scispace - formally typeset
Search or ask a question

Showing papers in "Applied Biochemistry and Biotechnology in 2007"


Journal ArticleDOI
TL;DR: A review of the techniques and strategies used for the directed evolution of biocatalytic enzymes aimed at improving the quality and potential of enzyme libraries, their advantages, and disadvantages can be found in this paper.
Abstract: The engineering of enzymes with altered activity, specificity, and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. In vitro recombination techniques such as DNA shuffling, staggered extension process (StEP), random chimeragenesis on transient templates (RACHITT), iterative truncation for the creation of hybrid enzymes (ITCHY), recombined extension on truncated templates (RETT), and so on have been developed to mimic and accelerate nature's recombination strategy. This review discusses gradual advances in the techniques and strategies used for the directed evolution of biocatalytic enzymes aimed at improving the quality and potential of enzyme libraries, their advantages, and disadvantages.

485 citations


Journal ArticleDOI
TL;DR: This review discusses and evaluates the recent progress in optimizing the fermentation process to improve the yield and stability of expressed proteins and the glycosylation profile of Pichia pastoris.
Abstract: Pichia pastoris has been used extensively and successfully to express recombinant proteins. In this review, we summarize the elements required for expressing heterologous proteins, and discuss various factors in applying this system for protein expression. These elements include vectors, host strains, heterologous gene integration into the genome, secretion factors, and the glycosylation profile. In particular, we discuss and evaluate the recent progress in optimizing the fermentation process to improve the yield and stability of expressed proteins. Optimization can be achieved by controlling the medium composition, pH, temperature, and dissolved oxygen, as well as by methanol induction and feed mode.

312 citations


Journal ArticleDOI
TL;DR: This study calculates for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and Pipeline for ethanol, and by transmission line for electrical power.
Abstract: Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues).

278 citations


Journal ArticleDOI
TL;DR: It is inferred that this drastic improvement in the “overall hydrolysis rates” with IL-treated cellulose is mainly because of a significant enhancement in the kinetics of the "primary hydrolytic step” (conversion of solid cellulose to soluble oligomers), which is the rate-limiting step for untreated cellulose.
Abstract: Efficient hydrolysis of cellulose-to-glucose is critically important in producing fuels and chemicals from renewable feedstocks. Cellulose hydrolysis in aqueous media suffers from slow reaction rates because cellulose is a water-insoluble crystalline biopolymer. The high-crystallinity of cellulose fibrils renders the internal surface of cellulose inaccessible to the hydrolyzing enzymes (cellulases) as well as water. Pretreatment methods, which increase the surface area accessible to water and cellulases are vital to improving the hydrolysis kinetics and conversion of cellulose to glucose. In a novel technique, the microcrystalline cellulose was first subjected to an ionic liquid (IL) treatment and then recovered as essentially amorphous or as a mixture of amorphous and partially crystalline cellulose by rapidly quenching the solution with an antisolvent. Because of their extremely low-volatility, ILs are expected to have minimal environmental impact. Two different ILs, 1-n-butyl-3-methylimidazolium chloride (BMIMC1) and 1-allyl-3-methylimidazolium chloride (AMIMC1) were investigated. Hydrolysis kinetics of the IL-treated cellulose is significantly enhanced. With appropriate selection of IL treatment conditions and enzymes, the initial hydrolysis rates for IL-treated cellulose were up to 90 times greater than those of untreated cellulose. We infer that this drastic improvement in the “overall hydrolysis rates” with IL-treated cellulose is mainly because of a significant enhancement in the kinetics of the “primary hydrolysis step” (conversion of solid cellulose to soluble oligomers), which is the rate-limiting step for untreated cellulose. Thus, with IL-treated cellulose, primary hydrolysis rates increase and become comparable with the rates of inherently faster “secondary hydrolysis” (conversion of soluble oligomers to glucose).

231 citations


Journal ArticleDOI
TL;DR: The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions.
Abstract: In this study, the applicability of a “fed-batch” strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a β-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions. Rapid cellulose degradation was accompanied by rapid decreases in viscosity before addition of extra substrate, but when extra substrate or substrate plus enzymes were added, the viscosities of the slurries increased and the hydrolytic efficiencies decreased temporarily.

220 citations


Journal ArticleDOI
TL;DR: Soaking in aqueous ammonia at moderate temperatures was investigated as a method of pretreatment for enzymatic hydrolysis as well as simultaneous saccharification and cofermentation of corn stover.
Abstract: Soaking in aqueous ammonia at moderate temperatures was investigated as a method of pretreatment for enzymatic hydrolysis as well as simultaneous saccharification and cofermentation (SSCF) of corn stover. The method involves batch treatment of the feedstock with aqueous ammonia (15–30 wt%) at 40–90°C for 6–24 h. The optimum treatment conditions were found to be 15 wt% of NH3, 60°C, 1 : 6 of solid-to-liquid ratio, and 12 h of treatment time. The treated corn stover retained 100% glucan and 85% of xylan, but removed 62% of lignin. The enzymatic digestibility of the glucan content increased from 17 to 85% with 15 FPU /g-glucan enzyme loading, whereas the digestibility of the xylan content increased to 78%. The treated corn stover was also subjected to SSCF test using Spezyme-CP and recombinant Escherichia coli (KO11). The SSCF of the soaking in aqueous ammonia treated corn stover resulted in an ethanol concentration of 19.2 g/L from 3% (w/v) glucan loading, which corresponds to 77% of the maximum theoretical yield based on glucan and xylan.

213 citations


Journal ArticleDOI
TL;DR: Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol, and the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing.
Abstract: The effect of varying initial particle sizes on enzymatic hydrolysis rates and rheological properties of sawdust slurries is investigated. Slurries with four particle size ranges (33 μm < x ≤ 75 μm, 150 μm < x ≤ 180 μm 295 μm < x ≤ 425 μm, and 590 μm < x ≤ 850 μm) were subjected to enzymatic hydrolysis using an enzyme dosage of filter paper units per gram of cellulose at 50°C and 250 rpm in shaker flasks. At lower initial particle sizes, higher enzymatic reaction rates and conversions of cellulose to glucose were observed. After 72 h 50 and 55% more glucose was produced from the smallest size particles than the largest size ones, for initial solids concentration of 10 and 13% (w/w), respectively. The effect of initial particle size on viscosity over a range of shear was also investigated. For equivalent initial solids concentration, smaller particle sizes result in lower viscosities such that at a concentration of 10% (w/w), the viscosity decreased from 3000 cP for 150 μm < x ≤ 180 μm particle size slurries to 61.4 cP for 33 μm < x ≤ 75 μm particle size slurries. Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol. Furthermore, the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing.

201 citations


Journal ArticleDOI
TL;DR: Production of bioethanol from agricultural residues and hays through a series of chemical pretreatment, enzymatic hydrolysis, and fermentation processes was investigated in this study, indicating that concentration and treatment agent play a significant role during pretreatment.
Abstract: Production of bioethanol from agricultural residues and hays (wheat, barley, and triticale straws, and barley, triticale, pearl millet, and sweet sorghum hays) through a series of chemical pretreatment, enzymatic hydrolysis, and fermentation processes was investigated in this study. Composition analysis suggested that the agricultural straws and hays studied contained approximately 28.62-38.58% glucan, 11.19-20.78% xylan, and 22.01-27.57% lignin, making them good candidates for bioethanol production. Chemical pretreatment with sulfuric acid or sodium hydroxide at concentrations of 0.5, 1.0, and 2.0% indicated that concentration and treatment agent play a significant role during pretreatment. After 2.0% sulfuric acid pretreatment at 121 degrees C/15 psi for 60 min, 78.10-81.27% of the xylan in untreated feedstocks was solubilized, while 75.09-84.52% of the lignin was reduced after 2.0% sodium hydroxide pretreatment under similar conditions. Enzymatic hydrolysis of chemically pretreated (2.0% NaOH or H2SO4) solids with Celluclast 1.5 L-Novozym 188 (cellobiase) enzyme combination resulted in equal or higher glucan and xylan conversion than with Spezyme(R) CP- xylanase combination. The glucan and xylan conversions during hydrolysis with Celluclast 1.5 L-cellobiase at 40 FPU/g glucan were 78.09 to 100.36% and 74.03 to 84.89%, respectively. Increasing the enzyme loading from 40 to 60 FPU/g glucan did not significantly increase sugar yield. The ethanol yield after fermentation of the hydrolyzate from different feedstocks with Saccharomyces cerevisiae ranged from 0.27 to 0.34 g/g glucose or 52.00-65.82% of the theoretical maximum ethanol yield.

177 citations


Journal ArticleDOI
TL;DR: A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.
Abstract: Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 ie/t and 400 ie/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20–50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.

158 citations


Journal ArticleDOI
TL;DR: An overview of the current state of plastic foam biodegradation is provided along with a discussion on some of the physico-chemical factors that can influence the biodegrades of plastic foams.
Abstract: Synthetic polymeric foams have pervaded every aspect of modern life. Although foams provide numerous benefits, they also cause a significant environmental litter problem because of their recalcitrant and xenobiotic nature. Biodegradation may provide solution to the problem, but not enough is known about the biodegradation process of synthetic plastic and plastic-based foams. This review has been written to provide an overview of the current state of plastic foam biodegradation. Several biodegradation pathways of a few select synthetic polymers are also presented along with a discussion on some of the physico-chemical factors that can influence the biodegradation of plastic foams.

156 citations


Journal ArticleDOI
TL;DR: Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-Oils into a stable gas turbine or home heating fuels.
Abstract: This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

Journal ArticleDOI
TL;DR: The dilute-acid prehydrolysis resulted in a 2.7- to 3.
Abstract: The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122°C during 20, 40, or 60 min using 2% H2SO4 at a solid-to-liquid ratio of 1∶10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26–33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7-to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

Journal ArticleDOI
TL;DR: The optimal combination of moisture and temperature was found to be 37.56% and 30 °C, respectively, for maximal cellulase production by the fungus on wheat bran, which resulted in a 6.2 fold increase in production.
Abstract: The major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which includes the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). The current study investigated the production of cellulase by Trichoderma reesei RUT C30 on wheat bran under SSF. Process parameters important in cellulase production were identified by a Plackett and Burman design and the parameters with significant effects on enzyme production were optimized for maximal yield using a central composite rotary design (CCD). Higher initial moisture content of the medium had a negative effect on production whereas incubation temperature influenced cellulase production positively in the tested range. Optimization of the levels of incubation temperature and initial moisture content of the medium resulted in a 6.2 fold increase in production from 0.605 to 3.8 U/gds of cellulase. The optimal combination of moisture and temperature was found to be 37.56% and 30 °C, respectively, for maximal cellulase production by the fungus on wheat bran.

Journal ArticleDOI
TL;DR: Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation and steam explosion revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.
Abstract: In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L® from Trichoderma reesei, and a β-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, ∼48% (g g−1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of ∼39% (g g−1). Addition of extra enzyme (Celluclast 1.5 L®+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32–39 g L−1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

Journal ArticleDOI
TL;DR: The corn-produced heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active form.
Abstract: Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

Journal ArticleDOI
TL;DR: The objective of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cellulignin, and to study its fermentation to ethanol using Saccharomyces cerevisiae.
Abstract: There is tremendous interest in using agro-industrial wastes, such as cellulignin, as starting materials for the production of fuels and chemicals. Cellulignin are the solids, which result from the acid hydrolysis of the sugarcane bagasse. The objective of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cellulignin, and to study its fermentation to ethanol using Saccharomyces cerevisiae. Cellulose conversion was optimized using response surface methods with pH, enzyme loading, solid percentage, and temperature as factor variables. The optimum conditions that maximized the conversion of cellulose to glucose, calculated from the initial dried weight of pretreated cellulignin, (43°C, 2%, and 24.4 FPU/g of pretreated cellulignin) such as the glucose concentration (47°C, 10%, and 25.6 FPU/g of pretreated cellulignin) were found. The desirability function was used to find conditions that optimize both, conversion to glucose and glucose concentration (47°C, 10%, and 25.9 FPU/g of pretreated cellulignin). The resulting enzymatic hydrolyzate was fermented yielding a final ethanol concentration of 30.0 g/L, in only 10 h, and reaching a volumetric productivity of 3.0 g/L·h, which is close to the values obtained in the conventional ethanol fermentation of sugar cane juice (5.0–8.0 g/L·h) in Brazil.

Journal ArticleDOI
TL;DR: The results showed that solution pH, TPP concentration, and chitosan concentration significantly affected the size of chitosaursan nanoparticles, and the adequacy of the predictive model equation for predicting the magnitude orders of the size was verified effectively by the validation data.
Abstract: This work investigated the preparation of chitosan nanoparticles used as carriers for immobilized enzyme. The morphologic characterization of chitosan nanoparticles was evaluated by scanning electron microscope. The various preparation methods of chitosan nanoparticles were discussed and chosen. The effect of factors such as molecular weight of chitosan, chitosan concentration, TPP concentration, and solution pH on the size of chitosan nanoparticles was studied. Based on these results, response surface methodology was employed. The results showed that solution pH, TPP concentration, and chitosan concentration significantly affected the size of chitosan nanoparticles. The adequacy of the predictive model equation for predicting the magnitude orders of the size of chitosan nanoparticles was verified effectively by the validation data. Immobilization conditions were investigated as well. The minimum particles size was about 42 +/- 5 nm under the optimized conditions. The optimal conditions of immobilization were as follows: one milligram of neutral proteinase was immobilized on chitosan nanoparticles for about 15 min at 40 degrees C. Under the optimized conditions, the enzyme activity yield was 84.3%.

Journal ArticleDOI
TL;DR: In this article, different enzyme preparations available from Novozymes were assessed for their efficiency to hydrolyze lignocellulosic materials and showed that xylanase supplementation improves initial cellulose hydrolysis effectiveness of water-insoluble solid fraction from all steam-exploded barley straw samples, regardless of the xylan content of substrate.
Abstract: In this study, different enzyme preparations available from Novozymes were assessed for their efficiency to hydrolyze lignocellulosic materials. The enzyme mixture was evaluated on a pretreated cellulose-rich material, and steam-exploded barley straw pretreated under different temperatures (190, 200, and 210°C, respectively) in order to produce fermentable sugars. Results show that xylanase supplementation improves initial cellulose hydrolysis effectiveness of water-insoluble solid fraction from all steam-exploded barley straw samples, regardless of the xylan content of substrate. The mixture constituted by cellulase: β-glucosidase: endoxylanase of the new kit for lignocellulose conversion at a ratio 10∶1∶5% ([v/w], enzyme [E]/substrate [S]) provides the highest increment of cellulose conversion in barley straw pretreated at 210°C, for 10 min.

Journal ArticleDOI
TL;DR: Ensiling of barley, triticale, wheat straws, and cotton stalk significantly increased the conversion of holocellulose to sugars during subsequent hydrolysis with two enzyme combinations, and saccharification with Celluclast 1.5 L-Novozyme 188 resulted in equal or higher saccharisation than with Spezyme® CP–xylanase combination.
Abstract: The potential of using ensiling, with and without supplemental enzymes, as a cost-effective pretreatment for bioethanol production from agricultural residues was investigated. Ensiling did not significantly affect the lignin content of barley straw, cotton stalk, and triticale hay ensiled without enzyme, but slightly increased the lignin content in triticale straw, wheat straw, and triticale hay ensiled with enzyme. The holocellulose (cellulose plus hemicellulose) losses in the feedstocks, as a result of ensiling, ranged from 1.31 to 9.93%. The percent holocellulose loss in hays during ensiling was lower than in straws and stalks. Ensiling of barley, triticale, wheat straws, and cotton stalk significantly increased the conversion of holocellulose to sugars during subsequent hydrolysis with two enzyme combinations. Enzymatic hydrolysis of ensiled and untreated feedstocks by Celluclast 1.5 L-Novozyme 188 enzyme combination resulted in equal or higher saccharification than with Spezyme® CP-xylanase combination. Enzyme loadings of 40 and 60 FPU/g reducing sugars gave similar sugar yields. The percent saccharification with Celluclast 1.5 L-Novozyme 188 at 40 FPU/g reducing sugars was 17.1 to 43.6%, 22.4 to 46.9%, and 23.2 to 32.2% for untreated feedstocks, feedstocks ensiled with, and without enzymes, respectively. Fermentation of the hydrolysates from ensiled feedstocks resulted in ethanol yields ranging from 0.21 to 0.28 g/g reducing sugars.

Journal ArticleDOI
TL;DR: The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.
Abstract: Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0-10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 degrees C higher (68.0 degrees C) than free enzyme (60.0 degrees C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 degrees C. The immobilized xylanase registered marginal increase and decrease in Km and Vmax values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the pretreatment of olive tree pruning residues by liquid hot water and found that the enzyme accessibility of the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.
Abstract: Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170–230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.

Book ChapterDOI
TL;DR: The results indicated that the substrate characteristics are controllable and predictable, and desirable substrates can be prepared by fine-tuning the processing parameters.
Abstract: Hybrid poplar (Populus nigra×P. maximowiczii) chips were pretreated using an organosolv ethanol process. The effect of pretreatment conditions (temperature, time, catalyst, and ethanol concentration) on the substrate characteristics, including fiber size, crystallinity, and degree of polymerization of cellulose, was investigated using an experimental matrix designed with response surface methodology. The conditions ranged 155–205°C, 26–94 min, 0.83–1.67% catalyst (H2SO4) on oven-dry wood chip (w/w), and 25–75% ethanol concentration (v/v). The results indicated that the substrate characteristics are controllable and predictable. Desirable substrates can be prepared by fine-tuning the processing parameters. The regression models developed, allowed the quantiative prediction of the substrate characteristics from the pretreatment conditions used.

Journal ArticleDOI
TL;DR: The results revealed that biosorption process could be described by ion exchange as dominant mechanism as well as complexation for this biosorbent.
Abstract: The lead (II) biosorption potential of Aspergillus parasiticus fungal biomass has been investigated in a batch system. The initial pH, biosorbent dosage, contact time, initial metal ion concentrations and temperature were studied to optimize the biosorption conditions. The maximum lead (II) biosorption capacity of the fungal biosorbent was found as 4.02 × 10−4 mol g−1 at pH 5.0 and 20°C. The biosorption equilibrium was reached in 70 min. Equilibrium biosorption data were followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. In regeneration experiments, no significant loss of sorption performance was observed during four biosorption-desorption cycles. The interactions between lead (II) ions and biosorbent were also examined by FTIR and EDAX analysis. The results revealed that biosorption process could be described by ion exchange as dominant mechanism as well as complexation for this biosorbent. The ion exchange mechanism was confirmed by E value obtained from D-R isotherm model as well.

Journal ArticleDOI
TL;DR: It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects and PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture.
Abstract: Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.

Journal ArticleDOI
TL;DR: An extracellular lipase was produced by Bacillus coagulans by solid-state fermentation by solid waste from melon and was supplemented with olive oil and the effect of the type of carbon sources on lipolytic enzyme production was studied.
Abstract: An extracellular lipase was produced by Bacillus coagulans by solid-state fermentation. Solid waste from melon was used as the basic nutrient source and was supplemented with olive oil. The highest lipase production (78,069 U/g) was achieved after 24 h of cultivation with 1% olive oil enrichment. Enzyme had an optimal activity at 37 degrees C and pH 7.0, and sodium dodecyl sulfate increased lipase activity. NH4NO3 increased enzyme production, whereas organic nitrogen had no effect. The effect of the type of carbon sources on lipolytic enzyme production was also studied. The best results were obtained with starch and maltose (148,932 and 141,629 U/g, respectively), whereas a rather low enzyme activity was found in cultures grown on glucose and galactose (approx 118,769 and 123,622 U/g, respectively). Enzyme was inhibited with Mn+2 and Ni+2 by 68 and 74%, respectively. By contrast, Ca+2 enhanced enzyme production by 5%.

Journal ArticleDOI
TL;DR: The toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pret treatment.
Abstract: Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.

Journal ArticleDOI
TL;DR: The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RMIM).
Abstract: The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RM IM). The effect of alcohol (methanol or ethanol), enzyme concentration, molar ratio of alcohol to soybean oil, solvent, and temperature on biodiesel production was determined. The best conditions were obtained in a solvent-free system with ethanol/oil molar ratio of 3.0, temperature of 50°C, and enzyme concentration of 7.0% (w/w). Three-step batch ethanolysis was most effective for the production of biodiesel. Ethyl esters yield was about 60% after 4 h of reaction.

Journal ArticleDOI
TL;DR: The results showed that among the saline crops evaluated, the two grasses had the highest glucose yield and fastest reaction rate during the enzyme treatment and the autoclaved municipal organic solid wastes showed reasonable glucose yield.
Abstract: Saline crops and autoclaved municipal organic solid wastes were evaluated for their potential to be used as feedstock for fermentable sugar production through dilute acid pretreatment and enzymatic hydrolysis. The saline crops included two woods, athel (Tamarix aphylla L) and eucalyptus (Eucalyptus camaldulensis), and two grasses, Jose tall wheatgrass (Agropyron elongatum), and creeping wild rye (Leymus triticoides). Each of the biomass materials was first treated with dilute sulfuric acid under selected conditions (acid concentration=1.4% (w/w), temperature=165°C, and time=8 min) and then treated with the enzymes (cellulases and β-glucosidase). The chemical composition (cellulose, hemicellulose, and lignin contents) of each biomass material and the yield of total and different types of sugars after the acid and enzyme treatment were determined. The results showed that among the saline crops evaluated, the two grasses (creeping wild rye and Jose tall wheatgrass) had the highest glucose yield (87% of total cellulose hydrolyzed) and fastest reaction rate during the enzyme treatment. The autoclaved municipal organic solid wastes showed reasonable glucose yield (64%). Of the two wood species evaluated, Athel has higher glucose yield (60% conversion of cellulose) than eucalyptus (38% conversion of cellulose).

Journal ArticleDOI
TL;DR: An economic evaluation of a full-scale process to isolate hemicelluloses from process water from a thermomechanical pulp mill indicates that it is possible to produce oxygen barriers made of hemiceLLuloses at a price that is competitive with the materials used today.
Abstract: Hemicelluloses, which are abundant in nature and have potential use in a wide variety of applications, may make an important contribution in helping relieve society of its dependence on petrochemicals. However, cost-efficient methods for the isolation of hemicelluloses are required. This article presents an economic evaluation of a full-scale process to isolate hemicelluloses from process water from a thermomechanical pulp mill. Experimental data obtained in laboratory scale were used for the scale up of the process by computer simulation. The isolation method consisted of two process steps. The suspended matter in the process water was removed by microfiltration and thereafter the hemicelluloses were concentrated by ultrafiltration, and at the same time, separated from smaller molecules and ions in the process water. The isolated hemicelluloses were intended for the production of oxygen barriers for food packaging, an application for which they have been shown to have suitable properties. The solution produced contained 30 g hemicelluloses/L with a purity (defined as the ratio between the hemicelluloses and the total solids) of approx 80%. The evaluation was performed for a plant with a daily production of 4 metric tonnes (t) of hemicelluloses, which is the estimated future need of barrier films at Tetra Pak (Lund, Sweden). The production cost was calculated to be € 670/t of hemiceluloses. This is approx 9 times lower than the price of ethylene vinyl alcohol, which is produced by petrochemicals and is currently used as an oxygen barrier in fiber-based packaging materials. This indicates that it is possible to produce oxygen barriers made of hemicelluloses at a prices that is competitive with the materials used today.

Journal ArticleDOI
TL;DR: Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production.
Abstract: Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.