scispace - formally typeset
Search or ask a question

Showing papers in "Applied Optics in 2003"


Journal ArticleDOI
TL;DR: An approach for easily removing the effects of haze from passively acquired images based on the fact that usually the natural illuminating light scattered by atmospheric particles (airlight) is partially polarized, which yields a range map of the scene which enables scene rendering as if imaged from different viewpoints.
Abstract: We present an approach for easily removing the effects of haze from passively acquired images. Our approach is based on the fact that usually the natural illuminating light scattered by atmospheric particles (airlight) is partially polarized. Optical filtering alone cannot remove the haze effects, except in restricted situations. Our method, however, stems from physics-based analysis that works under a wide range of atmospheric and viewing conditions, even if the polarization is low. The approach does not rely on specific scattering models such as Rayleigh scattering and does not rely on the knowledge of illumination directions. It can be used with as few as two images taken through a polarizer at different orientations. As a byproduct, the method yields a range map of the scene, which enables scene rendering as if imaged from different viewpoints. It also yields information about the atmospheric particles. We present experimental results of complete dehazing of outdoor scenes, in far-from-ideal conditions for polarization filtering. We obtain a great improvement of scene contrast and correction of color.

519 citations


Journal ArticleDOI
TL;DR: An approach is proposed for removing the wavefront curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes and it is shown that a correction effect can be obtained at all reconstruction planes.
Abstract: An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.

406 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed image processing algorithms for measuring two-dimensional distributions of linear birefringence using a pair of variable retarders and obtained the lowest noise level of 0.036 nm.
Abstract: We propose image processing algorithms for measuring two-dimensional distributions of linear birefringence using a pair of variable retarders. Several algorithms that use between two and five recorded frames allow us to optimize measurements for speed, sensitivity, and accuracy. We show images of asters, which consist of radial arrays of microtubule polymers recorded with a polarized light microscope equipped with a universal compensator. Our experimental results confirm our theoretical expectations. The lowest noise level of 0.036 nm was obtained when we used the five-frame technique and four-frame algorithm without extinction setting. The two-frame technique allows us to increase the speed of measurement with acceptable image quality.

398 citations


Journal ArticleDOI
TL;DR: Light propagation in adult head models is predicted by Monte Carlo simulation to investigate the effect of the superficial tissue thickness on the partial optical path length in the brain and on the spatial sensitivity profile and results indicate that it is not appropriate to use the mean optical length as an alternative to the partial Optical path length to compensate the NIRS signal for the difference in sensitivity caused by variation of the shallow tissue thickness.
Abstract: It is important for near-infrared spectroscopy (NIRS) and imaging to estimate the sensitivity of the detected signal to the change in hemoglobin that results from brain activation and the volume of tissue interrogated for a specific source-detector fiber spacing. In this study light propagation in adult head models is predicted by Monte Carlo simulation to investigate the effect of the superficial tissue thickness on the partial optical path length in the brain and on the spatial sensitivity profile. In the case of source-detector spacing of 30 mm, the partial optical path length depends mainly on the depth of the inner skull surface whereas the spatial sensitivity profile is significantly affected by the thickness of the cerebrospinal fluid layer. The mean optical path length that can be measured by time-resolved experiments increases when the skull thickness increases whereas the partial mean optical path length in the brain decreases when the skull thickness increases. These results indicate that it is not appropriate to use the mean optical path length as an alternative to the partial optical path length to compensate the NIRS signal for the difference in sensitivity caused by variation of the superficial tissue thickness.

358 citations


Journal ArticleDOI
TL;DR: A Michelson-type spectral interferometer that uses a common beam path for the reference and the sample arms is described, which is well suited for frequency-domain optical coherence tomography of biological samples.
Abstract: A Michelson-type spectral interferometer that uses a common beam path for the reference and the sample arms is described. This optical arrangement is more compact and stable than the more commonly used dual-arm interferometer and is well suited for frequency-domain optical coherence tomography of biological samples. With a 16-bit CCD camera, the instrument has sufficient dynamic range and resolution for imaging to depths of 2 mm in scattering biological materials. Images obtained with this spectral interferometer are presented, including cross-sectional images in a Xenopus laevis tadpole.

342 citations


Journal ArticleDOI
TL;DR: The laser-induced incandescence of a particle of unknown size and composition can be detected simultaneously with the light elastically scattered by the particle, providing information on both thesize and composition of the particle.
Abstract: The laser-induced incandescence of a particle of unknown size and composition can be detected simultaneously with the light elastically scattered by the particle, providing information on both the size and composition of the particle. The technique relies on vaporization of the particle; detection of the incandescence signal at the time of vaporization allows determination of the boiling point of the particle, which can in turn be related to the composition of the particle. The elastically scattered signal provides information about the size of the particle and confirmation that it was vaporized. The technique is demonstrated by directing particles through a Nd:YAG laser cavity with ∼106 W/cm2 of circulating intensity. Elements such as tungsten, silicon, and graphite, as well as common aerosols such as soot, can be detected and identified.

327 citations


Journal ArticleDOI
TL;DR: The modeling results of an all-fiber gas detector that uses photonic crystal fiber (PCF) and the relative sensitivity of the PCF as a function of the fiber parameters is calculated.
Abstract: We report the modeling results of an all-fiber gas detector that uses photonic crystal fiber (PCF). The relative sensitivity of the PCF as a function of the fiber parameters is calculated. Gas-diffusion dynamics that affect the sensor response time is investigated theoretically and experimentally. A practical PCF sensor aiming for high sensitivity gas detection is proposed.

306 citations


Journal ArticleDOI
TL;DR: The reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.
Abstract: Three-dimensional (3D), multiwavelength near-infrared tomography has the potential to provide new physiological information about biological tissue function and pathological transformation. Fast and reliable measurements of multiwavelength data from multiple planes over a region of interest, together with adequate model-based nonlinear image reconstruction, form the major components of successful estimation of internal optical properties of the region. These images can then be used to examine the concentration of chromophores such as hemoglobin, deoxyhemoglobin, water, and lipids that in turn can serve to identify and characterize abnormalities located deep within the domain. We introduce and discuss a 3D modeling method and image reconstruction algorithm that is currently in place. Reconstructed images of optical properties are presented from simulated data, measured phantoms, and clinical data acquired from a breast cancer patient. It is shown that, with a relatively fast 3D inversion algorithm, useful images of optical absorption and scatter can be calculated with good separation and localization in all cases. It is also shown that, by use of the calculated optical absorption over a range of wavelengths, the oxygen saturation distribution of a tissue under investigation can be deduced from oxygenated and deoxygenated hemoglobin maps. With this method the reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.

304 citations


Journal ArticleDOI
TL;DR: Light propagation in the two-dimensional realistic adult and neonatal head models, whose geometries are generated from a magnetic resonance imaging scan of the human heads, is predicted by Monte Carlo simulation.
Abstract: In near-infrared spectroscopy and imaging, the sensitivity of the detected signal to brain activation and the volume of interrogated tissue are clinically important. Light propagation in adult and neonatal heads is strongly affected by the presence of a low-scattering cerebrospinal fluid layer. The effect of the heterogeneous structure of the head on light propagation in the adult brain is likely to be different from that in the neonatal brain because the thickness of the superficial tissues and the optical properties of the brain of the neonatal head are quite different from those of the adult head. In this study, light propagation in the two-dimensional realistic adult and neonatal head models, whose geometries are generated from a magnetic resonance imaging scan of the human heads, is predicted by Monte Carlo simulation. The sandwich structure, which is a low-scattering cerebrospinal fluid layer held between the high-scattering skull and gray matter, strongly affects light propagation in the brain of the adult head. The sensitivity of the absorption change in the gray matter is improved; however, the intensely sensitive region is confined to the shallow region of the gray matter. The high absorption of the neonatal brain causes a similar effect on light propagation in the head. The intensely sensitive region in the neonatal brain is confined to the gray matter; however, the spatial sensitivity profile penetrates into the deeper region of the white matter.

283 citations


Journal ArticleDOI
TL;DR: A nonlinear, Bayesian optimization scheme is presented for reconstructing fluorescent yield and lifetime, the absorption coefficient, and the diffusion coefficient in turbid media, such as biological tissue.
Abstract: A nonlinear, Bayesian optimization scheme is presented for reconstructing fluorescent yield and lifetime, the absorption coefficient, and the diffusion coefficient in turbid media, such as biological tissue. The method utilizes measurements at both the excitation and the emission wavelengths to reconstruct all unknown parameters. The effectiveness of the reconstruction algorithm is demonstrated by simulation and by application to experimental data from a tissue phantom containing the fluorescent agent Indocyanine Green.

275 citations


Journal ArticleDOI
TL;DR: A theoretical model of wavelength modulation spectroscopy that uses a laser diode on a Lorentzian absorption line and the effect of several modulation parameters on the detected signals is evaluated, confirming the relevance of the model.
Abstract: A theoretical model of wavelength modulation spectroscopy that uses a laser diode on a Lorentzian absorption line is presented. This theory describes the general case of a current-modulated semiconductor laser, for which a combined intensity and frequency modulation with an arbitrary phase shift occurs. On the basis of this model, the effect of several modulation parameters on the detected signals is evaluated. Experimental signals measured on an absorption line of CO2 by use of a 2-microm distributed-feedback laser are also presented and validate this analysis. These experimental results agree with the calculated signals, confirming the relevance of the model.

Journal ArticleDOI
TL;DR: This work presents what is to their knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber of a 600-MW lignite-fired power plant.
Abstract: We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.

Journal ArticleDOI
TL;DR: Light propagation in an adult head model with discrete scatterers distributed within theCSF layer has been predicted by Monte Carlo simulation to investigate the effect of the small amount of scattering caused by the arachnoid trabeculae in the CSF layer.
Abstract: Adequate modeling of light propagation in a human head is important for quantitative near-infrared spectroscopy and optical imaging. The presence of a nonscattering cerebrospinal fluid (CSF) that surrounds the brain has been previously shown to have a strong effect on light propagation in the head. However, in reality, a small amount of scattering is caused by the arachnoid trabeculae in the CSF layer. In this study, light propagation in an adult head model with discrete scatterers distributed within the CSF layer has been predicted by Monte Carlo simulation to investigate the effect of the small amount of scattering caused by the arachnoid trabeculae in the CSF layer. This low scattering in the CSF layer is found to have little effect on the mean optical path length, a parameter that can be directly measured by a time-resolved experiment. However, the partial optical path length in brain tissue that relates the sensitivity of the detected signal to absorption changes in the brain is strongly affected by the presence of scattering within the CSF layer. The sensitivity of the near-infrared signal to hemoglobin changes induced by brain activation is improved by the effect of a low-scattering CSF layer.

Journal ArticleDOI
TL;DR: A modified Tikhonov regularization method is introduced to include three-dimensional x-ray mammography as a prior in the diffuse optical tomography reconstruction and an approach is suggested to find the optimal regularization parameters.
Abstract: We introduce a modified Tikhonov regularization method to include three-dimensional x-ray mammography as a prior in the diffuse optical tomography reconstruction. With simulations we show that the optical image reconstruction resolution and contrast are improved by implementing this x-ray-guided spatial constraint. We suggest an approach to find the optimal regularization parameters. The presented preliminary clinical result indicates the utility of the method.

Journal ArticleDOI
TL;DR: Grade-index SiO2 films are deposited using glancing angle deposition to produce high-transmission antireflection coatings on glass with accurate control over the thin-film microstructure resulting in graded densities with a Gaussian profile and low reflectance at nonnormal angles of incidence.
Abstract: We deposited graded-index SiO2 films using glancing angle deposition to produce high-transmission antireflection coatings on glass. Because of the accurate control over the thin-film microstructure provided by this technique, we were able to create graded densities with a Gaussian profile resulting in transmission values greater than 99.9% for a single-layer interface with bandwidths up to 460 nm. The graded-index layer also provides low reflectance at nonnormal angles of incidence with transmission values degrading little for incidence angles up to 30 degrees.

Journal ArticleDOI
TL;DR: Effective tumor optical properties derived from a homogeneous model were used to deduce physiological information and all tumors exhibited increased total hemoglobin concentration and decreased or unchanged blood oxygen saturation compared with surrounding healthy tissue.
Abstract: Mammograms of 35 patients suspected of breast cancer were taken along craniocaudal and mediolateral projections with a dual-wavelength scanning laser pulse mammograph measuring time-resolved transmittance. Among 26 tumors known from routine clinical diagnostics, 17 tumors were detected retrospectively in optical mammograms. Effective tumor optical properties derived from a homogeneous model were used to deduce physiological information. All tumors exhibited increased total hemoglobin concentration and decreased or unchanged blood oxygen saturation compared with surrounding healthy tissue. Scatter plots based on a pixelwise analysis of individual mammograms were introduced and applied to represent correlations between characteristic quantities derived from measured distributions of times of flight of photons.

Journal ArticleDOI
TL;DR: Multimode polymer waveguides and fiber-to-waveguide couplers have been integrated with microfluidic channels by use of a single-mask-step procedure, which ensured self-alignment between the optics and the fluidics and allowed a fabrication and packaging time of only one day.
Abstract: Multimode polymer waveguides and fiber-to-waveguide couplers have been integrated with microfluidic channels by use of a single-mask-step procedure, which ensured self-alignment between the optics and the fluidics and allowed a fabrication and packaging time of only one day Three fabrication procedures for obtaining hermetically sealed channels were investigated, and the spectrally resolved propagation loss (400–900 nm) of the integrated waveguides was determined for all three procedures Two chemical absorbance cells with optical path lengths of 100 and 1000 μm were furthermore fabricated and characterized in terms of coupling loss, sensitivity, and limit of detection for measurements of the dye bromothymol blue

Journal ArticleDOI
TL;DR: LIBS data from the individual laser shots were analyzed by principal-components analysis and were found to contain adequate information to afford discrimination among the different biomaterials.
Abstract: Laser-induced breakdown spectroscopy (LIBS) has been used to study bacterial spores, molds, pollens, and proteins. Biosamples were prepared and deposited onto porous silver substrates. LIBS data from the individual laser shots were analyzed by principal-components analysis and were found to contain adequate information to afford discrimination among the different biomaterials. Additional discrimination within the three bacilli studied appears feasible.

Journal ArticleDOI
TL;DR: A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described.
Abstract: Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described. The image-reconstruction time for a 208 X 482 pixel image is similar to1 s. For the practical implementation of 2D photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be reconstructed. This approach was investigated by the numerical modeling of the broadband directional response of a rectangular detector and imaging of various spatially calibrated absorbing targets immersed in a turbid phantom. The experimental setup was based on a Q-switched Nd:YAG excitation laser source and a mechanically line-scanned Fabry-Perot polymer-film ultrasound sensor. For a 800 mum x 200 mum rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 mum, respectively. (C) 2003 Optical Society of America.

Journal ArticleDOI
TL;DR: In this article, a technique that significantly improves particle axial-location accuracy by exploring the reconstructed complex amplitude information, compared with other numerical reconstruction schemes that merely mimic traditional optical reconstruction is described.
Abstract: Digital holography appears to be a strong contender as the next-generation technology for holographic diagnostics of particle fields and holographic particle image velocimetry for flow field measurement. With the digital holographic approach, holograms are directly recorded by a digital camera and reconstructed numerically. This not only eliminates wet chemical processing and mechanical scanning, but also enables the use of complex amplitude information inaccessible by optical reconstruction, thereby allowing flexible reconstruction algorithms to achieve optimization of specific information. However, owing to the inherently low pixel resolution of solid-state imaging sensors, digital holography gives poor depth resolution for images, a problem that severely impairs the usefulness of digital holography especially in densely populated particle fields. This paper describes a technique that significantly improves particle axial-location accuracy by exploring the reconstructed complex amplitude information, compared with other numerical reconstruction schemes that merely mimic traditional optical reconstruction. This novel method allows accurate extraction of particle locations from forward-scattering particle holograms even at high particle loadings.

Journal ArticleDOI
TL;DR: An improved recurrence algorithm to calculate the scattering field of a multilayered sphere is developed that is efficient, numerically stable, and accurate for a large range of size parameters andrefractive indices.
Abstract: An improved recurrence algorithm to calculate the scattering field of a multilayered sphere is developed. The internal and external electromagnetic fields are expressed as a superposition of inward and outward waves. The alternative yet equivalent expansions of fields are proposed by use of the first kind of Bessel function and the first kind of Hankel function instead of the first and the second kinds of Bessel function. The final recursive expressions are similar in form to those of Mie theory for a homogeneous sphere and are proved to be more concise and convenient than earlier forms. The new algorithm avoids the numerical difficulties, which give rise to significant errors encountered in practice by previous methods, especially for large, highly absorbing thin shells. Various calculations and tests show that this algorithm is efficient, numerically stable, and accurate for a large range of size parameters and refractive indices.

Journal ArticleDOI
Bing Yu1, Dae Woong Kim1, Jiangdong Deng1, Hai Xiao1, Anbo Wang1 
TL;DR: Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.
Abstract: A diaphragm-based interferometric fiber optic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth

Journal ArticleDOI
TL;DR: It is observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air, which can help in the detection and identification of such energetic materials.
Abstract: A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.

Journal ArticleDOI
TL;DR: A concise study of 3D reconstructed resolution of a small, low-contrast, absorbing and scattering anomaly as it is placed in different locations within a cylindrical phantom.
Abstract: Near-infrared (NIR) optical tomography can provide estimates of the internal distribution of optical absorption and transport scattering from boundary measurements of light propagation within biological tissue. Although this is a truly three-dimensional (3D) imaging problem, most research to date has concentrated on two-dimensional modeling and image reconstruction. More recently, 3D imaging algorithms are demonstrating better estimation of the light propagation within the imaging region and are providing the basis of more accurate image reconstruction algorithms. As 3D methods emerge, it will become increasingly important to evaluate their resolution, contrast, and localization of optical property heterogeneity. We present a concise study of 3D reconstructed resolution of a small, low-contrast, absorbing and scattering anomaly as it is placed in different locations within a cylindrical phantom. The object is an 8-mm-diameter cylinder, which represents a typical small target that needs to be resolved in NIR mammographic imaging. The best resolution and contrast is observed when the object is located near the periphery of the imaging region (12–22 mm from the edge) and is also positioned within the multiple measurement planes, with the most accurate results seen for the scatter image when the anomaly is at 17 mm from the edge. Furthermore, the accuracy of quantitative imaging is increased to almost 100% of the target values when a priori information regarding the internal structure of imaging domain is utilized.

Journal ArticleDOI
TL;DR: Time-resolved laser-induced breakdown spectroscopy (TRELIBS) exhibits a good ability to differentiate among all these species, whatever the culture medium, the species or the strain, and is expected to be a good candidate for a sensor of hazards either on surfaces or in ambient air.
Abstract: A laser-induced breakdown spectroscopy technique for analyzing biological matter for the detection of biological hazards is investigated. Eight species were considered in our experiment: six bacteria and two pollens in pellet form. The experimental setup is described, then a cumulative intensity ratio is proposed as a quantitative criterion because of its linearity and reproducibility. Time-resolved laser-induced breakdown spectroscopy (TRELIBS) exhibits a good ability to differentiate among all these species, whatever the culture medium, the species or the strain. Thus we expect that TRELIBS will be a good candidate for a sensor of hazards either on surfaces or in ambient air.

Journal ArticleDOI
TL;DR: The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements.
Abstract: The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques.

Journal ArticleDOI
TL;DR: Performing correspondence functions were established that allow an accurate estimation of suspended sediments in the estuaries from Système Probatoire d'Observation de la Terre, Landsat, and Sea-Viewing Wide Field-of-View Sensor data, independently of the date of acquisition.
Abstract: Variations of sediment type (grain size and refractive index) and changing illumination conditions affect the reflectance signal of coastal waters and limit the accuracy of sediment-concentration estimations from remote-sensing measurements. These effects are analyzed from numerous in situ remote-sensing measurements carried out in the Gironde and Loire Estuaries and then reduced and partly eliminated when reflectance ratios between the near infrared and the visible are considered. These ratios showed high correlation with the sediment concentration. On the basis of the obtained relationships, performing correspondence functions were established that allow an accurate estimation of suspended sediments in the estuaries from Systeme Probatoire d'Observation de la Terre, Landsat, and Sea-Viewing Wide Field-of-View Sensor data, independently of the date of acquisition.

Journal ArticleDOI
TL;DR: The experimental results obtained from rat skin samples show that Mueller OCT provides complementary structural and functional information on biological samples and reveal that polarization contrast is more sensitive to thermal degeneration of biological tissue than amplitude-based contrast, suggesting significant potential for application in the noninvasive assessment of burn depth.
Abstract: We investigate the various contrast mechanisms provided by polarization-sensitive (PS) Mueller-matrix optical coherence tomography (OCT). Our PS multichannel Mueller-matrix OCT is the first, to our knowledge, to offer simultaneously comprehensive polarization-contrast mechanisms, including the amplitude of birefringence, the orientation of birefringence, and the diattenuation in addition to the polarization-independent intensity contrast, all of which can be extracted from the measured Jones or the equivalent Mueller matrix. Theoretical analysis shows that when diattenuation is negligible, the round-trip Jones matrix represents a linear retarder, which is the foundation of conventional PS-OCT, and can be calculated with a single incident polarization state, although the one-way Jones matrix generally represents an elliptical retarder; otherwise, two incident polarization states are needed. The experimental results obtained from rat skin samples, which conform well with the histology, show that Mueller OCT provides complementary structural and functional information on biological samples and reveal that polarization contrast is more sensitive to thermal degeneration of biological tissue than amplitude-based contrast. Thus, Mueller OCT has significant potential for application in the noninvasive assessment of burn depth.

Journal ArticleDOI
TL;DR: High-resolution second-harmonic generation microscopy was applied to confirm the hypothesis that regions in which collagen fibrils have the same orientation in rat tail tendon are likely to be less than approximately 1 microm in diameter.
Abstract: The second-harmonic signal in collagen, even in highly organized samples such as rat tail tendon fascicles, varies significantly with position. Previous studies suggest that this variability may be due to the parallel and antiparallel orientation of neighboring collagen fibrils. We applied high-resolution second-harmonic generation microscopy to confirm this hypothesis. Studies in which the focal spot diameter was varied from approximately 1 to approximately 6 microm strongly suggest that regions in which collagen fibrils have the same orientation in rat tail tendon are likely to be less than approximately 1 microm in diameter. These measurements required accurate determination of the focal spot size achieved by use of different microscope objectives; we developed a technique that uses second-harmonic generation in a quartz reference to measure the focal spot diameter directly. We also used the quartz reference to determine a lower limit (dXXX > 0.4 pm/V) for the magnitude of the second-order nonlinear susceptibility in collagen.

Journal ArticleDOI
TL;DR: The optimum wavelength pair improved the S/N ratio sixfold for deoxyhemoglobin, and new configurations of light irradiation and detection positions doubled the spatial resolution in observations of higher-order brain functions.
Abstract: We will briefly review the present status of optical topography and then discuss the method of improving practicality, i.e., the signal-to-noise (S/N) ratio and the spatial resolution in observations of higher-order brain functions. The optimum wavelength pair improved the S/N ratio sixfold for deoxyhemoglobin, and new configurations of light irradiation and detection positions doubled the spatial resolution. We also report on developing application fields of optical topography. This modality will bridge the gap between natural sciences, neuroscience, and pedagogy, and show actual real-time brain activity.