scispace - formally typeset
Search or ask a question
JournalISSN: 0924-669X

Applied Intelligence 

Springer Science+Business Media
About: Applied Intelligence is an academic journal. The journal publishes majorly in the area(s): Computer science & Artificial intelligence. It has an ISSN identifier of 0924-669X. Over the lifetime, 3282 publications have been published receiving 52214 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: This work reimplemented Assistant, a system for top down induction of decision trees, using RELIEFF, an extension of RELIEF, as an estimator of attributes at each selection step for heuristic guidance of inductive learning algorithms.
Abstract: Current inductive machine learning algorithms typically use greedy search with limited lookahead. This prevents them to detect significant conditional dependencies between the attributes that describe training objects. Instead of myopic impurity functions and lookahead, we propose to use RELIEFF, an extension of RELIEF developed by Kira and Rendell l10, 11r, for heuristic guidance of inductive learning algorithms. We have reimplemented Assistant, a system for top down induction of decision trees, using RELIEFF as an estimator of attributes at each selection step. The algorithm is tested on several artificial and several real world problems and the results are compared with some other well known machine learning algorithms. Excellent results on artificial data sets and two real world problems show the advantage of the presented approach to inductive learning.

610 citations

Journal ArticleDOI

[...]

TL;DR: This work represents the Vehicle Routing Problem with Time windows as a multi-objective problem and presents a genetic algorithm solution using the Pareto ranking technique, which returns a set of solutions that fairly consider number of vehicles and total cost.
Abstract: The Vehicle Routing Problem with Time windows (VRPTW) is an extension of the capacity constrained Vehicle Routing Problem (VRP). The VRPTW is NP-Complete and instances with 100 customers or more are very hard to solve optimally. We represent the VRPTW as a multi-objective problem and present a genetic algorithm solution using the Pareto ranking technique. We use a direct interpretation of the VRPTW as a multi-objective problem, in which the two objective dimensions are number of vehicles and total cost (distance). An advantage of this approach is that it is unnecessary to derive weights for a weighted sum scoring formula. This prevents the introduction of solution bias towards either of the problem dimensions. We argue that the VRPTW is most naturally viewed as a multi-objective problem, in which both vehicles and cost are of equal value, depending on the needs of the user. A result of our research is that the multi-objective optimization genetic algorithm returns a set of solutions that fairly consider both of these dimensions. Our approach is quite effective, as it provides solutions competitive with the best known in the literature, as well as new solutions that are not biased toward the number of vehicles. A set of well-known benchmark data are used to compare the effectiveness of the proposed method for solving the VRPTW.

433 citations

Journal ArticleDOI

[...]

TL;DR: The statistical results prove the GWO algorithm is able to provide very competitive results in terms of improved local optima avoidance and a high level of accuracy in classification and approximation of the proposed trainer.
Abstract: This paper employs the recently proposed Grey Wolf Optimizer (GWO) for training Multi-Layer Perceptron (MLP) for the first time. Eight standard datasets including five classification and three function-approximation datasets are utilized to benchmark the performance of the proposed method. For verification, the results are compared with some of the most well-known evolutionary trainers: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Evolution Strategy (ES), and Population-based Incremental Learning (PBIL). The statistical results prove the GWO algorithm is able to provide very competitive results in terms of improved local optima avoidance. The results also demonstrate a high level of accuracy in classification and approximation of the proposed trainer.

396 citations

Journal ArticleDOI

[...]

TL;DR: A connectionist-hidden Markov model (HMM) system for noise-robust AVSR is introduced and it is demonstrated that approximately 65 % word recognition rate gain is attained with denoised MFCCs under 10 dB signal-to-noise-ratio (SNR) for the audio signal input.
Abstract: Audio-visual speech recognition (AVSR) system is thought to be one of the most promising solutions for reliable speech recognition, particularly when the audio is corrupted by noise. However, cautious selection of sensory features is crucial for attaining high recognition performance. In the machine-learning community, deep learning approaches have recently attracted increasing attention because deep neural networks can effectively extract robust latent features that enable various recognition algorithms to demonstrate revolutionary generalization capabilities under diverse application conditions. This study introduces a connectionist-hidden Markov model (HMM) system for noise-robust AVSR. First, a deep denoising autoencoder is utilized for acquiring noise-robust audio features. By preparing the training data for the network with pairs of consecutive multiple steps of deteriorated audio features and the corresponding clean features, the network is trained to output denoised audio features from the corresponding features deteriorated by noise. Second, a convolutional neural network (CNN) is utilized to extract visual features from raw mouth area images. By preparing the training data for the CNN as pairs of raw images and the corresponding phoneme label outputs, the network is trained to predict phoneme labels from the corresponding mouth area input images. Finally, a multi-stream HMM (MSHMM) is applied for integrating the acquired audio and visual HMMs independently trained with the respective features. By comparing the cases when normal and denoised mel-frequency cepstral coefficients (MFCCs) are utilized as audio features to the HMM, our unimodal isolated word recognition results demonstrate that approximately 65 % word recognition rate gain is attained with denoised MFCCs under 10 dB signal-to-noise-ratio (SNR) for the audio signal input. Moreover, our multimodal isolated word recognition results utilizing MSHMM with denoised MFCCs and acquired visual features demonstrate that an additional word recognition rate gain is attained for the SNR conditions below 10 dB.

362 citations

Journal ArticleDOI

[...]

TL;DR: The support vector machine (SVM) is applied to the use of text-mining methods for the identification of the author of a text, as it is able to cope with half a million of inputs it requires no feature selection and can process the frequency vector of all words of atext.
Abstract: In this paper we explore the use of text-mining methods for the identification of the author of a text. We apply the support vector machine (SVM) to this problem, as it is able to cope with half a million of inputs it requires no feature selection and can process the frequency vector of all words of a text. We performed a number of experiments with texts from a German newspaper. With nearly perfect reliability the SVM was able to reject other authors and detected the target author in 60–80% of the cases. In a second experiment, we ignored nouns, verbs and adjectives and replaced them by grammatical tags and bigrams. This resulted in slightly reduced performance. Author detection with SVMs on full word forms was remarkably robust even if the author wrote about different topics.

337 citations

Network Information
Related Journals (5)
Knowledge Based Systems
5.8K papers, 175.4K citations
92% related
Expert Systems With Applications
15.1K papers, 623K citations
90% related
Information Sciences
13.4K papers, 452.7K citations
86% related
Neurocomputing
16.5K papers, 389.6K citations
86% related
IEEE Transactions on Fuzzy Systems
3.4K papers, 252.7K citations
86% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023321
20221,420
20211,056
2020284
2019254
2018277