scispace - formally typeset
Search or ask a question

Showing papers in "Applied Biochemistry and Biotechnology in 2008"


Journal ArticleDOI
TL;DR: Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-l fermenters by using three Acetobacter strains, and the strain TISTR 998 showed the highest productivity when using coconut juice.
Abstract: Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5–1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

155 citations


Journal ArticleDOI
TL;DR: Physical and chromatographic characterization of the surfactin biosurfactant produced by Bacillus subtilis isolate BS5 has been conducted to study its potentiality for industrial application and revealed that the extracted surfactin contained numerous isoforms, of which six were found in the standard surfactIn preparation (Fluka).
Abstract: Physical and chromatographic characterization of the surfactin biosurfactant produced by Bacillus subtilis isolate BS5 has been conducted to study its potentiality for industrial application. The crude extract of test surfactin appeared as off-white to buff flake-like amorphous residue with bad odor similar to sour pomegranate. Test surfactin showed solubility in aqueous solution at pH > 5 with optimum solubility at pH 8–8.5. It was also soluble in organic solvents like ethanol, acetone, methanol, butanol, chloroform, and dichloromethane. Surfactin crystals appeared rectangular with blunt corners and were arranged perpendicular to each other making a plus sign. Extracted surfactin showed high surface activity, as it could lower the surface tension of water from about 70 to 36 mN/m at ~15.6 mg/l. Moreover, test surfactin exhibited excellent stabilities at high temperatures (100°C for up to 1 h at and autoclaving at 121°C for 10 min), salinities (up to 6% NaCl), and over a wide range of pH (5–13). Test surfactin in the cell-free supernatant or crude culture broth forms showed high emulsification indices against kerosene (62.5% and 59%, respectively), diesel (62.5% and 66%, respectively), and motor oil (62% and 66%, respectively). These characters can effectively make test surfactin, in its crude forms, a potential candidate for the use in bioremediation of hydrocarbon-contaminated sites or in the petroleum industry. Chromatographic characterization of test surfactin, using high-performance liquid chromatography technique, revealed that the extracted surfactin contained numerous isoforms, of which six were found in the standard surfactin preparation (Fluka). Additional peaks appeared in the test surfactin and not in the standard one. These peaks may correspond to new surfactin isoforms that may be present in the test surfactin produced by B. subtilis isolate BS5.

139 citations


Journal ArticleDOI
TL;DR: A kinetic model is proposed to describe the hydrothermal treatment of Kraft pine lignin and compared with another model from the literature, which shows that the presented model is well in agreement with the experiments.
Abstract: Lignins derived from abundant and renewable resources are nontoxic and extremely versatile in performance, qualities that have made them increasingly important in many industrial applications. We have shown recently that liquefaction of lignin extracted from aspen wood resulted in a 90% yield of liquid. In this paper, the hydrothermal treatment of five types of lignin and biomass residues was studied: Kraft pine lignin provided by MeadWestvaco, Kraft pine lignin from Sigma-Aldrich, organosolv lignin extracted from oat hull, the residues of mixed southern hardwoods, and switchgrass after hydrolysis. The yields were found dependent on the composition or structure of the raw materials, which may result from different pretreatment processes. We propose a kinetic model to describe the hydrothermal treatment of Kraft pine lignin and compare it with another model from the literature. The kinetic parameters of the presented model were estimated, including the reaction constants, the pre-exponential factor, and the activation energy of the Arrhenius equations. Results show that the presented model is well in agreement with the experiments.

139 citations


Journal ArticleDOI
TL;DR: A modified MSM (molasses MSM), combining the optimum medium components, was formulated and resulted in threefold increase in surfactin productivity that reached 1.12 g/l, revealing that biosurfactant production by B. subtilis isolate BS5 is chromosomally mediated but not plasmid-mediated.
Abstract: Bacillus subtilis BS5 is a soil isolate that produces promising yield of surfactin biosurfactant in mineral salts medium (MSM). It was found that cellular growth and surfactin production in MSM were greatly affected by the environmental fermentation conditions and the medium components (carbon and nitrogen sources and minerals). Optimum environmental conditions for high surfactin production on the shake flask level were found to be a slightly acidic initial pH (6.5–6.8), an incubation temperature of 30°C, a 90% volumetric aeration percentage, and an inoculum size of 2% v/v. For media components, it was found that the optimum carbon source was molasses (160 ml/l), whereas the optimum nitrogen source was NaNO3 (5 g/l) and the optimum trace elements were ZnSO4·7H2O (0.16 g/l), FeCl3·6H2O (0.27 g/l), and MnSO4·H2O (0.017 g/l). A modified MSM (molasses MSM), combining the optimum medium components, was formulated and resulted in threefold increase in surfactin productivity that reached 1.12 g/l. No plasmid could be detected in the tested isolate, revealing that biosurfactant production by B. subtilis isolate BS5 is chromosomally mediated but not plasmid-mediated.

131 citations


Journal ArticleDOI
TL;DR: Differing and regulating the composition of wheat bran used as a fermentation supplement may allow for improved induction of cellulase and xylanase production.
Abstract: The effects of the starch, protein, and soluble oligosaccharides contents in wheat bran on the extracellular biomass-hydrolyzing enzymes activities released by Penicillium decumbens mycelia grown in batch fermentations have been examined. The results showed increased starch content correlated directly with an increase in released amylase activity but inversely with the levels of secreted cellulase and xylanase. High amounts of protein in wheat bran also reduced the activities of cellulase, xylanase and protease in the culture medium. The effects of the soluble and insoluble components of wheat bran and cello-oligosaccharides supplements on production of extracellular cellulase and xylanase were compared. The soluble cello-oligosaccharides compositions in wheat bran were proved to be one of the most significant factors for cellulase production. According to the results of this research, determining and regulating the composition of wheat bran used as a fermentation supplement may allow for improved induction of cellulase and xylanase production.

131 citations


Journal ArticleDOI
TL;DR: The results demonstrated that PLGA-NPs are compatible with human neurons, and the neuroprotective effect of SOD-NBP is dose-dependent, with efficacy seen at >100 U SOD, and less significant effects at lower doses.
Abstract: The objective of our study was to investigate the neuroprotective efficacy of superoxide dismutase (SOD), loaded in poly(d,l-lactide co-glycolide; PLGA) nanoparticles (NPs), in cultured human neurons challenged with hydrogen peroxide (H2O2)-induced oxidative stress. We hypothesized that the protected and sustained intracellular delivery of SOD encapsulated in NPs would demonstrate better neuroprotection from oxidative stress than either SOD or pegylated SOD (PEG-SOD) in solution. SOD-NPs (~81 ± 4 nm in diameter, 0.9% w/w SOD loading) released the encapsulated SOD in an active form with 8.2% cumulative release during the first 24 h, followed by a slower release thereafter. The results demonstrated that PLGA-NPs are compatible with human neurons, and the neuroprotective effect of SOD-NPs is dose-dependent, with efficacy seen at >100 U SOD, and less significant effects at lower doses. Neither SOD (25–200 U) nor PEG-SOD (100 U) in solution demonstrated the neuroprotective effect under similar conditions. The neuroprotective effect of SOD-NPs was seen up to 6 h after H2O2-induced oxidative stress, but the effect diminished thereafter. Confocal microscopic studies demonstrated better intracellular neuronal uptake of the encapsulated model protein (fluorescein isothiocyanate-labeled BSA) than the protein in solution. Thus, the mechanism of efficacy of SOD-NPs appears to be due to the stability of the encapsulated enzyme and its better neuronal uptake after encapsulation.

128 citations


Journal ArticleDOI
TL;DR: The addition of additives could be a promising technology to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR by reducing the enzyme activity loss caused by non-productive adsorption.
Abstract: Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

126 citations


Journal ArticleDOI
TL;DR: Results showed that cellulase production was highest when the inducer concentration was 0.331 ml/gds, and the incubation temperature and time were 33 °C and 67 h, respectively.
Abstract: Sugar cane bagasse was used as substrate for cellulase production using Trichoderma reesei RUT C30, and the culture parameters were optimized for enhancing cellulase yield. The culture parameters, such as incubation temperature, duration of incubation, and inducer concentration, were optimized for enhancing cellulase yield using a Box-Behnken experimental design. The optimal level of each parameter for maximum cellulase production by the fungus was determined. Predicted results showed that cellulase production was highest (25.6 FPAase units per gram dry substrate) when the inducer concentration was 0.331 ml/gds, and the incubation temperature and time were 33 °C and 67 h, respectively. Crude inducer generated by cellulase action was found to be very effective in inducing cellulases. Validation of predicted results was done, and the experimental values correlated well with that of the predicted.

124 citations


Journal ArticleDOI
TL;DR: PA production by Propionibacterium acidipropionici ATCC 4965 was studied using a basal medium with sugarcane molasses, glycerol or lactate, and acetic acid emerged as an undesirable by-product for further PA purification when using the other two carbon sources.
Abstract: Propionic acid (PA) is widely used as additive in animal feed and also in the manufacturing of cellulose-based plastics, herbicides, and perfumes. Salts of propionic acid are used as preservative in food. PA is mainly produced by chemical synthesis. Nowadays, PA production by fermentation of low-cost industrial wastes or renewable sources has been an interesting alternative. In the present investigation, PA production by Propionibacterium acidipropionici ATCC 4965 was studied using a basal medium with sugarcane molasses (BMSM), glycerol or lactate (BML) in small batch fermentation at 30 and 36 °C. Bacterial growth was carried out under low dissolved oxygen concentration and without pH control. Results indicated that P. acidipropionici produced more biomass in BMSM than in other media at 30 °C (7.55 g l−1) as well as at 36 °C (3.71 g l−1). PA and biomass production were higher at 30 °C than at 36 °C in all cases studied. The best productivity was obtained by using BML (0.113 g l−1 h−1), although the yielding of this metabolite was higher when using glycerol as carbon source (0.724 g g−1) because there was no detection of acetic acid. By the way, when using the other two carbon sources, acetic acid emerged as an undesirable by-product for further PA purification.

119 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation of wet-exploded wheat straw hydrolysate and has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol.
Abstract: Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3–12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/1. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/1) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39–0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68–76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

108 citations


Journal ArticleDOI
A Arun1, P. Raja1, R. Arthi1, M. Ananthi1, K. Sathish Kumar1, M. Eyini1 
TL;DR: In silico analysis using FRED revealed that of the five PAHs, maximum interaction occurred between pyrene and all the three ligninolytic enzymes, corroborated with experimental results showing that pyrene was degraded to the maximum extent by species such as C. versicolor and P. ostreatus.
Abstract: The polycyclic aromatic hydrocarbons (PAHs) biodegradation potential of the five basidiomycetes' fungal monocultures and their cocultures was compared with that of a Pseudomonas isolate recovered from oil-spilled soil. As utilization of hydrocarbons by the microorganisms is associated with biosurfactant production, the level of biosurfactant production and its composition by the selected microorganisms was also investigated. The Pseudomonas isolate showed higher ability to degrade three of the five PAHs but the isolate did not produce biosurfactant higher than C. versicolor and P. ostreatus. Among the PAHs, the most effective biodegradation of PAH--pyrene (42%)--was obtained with the fungus C. versicolor. Cocultures involving the fungi and Pseudomonas could not significantly degrade the selected PAHs compounds above that degraded by the most efficient monoculture. A slight increase in pyrene degradation was observed in cocultures of C. versicolor and F. palustris (93.7% pyrene). The crude biosurfactant was biochemically characterized as a multicomponent surfactant consisting of protein and polysaccharides. The PAH biodegradation potential of the basidiomycetes fungi positively correlated with their potential to express ligninolytic enzymes such as lignin peroxidase (Lip), manganese peroxidase (Mnp), and laccase. The present study utilized in silico method such as protein-ligand docking using the FRED in Open Eye software as a tool to assess the level of ligninolytic enzymes and PAHs interactions. The in silico analysis using FRED revealed that of the five PAHs, maximum interaction occurred between pyrene and all the three ligninolytic enzymes. The results of the in silico analysis corroborated with our experimental results showing that pyrene was degraded to the maximum extent by species such as C. versicolor and P. ostreatus.

Journal ArticleDOI
TL;DR: The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h.
Abstract: Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12–60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

Journal ArticleDOI
TL;DR: The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product.
Abstract: Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15–20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

Journal ArticleDOI
TL;DR: The results obtained from the present study indicated that the earthworm E. foetida was able to convert ANFL into nutrient-enriched products.
Abstract: Animal fleshing (ANFL) generated as solid waste from tannery industries was vermicomposted using the epigeic earthworm Eisenia foetida. The mixing ratio of ANFL with cow dung and agricultural residues as feed mixtures was maintained to be 3:1:1 respectively during the vermicomposting experiments for 50 days. Vermicomposting resulted in the reduction of pH 6.74 and C:N ratio 15.5 compared to the control sample. A notable increase in earthworm biomass was also observed in the vermin bioreactor. The germination index of 84% for tomato seedlings (Lycopersicon esculentum cv. PKM1) was observed for the vermicomposted soil. Scanning electron microscope and Fourier transform infrared spectroscopy were recorded to identify the changes in surface morphology and functional groups in the control and vermicomposted samples. The results obtained from the present study indicated that the earthworm E. foetida was able to convert ANFL into nutrient-enriched products.

Journal ArticleDOI
TL;DR: Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.
Abstract: Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g−1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g−1) and two giant reed clones (109 and 85 mg g−1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g−1) being superior to Coastal (247 mg g−1) and Tifton 44 (245 mg g−1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.

Journal ArticleDOI
TL;DR: It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z at the preferred fermentation condition of pH 6.8, and increase in pH and inoculum size caused higher succinic Acid yield and productivity.
Abstract: Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO(2) supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h(-1) L(-1) was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h(-1) L(-1) were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.

Journal ArticleDOI
TL;DR: Results suggest that ammonia steeping may be an effective method of pretreatment for lignocellulosic feedstocks.
Abstract: Simultaneous saccharification and fermentation (SSF) of switchgrass was performed following aqueous ammonia pretreatment. Switchgrass was soaked in aqueous ammonium hydroxide (30%) with different liquid–solid ratios (5 and 10 ml/g) for either 5 or 10 days. The pretreatment was carried out at atmospheric conditions without agitation. A 40–50% delignification (Klason lignin basis) was achieved, whereas cellulose content remained unchanged and hemicellulose content decreased by approximately 50%. The Sacccharomyces cerevisiae (D5A)-mediated SSF of ammonia-treated switchgrass was investigated at two glucan loadings (3 and 6%) and three enzyme loadings (26, 38.5, and 77 FPU/g cellulose), using Spezyme CP. The percentage of maximum theoretical ethanol yield achieved was 72. Liquid–solid ratio and steeping time affected lignin removal slightly, but did not cause a significant change in overall ethanol conversion yields at sufficiently high enzyme loadings. These results suggest that ammonia steeping may be an effective method of pretreatment for lignocellulosic feedstocks.

Journal ArticleDOI
TL;DR: Radio-frequency (RF)-based dielectric heating was used in the alkali (NaOH) pretreatment of switchgrass to enhance its enzymatic digestibility and led to a higher glucose yield and higher xylose yield than the corresponding value obtained from conventional heating treatment.
Abstract: Radio-frequency (RF)-based dielectric heating was used in the alkali (NaOH) pre-treatment of switchgrass to enhance its enzymatic digestibility. Due to the unique features of RF heating (i.e., volumetric heat transfer, deep heat penetration of the samples, etc.), switchgrass could be treated on a large scale, high solid content, and uniform temperature profile. At 20% solid content, RF-assisted alkali pretreatment (at 0.1 g NaOH/g biomass loading and 90°C) resulted in a higher xylose yield than the conventional heating pretreatment. The enzymatic hydrolysis of RF-treated solids led to a higher glucose yield than the corresponding value obtained from conventional heating treatment. When the solid content exceeded 25%, conventional heating could not handle this high-solid sample due to the loss of fluidity, poor mixing, and heating transfer of the samples. As a result, there was a significantly lower sugar yield, but the sugar yield of the RF-based pretreatment process was still maintained at high levels. Furthermore, the optimal particle size and alkali loading in the RF pretreatment was determined as 0.25–0.50 mm and 0.25 g NaOH/g biomass, respectively. At alkali loading of 0.20–0.25 g NaOH/g biomass, heating temperature of 90°C, and solid content of 20%, the glucose, xylose, and total sugar yield from the combined RF pretreatment and the enzymatic hydrolysis were 25.3, 21.2, and 46.5 g/g biomass, respectively.

Journal ArticleDOI
TL;DR: A batch pressure vessel equipped with an induction heating system is designed, which allows the reduction of heat-up times by about two orders of magnitude to several seconds, compared to tens of minutes with standard pressure reactors and was used to study the direct liquefaction of corn stover and aspen wood with a pretreatment.
Abstract: Batch pressure vessels commonly used for hydrothermal liquefaction have typical heating times in the range of 30 to 60 min. Thermodynamically, the complex set of reactions are path dependent, so that the heating rate can possibly affect yields and the composition of the resultant liquid products. It is postulated that the mode of heat transfer becomes an uncontrolled variable in kinetic studies and can seriously impact scale-up. To confirm this hypothesis and minimize these heat-transfer-related artifacts, we designed a batch pressure vessel equipped with an induction heating system, which allows the reduction of heat-up times by about two orders of magnitude to several seconds, compared to tens of minutes with standard pressure reactors. This system was used to study the direct liquefaction of corn stover and aspen wood with a pretreatment. The heating rate was found to have no significant effect on the composition of the liquid products. However, the liquid yields are dependent on the heating rate. Varying the cooling rate does not show obvious effects. The results confirm that the heating rate, as governed by the mode of heat transfer, is an important factor that needs to be considered during scale-up.

Journal ArticleDOI
TL;DR: Several potential applications of the Bacillus phytases in animal nutrition, human health, and synthesis of lower myo-inositol phosphates are summarized.
Abstract: Phytases are a special class of phosphatases that catalyze the sequential hydrolysis of phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Bacillus phytases, which exhibit their desirable activity profile under neutral pH, higher thermal stability, and strict substrate specificity for the calcium-phytate complex, have considerable potential in commercial and environmental applications. This review describes recent findings concerning the production, biochemical properties, molecular characteristics, and expression of Bacillus phytases. Several potential applications of the Bacillus phytases in animal nutrition, human health, and synthesis of lower myo-inositol phosphates are also summarized.

Journal ArticleDOI
TL;DR: Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97 ± 1%).
Abstract: The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100–400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97 ± 1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.

Journal ArticleDOI
TL;DR: TPP is demonstrated as an attractive downstream process for the purification of peroxidase by demonstrating a higher degree of purification and activity yield as a primary purification process in comparison with existing literature values.
Abstract: Three-phase partitioning (TPP) is a novel separation process used for the extraction and purification of biomolecules. The biomolecules are recovered in a purified form at the interface (precipitate), while the contaminants partition in t-butanol and aqueous phases. Peroxidase from the leaves of Ipomoea palmata was purified by using TPP. The ratio of the crude extract to t-butanol of 1:1 and 30% ammonium sulfate at 37 °C resulted in about 160% activity recovery and twofold purification in the aqueous phase of the first cycle of TPP. On subjecting the aqueous phase to the second cycle of TPP, a purification of 18-fold was achieved with about 81% activity recovery. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed substantial purification, and the molecular weight of peroxidase was found to be 20.1 KDa. The present study shows a higher degree of purification and activity yield as a primary purification process in comparison with existing literature values, thus demonstrating TPP as an attractive downstream process for the purification of peroxidase.

Journal ArticleDOI
TL;DR: Data from the filamentous fungus model organism Aspergillus nidulans support the view that one of the main functions of autolysis is supplying nutrients for sporulation, when no other sources of nutrients are available.
Abstract: In terms of cell physiology, autolysis is the centerpiece of carbon-starving fungal cultures. In the filamentous fungus model organism Aspergillus nidulans, the last step of carbon-starvation-triggered autolysis was the degradation of the cell wall of empty hyphae, and this process was independent of concomitantly progressing cell death at the level of regulation. Autolysis-related proteinase and chitinase activities were induced via FluG signaling, which initiates sporulation and inhibits vegetative growth in surface cultures of A. nidulans. Extracellular hydrolase production was also subjected to carbon repression, which was only partly dependent on CreA, the main carbon catabolite repressor in this fungus. These data support the view that one of the main functions of autolysis is supplying nutrients for sporulation, when no other sources of nutrients are available. The divergent regulation of cell death and cell wall degradation provides the fungus with the option to keep dead hyphae intact to help surviving cells to absorb biomaterials from dead neighboring cells before these are released into the extracellular space. The industrial significance of these observations is also discussed in this paper.

Journal ArticleDOI
TL;DR: The feasibility of biodiesel production from tung oil was investigated and the oxidation stability as determined by the Rancimat method was very low, but the cold filter plugging point, −11 °C, was good; the distillation process did not improve the fatty acid methyl ester content and the viscosity.
Abstract: The feasibility of biodiesel production from tung oil was investigated. The esterification reaction of the free fatty acids of tung oil was performed using Amberlyst-15. Optimal molar ratio of methanol to oil was determined to be 7.5:1, and Amberlyst-15 was 20.8wt% of oil by response surface methodology. Under these reaction conditions, the acid value of tung oil was reduced to 0.72mg KOH/g. In the range of the molar equivalents of methanol to oil under 5, the esterification was strongly affected by the amount of methanol but not the catalyst. When the molar ratio of methanol to oil was 4.1:1 and Amberlyst-15 was 29.8wt% of the oil, the acid value decreased to 0.85mg KOH/g. After the transesterification reaction of pretreated tung oil, the purity of tung biodiesel was 90.2wt%. The high viscosity of crude tung oil decreased to 9.8mm2/s at 40 °C. Because of the presence of eleostearic acid, which is a main component of tung oil, the oxidation stability as determined by the Rancimat method was very low, 0.5h, but the cold filter plugging point, −11 °C, was good. The distillation process did not improve the fatty acid methyl ester content and the viscosity.

Journal ArticleDOI
TL;DR: It has been determined that rapeseed oil can be converted to fatty acid methyl ester using this system, and the results of this study contribute to the body of basic data relevant to the development of continuous enzymatic processes.
Abstract: Biodiesel is a fatty acid alkyl ester that can be derived from any vegetable oil or animal fat via the process of transesterification. It is a renewable, biodegradable, and nontoxic fuel. In this paper, we have evaluated the efficacy of a transesterification process for rapeseed oil with methanol in the presence of an enzyme and tert-butanol, which is added to ameliorate the negative effects associated with excess methanol. The application of Novozym 435 was determined to catalyze the transesterification process, and a conversion of 76.1% was achieved under selected conditions (reaction temperature 40 °C, methanol/oil molar ratio 3:1, 5% (w/w) Novozym 435 based on the oil weight, water content 1% (w/w), and reaction time of 24h). It has also been determined that rapeseed oil can be converted to fatty acid methyl ester using this system, and the results of this study contribute to the body of basic data relevant to the development of continuous enzymatic processes.

Journal ArticleDOI
TL;DR: An adapted R. oryzae strain HZS6 is reported that significantly improved efficiency of substrate utilization and enhanced production of l-(+)-lactic acid from corncob hydrolysate more than twofold compared with its parental strain.
Abstract: Corncob is an economic feedstock and more than 20 million tons of corncobs are produced annually in China. Abundant xylose can be potentially converted from the large amount of hemicellulosic materials in corncobs, which makes the crop residue an attractive alternative substrate for a value-added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the L-isomer and a simple nutrition requirement by the fungus. Production of L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were defined.

Journal ArticleDOI
TL;DR: The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity.
Abstract: The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

Journal ArticleDOI
TL;DR: The isolate was tentatively identified as Serratia marcescens Strain Dr.Y6 based on carbon utilization profiles using Biolog GN plates and partial 16s rDNA molecular phylogeny.
Abstract: A molybdate-reducing bacterium has been locally isolated. The bacterium reduces molybdate or Mo6+ to molybdenum blue (molybdate oxidation states of between 5+ and 6+). Different carbon sources such as acetate, formate, glycerol, citric acid, lactose, fructose, glucose, mannitol, tartarate, maltose, sucrose, and starch were used at an initial concentration of 0.2% (w/v) in low phosphate media to study their effect on the molybdate reduction efficiency of bacterium. All of the carbon sources supported cellular growth, but only sucrose, maltose, glucose, and glycerol (in decreasing order) supported molybdate reduction after 24 h of incubation. Optimum concentration of sucrose for molybdate reduction is 1.0% (w/v) after 24 h of static incubation. Ammonium sulfate, ammonium chloride, valine, OH-proline, glutamic acid, and alanine (in the order of decreasing efficiency) supported molybdate reduction with ammonium sulfate giving the highest amount of molybdenum blue after 24 h of incubation at 0.3% (w/v). The optimum molybdate concentration that supports molybdate reduction is between 15 and 25 mM. Molybdate reduction is optimum at 35 °C. Phosphate at concentrations higher than 5 mM strongly inhibits molybdate reduction. The molybdenum blue produced from cellular reduction exhibits a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as Serratia marcescens Strain Dr.Y6 based on carbon utilization profiles using Biolog GN plates and partial 16s rDNA molecular phylogeny.

Journal ArticleDOI
TL;DR: Results of lipase production by a soil microorganism, expressed in terms of lipolytic activities of the culture were modeled and optimized using artificial neural network (ANN) and genetic algorithm (GA) techniques, respectively.
Abstract: Results of lipase production by a soil microorganism, expressed in terms of lipolytic activities of the culture were modeled and optimized using artificial neural network (ANN) and genetic algorithm (GA) techniques, respectively. ANN model, developed based on back propagation algorithm, were highly accurate in predicting the system with coefficient of determination (R2) value being close to 0.99. Optimization using GA, based on the ANN model developed, resulted in the following values of the media constituents: 9.991 ml/l oil, 0.100 g/l MgSO4 and 0.009 g/l FeSO4. And a maximum value of 7.69 U/ml of lipolytic activity at 72 h of culture was obtained using the ANN-GA method, which was found to be 8.8% higher than the maximum values predicted by a statistical regression-based optimization technique-response surface methodology.

Journal ArticleDOI
TL;DR: Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.
Abstract: Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.