruction suggests a prevalent saprophytic lifestyle in all "Latescibacteria" orders, with marked capacities for the degradation of proteins, lipids, and polysaccharides predominant in plant, bacterial, fungal/crustacean, and eukaryotic algal cell walls. As well, extensive transport and central metabolic pathways for the metabolism of imported monomers were identified. Interestingly, genes and domains suggestive of the production of a cellulosome-e.g., protein-coding genes harboring dockerin I domains attached to a glycosyl hydrolase and scaffoldin-encoding genes harboring cohesin I and CBM37 domains-were identified in order PBSIII_9, GN03, and MSB-4E2 fragments recovered from four anoxic aquatic habitats; hence extending the cellulosomal production capabilities in Bacteria beyond the Gram-positive Firmicutes In addition to fermentative pathways, a complete electron transport chain with terminal cytochrome c oxidases Caa3 (for operation under high oxygen tension) and Cbb3 (for operation under low oxygen tension) were identified in PBSIII_9 and GN03 fragments recovered from oxygenated and partially/seasonally oxygenated aquatic habitats. Our metagenomic recruitment effort hence represents a comprehensive pangenomic view of this yet-uncultured phylum and provides insights broader than and complementary to those gained from genome recovery initiatives focusing on a single or few sampled environments.IMPORTANCE Our understanding of the phylogenetic diversity, metabolic capabilities, and ecological roles of yet-uncultured microorganisms is rapidly expanding. However, recent efforts mainly have been focused on recovering genomes of novel microbial lineages from a specific sampling site, rather than from a wide range of environmental habitats. To comprehensively evaluate the genomic landscape, putative metabolic capabilities, and ecological roles of yet-uncultured candidate phyla, efforts that focus on the recovery of genomic fragments from a wide range of habitats and that adequately sample the intraphylum diversity within a specific target lineage are needed. Here, we investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" Our results document the preference of specific "Latescibacteria" orders to specific habitats, the prevalence of plant polysaccharide degradation abilities within all "Latescibacteria" orders, the occurrence of all genes/domains necessary for the production of cellulosomes within three "Latescibacteria" orders (GN03, PBSIII_9, and MSB-4E2) in data sets recovered from anaerobic locations, and the identification of the components of an aerobic respiratory chain, as well as occurrence of multiple O2-dependent metabolic reactions in "Latescibacteria" orders GN03 and PBSIII_9 recovered from oxygenated habitats. The results demonstrate the value of phylocentric pangenomic surveys for understanding the global ecological distribution and panmetabolic abilities of yet-uncultured microbial lineages since they provide broader and more complementary insights than those gained from single-cell genomic and/or metagenomic-enabled genome recovery efforts focusing on a single sampling site.

Journal ArticleDOI
TL;DR: Several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.
Abstract: Four sponge-associated Antarctic bacteria (i.e., Winogradskyella sp. strains CAL384 and CAL396, Colwellia sp. strain GW185, and Shewanella sp. strain CAL606) were selected for the highly mucous appearance of their colonies on agar plates. The production of extracellular polymeric substances (EPSs) was enhanced by a step-by-step approach, varying the carbon source, substrate and NaCl concentrations, temperature, and pH. The EPSs produced under optimal conditions were chemically characterized, resulting in a moderate carbohydrate content (range, 15 to 28%) and the presence of proteins (range, 3 to 24%) and uronic acids (range, 3.2 to 11.9%). Chemical hydrolysis of the carbohydrate portion revealed galactose, glucose, galactosamine, and mannose as the principal constituents. The potential biotechnological applications of the EPSs were also investigated. The high protein content in the EPSs from Winogradskyella sp. CAL384 was probably responsible for the excellent emulsifying activity toward tested hydrocarbons, with a stable emulsification index (E24) higher than those recorded for synthetic surfactants. All the EPSs tested in this work improved the freeze-thaw survival ratio of the isolates, suggesting that they may be exploited as cryoprotection agents. The addition of a sugar in the culture medium, by stimulating EPS production, also allowed isolates to grow in the presence of higher concentrations of mercury and cadmium. This finding was probably dependent on the presence of uronic acids and sulfate groups, which can act as ligands for cations, in the extracted EPSs.IMPORTANCE To date, biological matrices have never been employed for the investigation of EPS production by Antarctic psychrotolerant marine bacteria. The biotechnological potential of extracellular polymeric substances produced by Antarctic bacteria is very broad and comprises many advantages, due to their biodegradability, high selectivity, and specific action compared to synthetic molecules. Here, several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.

Journal ArticleDOI
TL;DR: The results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria.
Abstract: The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies.IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria.

Journal ArticleDOI
TL;DR: A global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina, or eelgrass, across its geographic range is reported.
Abstract: Plant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial species sampled across relatively small spatial scales. Here, we report the results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrass Zostera marina throughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of surrounding seawater and sediment, we uncovered the structure, composition, and variability of microbial communities associated with eelgrass. We also investigated hypotheses about the assembly of the eelgrass microbiome using a metabolic modeling approach. Our results reveal leaf communities displaying high variability and spatial turnover that mirror their adjacent coastal seawater microbiomes. By contrast, roots showed relatively low compositional turnover and were distinct from surrounding sediment communities, a result driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Predictions from metabolic modeling of enriched taxa were consistent with a habitat-filtering community assembly mechanism whereby similarity in resource use drives taxonomic cooccurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a core eelgrass root microbiome with putative functional roles and highlights potentially disparate processes influencing microbial community assembly on different plant compartments.IMPORTANCE Plants depend critically on their associated microbiome, yet the structure of microbial communities found on marine plants remains poorly understood in comparison to that for terrestrial species. Seagrasses are the only flowering plants that live entirely in marine environments. The return of terrestrial seagrass ancestors to oceans is among the most extreme habitat shifts documented in plants, making them an ideal testbed for the study of microbial symbioses with plants that experience relatively harsh abiotic conditions. In this study, we report the results of a global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina, or eelgrass, across its geographic range. Our results reveal major differences in the structure and composition of above- versus belowground microbial communities on eelgrass surfaces, as well as their relationships with the environment and host.