scispace - formally typeset
Search or ask a question

Showing papers in "Applied Optics in 2008"


Journal ArticleDOI
TL;DR: A single disperser spectral imager is presented that exploits recent theoretical work in the area of compressed sensing to achieve snapshot spectral imaging and can be used to capture spatiospectral information of a scene that consists of two balls illuminated by different light sources.
Abstract: We present a single disperser spectral imager that exploits recent theoretical work in the area of compressed sensing to achieve snapshot spectral imaging. An experimental prototype is used to capture the spatiospectral information of a scene that consists of two balls illuminated by different light sources. An iterative algorithm is used to reconstruct the data cube. The average spectral resolution is 3.6 nm per spectral channel. The accuracy of the instrument is demonstrated by comparison of the spectra acquired with the proposed system with the spectra acquired by a nonimaging reference spectrometer.

813 citations


Journal ArticleDOI
TL;DR: Digital holographic microscopy enables a quantitative phase contrast metrology that is suitable for the investigation of reflective surfaces as well as for the marker-free analysis of living cells.
Abstract: Digital holographic microscopy enables a quantitative phase contrast metrology that is suitable for the investigation of reflective surfaces as well as for the marker-free analysis of living cells. The digital holographic feature of (subsequent) numerical focus adjustment makes possible applications for multifocus imaging. An overview of digital holographic microscopy methods is described. Applications of digital holographic microscopy are demonstrated by results obtained from livings cells and engineered surfaces.

668 citations


Journal ArticleDOI
TL;DR: Results of Monte Carlo simulations over ocean water paths of several tens of meters indicate that optical communication data rates >1 Gbit/s can be supported and are compatible with high-capacity data transfer applications that require no physical contact.
Abstract: We report error-free underwater optical transmission measurements at 1 Gbit/s (109 bits/s) over a 2 m path in a laboratory water pipe with up to 36 dB of extinction. The source at 532 nm was derived from a 1064 nm continuous-wave laser diode that was intensity modulated, amplified, and frequency doubled in periodically poled lithium niobate. Measurements were made over a range of extinction by the addition of a Mg(OH)2 and Al(OH)3 suspension to the water path, and we were not able to observe any evidence of temporal pulse broadening. Results of Monte Carlo simulations over ocean water paths of several tens of meters indicate that optical communication data rates >1 Gbit/s can be supported and are compatible with high-capacity data transfer applications that require no physical contact.

561 citations


Journal ArticleDOI
TL;DR: It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.
Abstract: A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 microm with an optically defined element size of 64 microm. Two sensors were used, one with a 22 microm thick polymer film spacer and the other with a 38 mum thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 microm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 microm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 microm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.

531 citations


Journal ArticleDOI
TL;DR: The design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions are discussed.
Abstract: A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the ability to radiometrically calibrate the instrument internally, eliminating any reliance on vicarious calibration from atmospheric targets for which aerosol loading must be estimated. This paper discusses the design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions: the Joint Intercontinental Chemical Transport Experiment--Phase B (INTEX-B)/Megacity Aerosol Experiment--Mexico City (MAX-Mex)/Megacities Impacts on Regional and Global Environment (MILAGRO) field mission (hereafter MILAGRO) and the Gulf of Mexico Atmospheric Composition and Climate Study/Texas Air Quality Study II (hereafter GoMACCS/TexAQS II).

426 citations


Journal ArticleDOI
TL;DR: A multichannel free-space optical (FSO) communication system based on orbital angular momentum (OAM)-carrying beams is studied and it is found that turbulence induces attenuation and crosstalk among channels.
Abstract: A multichannel free-space optical (FSO) communication system based on orbital angular momentum (OAM)-carrying beams is studied. We numerically analyze the effects of atmospheric turbulence on the system and find that turbulence induces attenuation and crosstalk among channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied and determine the aggregate capacity of the multichannel system at those conditions. OAM-multiplexed FSO systems that operate in the weak turbulence regime are found to offer good performance. We verify that the aggregate capacity decreases as the turbulence increases. A per-channel bit-error rate evaluation is presented to show the uneven effects of crosstalk on the constituent channels.

341 citations


Journal ArticleDOI
TL;DR: Results from investigations of an engineered surface and human pancreas tumor cells demonstrate the applicability of Fourier-weighting- and gradient-operator-based methods for robust and reliable automated subsequent numerical digital holographic focusing.
Abstract: Digital holography enables a multifocus quantitative phase microscopy for the investigation of reflective surfaces and for marker-free live cell imaging. For digital holographic long-term investigations of living cells an automated (subsequent) robust and reliable numerical focus adjustment is of particular importance. Four numerical methods for the determination of the optimal focus position in the numerical reconstruction and propagation of the complex object waves of pure phase objects are characterized, compared, and adapted to the requirements of digital holographic microscopy. Results from investigations of an engineered surface and human pancreas tumor cells demonstrate the applicability of Fourier-weighting- and gradient-operator-based methods for robust and reliable automated subsequent numerical digital holographic focusing.

333 citations


Journal ArticleDOI
TL;DR: A novel intrinsic fiber optic pressure sensor realized with a polarization-maintaining photonic crystal fiber (PM-PCF) based Sagnac interferometer is proposed and demonstrated experimentally.
Abstract: A novel intrinsic fiber optic pressure sensor realized with a polarization-maintaining photonic crystal fiber (PM-PCF) based Sagnac interferometer is proposed and demonstrated experimentally. A large wavelength-pressure coefficient of 3.42 nm/MPa was measured using a 58.4 cm long PM-PCF as the sensing element. Owing to the inherently low bending loss and thermal dependence of the PM-PCF, the proposed pressure sensor is very compact and exhibits low temperature sensitivity.

287 citations


Journal ArticleDOI
TL;DR: A novel approach to dramatically reduce the size of the conventional LUT, still keeping its advantage of fast computational speed, is proposed, which is called here a novel LUT (N-LUT) method.
Abstract: Several approaches for increasing the speed in computation of the digital holograms of three-dimensional objects have been presented with applications to real-time display of holographic images. Among them, a look-up table (LUT) approach, in which the precalculated principal fringe patterns for all possible image points of the object are provided, has gained a large speed increase in generation of computer-generated holograms. But the greatest drawback of this method is the enormous memory size of the LUT. A novel approach to dramatically reduce the size of the conventional LUT, still keeping its advantage of fast computational speed, is proposed, which is called here a novel LUT (N-LUT) method. A three-dimensional object can be treated as a set of image planes discretely sliced in the z direction, in which each image plane having a fixed depth is approximated as some collection of self-luminous object points of light. In the proposed method, only the fringe patterns of the center points on each image plane are precalculated, called principal fringe patterns (PFPs) and stored in the LUT. Then, the fringe patterns for other object points on each image plane can be obtained by simply shifting this precalculated PFP according to the displaced values from the center to those points and adding them together. Some experimental results reveal that the computational speed and the required memory size of the proposed approach are found to be 69.5 times faster than that of the ray-tracing method and 744 times smaller than that of the conventional LUT method, respectively.

265 citations


Journal ArticleDOI
TL;DR: The in-house software, called OpenFilters, is released under the GNU General Public License, an open-source license, and allows creation of multilayer and graded-index filters and calculation of reflection, transmission, absorption, phase, group delay, groupdelay dispersion, color, ellipsometric variables, admittance diagram, circle diagram, electric field distribution, and generation of reflection and transmission monitoring curves.
Abstract: The design of optical filters relies on powerful computer-assisted methods. Many of these methods are provided by commercial programs, but, in order to adapt and improve them, or to develop new methods, one needs to create his own software. To help people interested in such a process, we decided to release our in-house software, called OpenFilters, under the GNU General Public License, an open-source license. It is programmed in Python and C++, and the graphical user interface is implemented with wxPython. It allows creation of multilayer and graded-index filters and calculation of reflection, transmission, absorption, phase, group delay, group delay dispersion, color, ellipsometric variables, admittance diagram, circle diagram, electric field distribution, and generation of reflection, transmission, and ellipsometric monitoring curves. It also provides the refinement, needle, step, and Fourier transform methods.

216 citations


Journal ArticleDOI
TL;DR: A parallel two-step phase-shifting digital holography technique capable of instantaneous measurement of three-dimensional objects, with a view toward measurement of dynamically moving objects, based on phase- shifting interferometry is proposed.
Abstract: We propose a parallel two-step phase-shifting digital holography technique capable of instantaneous measurement of three-dimensional objects, with a view toward measurement of dynamically moving objects. The technique is based on phase-shifting interferometry. The proposed technique carries out the two-step phase-shifting method at one time and can be optically implemented by using a phase-shifting array device located in the reference beam. The array device has a periodic two-step phase distribution, and its configuration is simplified compared with that required for three-step and four-step parallel phase-shifting digital holographies. Therefore the optical system of the proposed technique is more suitable for the realization of a parallel phase-shifting digital holography system. We conduct both a numerical simulation and a preliminary experiment in the proposed technique. The results of the simulation and the experiment agree well with those of sequential phase-shifting digital holography, and results are superior to those obtained by conventional digital holography using the Fresnel transform alone. Thus the effectiveness of the proposed technique is verified.

Journal ArticleDOI
TL;DR: The bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light are measured and are sharp and reproducible.
Abstract: We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.75 +/- 0.25 kW/microm2. The threshold is approximately three times higher for 14 ps pulses. For 8 ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish.

Journal ArticleDOI
TL;DR: A mathematical model of triangle-mesh-modeled three-dimensional (3D) surface objects for digital holography is developed and Reconstruction of computer-generated holograms synthesized by using the developed model is demonstrated experimentally.
Abstract: We develop a mathematical model of triangle-mesh-modeled three-dimensional (3D) surface objects for digital holography. The proposed mathematical model includes the analytic angular spectrum representation of image light fields emitted from 3D surface objects with occlusion and the computation method for the developed light field representation. Reconstruction of computer-generated holograms synthesized by using the developed model is demonstrated experimentally.

Journal ArticleDOI
TL;DR: Local frequency and phase extraction errors by the WFR and WFF algorithms are analyzed and an unbiased estimation with very low standard deviation is achievable for local frequencies and phase distributions through windowed Fourier transforms.
Abstract: A windowed Fourier ridges (WFR) algorithm and a windowed Fourier filtering (WFF) algorithm have been proposed for fringe pattern analysis and have been demonstrated to be versatile and effective. Theoretical analyses of their performances are of interest. Local frequency and phase extraction errors by the WFR and WFF algorithms are analyzed in this paper. Effectiveness of the WFR and WFF algorithms will thus be theoretically proven. Consider four phase-shifted fringe patterns with local quadric phase [c(20)=c(02)=0.005 rad/(pixel)(2)], and assume that the noise in these fringe patterns have mean values of zero and standard deviations the same as the fringe amplitude. If the phase is directly obtained using the four-step phase-shifting algorithm, the phase error has a mean of zero and a standard deviation of 0.7 rad. However, when using the WFR algorithm with a window size of sigma(x)=sigma(y)=10 pixels, the local frequency extraction error has a mean of zero and a standard deviation of less than 0.01 rad/pixel and the phase extraction error in the WFR algorithm has a mean of zero and a standard deviation of about 0.02 rad. When using the WFF algorithm with the same window size, the phase extraction error has a mean of zero and a standard deviation of less than 0.04 rad and the local frequency extraction error also has a mean of zero and a standard deviation of less than 0.01 rad/pixel. Thus, an unbiased estimation with very low standard deviation is achievable for local frequencies and phase distributions through windowed Fourier transforms. Algorithms applied to different fringe patterns, different noise models, and different dimensions are discussed. The theoretical analyses are verified by numerical simulations.

Journal ArticleDOI
TL;DR: An airborne high spectral resolution lidar based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds.
Abstract: An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

Journal ArticleDOI
TL;DR: A micro-optical force sensor concept based on the morphology-dependent shifts of optical modes of dielectric microspheres is investigated and a measurement sensitivity as high as dlambda/dF=7.664 nm/N was demonstrated with a 960 mum hollow PMMA sphere.
Abstract: A micro-optical force sensor concept based on the morphology-dependent shifts of optical modes of dielectric microspheres is investigated. The optical resonances, commonly referred to as the whispering gallery modes (WGM), were excited by evanescently coupling light from a tunable diode laser using a tapered single-mode fiber. A compressive force applied to the sphere induces a change in both the shape and the index of refraction of the sphere leading to a shift in WGM. By tracking the shifts, the force magnitude is determined using solid silica as well as solid and hollow Polymethyl-methacrylate (PMMA) microsphere resonators. A measurement sensitivity as high as dlambda/dF=7.664 nm/N was demonstrated with a 960 mum hollow PMMA sphere.

Journal ArticleDOI
TL;DR: Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas, which provides an accuracy between 4.1x10(-9) (Ne) and 4.3x10 (-7) (Xe) for theRefractive indices, from UV to near IR.
Abstract: Dispersion of femtosecond laser pulses propagating in Ar, He, Kr, N2, Ne, Xe, and their mixtures is measured by spectrally and spatially resolved interferometry. By varying the gas pressure in a 4.5 m long tube between 0.05 mbar and ambient pressure, the first, second, and third order phase derivatives of broadband laser pulses are determined at 800 nm under standard conditions. The dispersion of gases and gas mixtures obeys the Lorentz-Lorenz formula with an accuracy of 0.7%. Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas. These common form, two-term dispersion equations provide an accuracy between 4.1×10−9 (Ne) and 4.3×10−7 (Xe) for the refractive indices, from UV to near IR.

Journal ArticleDOI
TL;DR: A new approach to multiple-wavelength interferometry, targeted to high bandwidth absolute distance measurement, with nanometer accuracy over long distances, is proposed, with an accuracy of 8 nm over 800 mm for target velocities up to 50 mm/s.
Abstract: We propose a new approach to multiple-wavelength interferometry, targeted to high bandwidth absolute distance measurement, with nanometer accuracy over long distances. Two cw lasers are stabilized over a wide range of frequency intervals defined by an optical frequency comb, thus offering an unprecedented large choice of synthetic wavelengths. By applying a superheterodyne detection technique, we demonstrated experimentally an accuracy of 8 nm over 800 mm for target velocities up to 50 mm/s.

Journal ArticleDOI
TL;DR: High-precision terahertz time-domain spectroscopy measurements on polymers (cross-linked polystyrene, TPX, Zeonor) from 0.2 to 4.2 THz show very interesting teraherstz and visible transparency.
Abstract: We have performed high-precision terahertz time-domain spectroscopy measurements on polymers (cross-linked polystyrene, TPX, Zeonor) from 0.2 to 4.2 THz. They show very interesting terahertz and visible transparency. We also investigated the terahertz characteristics of PDMS, a polymer extensively used in microfluidics, which showed absorption compatible with terahertz experiments. The thermoplastic properties of these polymers make them suitable for use as lens, window, waveguide, or support materials in such applications as biological imaging or microfluidics necessitating a constant visual control not provided by conventional silicon- or teflon-based devices.

Journal ArticleDOI
TL;DR: Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses.
Abstract: Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200 nm range for three cultivars. For this purpose, single integrating sphere measurements are combined with inverse adding-doubling. The observed absorption coefficient spectra are dominated by water in the near infrared and by pigments and chlorophyll in the visible region, whose concentrations are much higher in skin tissue. The scattering coefficient spectra show the monotonic decrease with increasing wavelength typical for biological tissues with skin tissue being approximately three times more scattering than flesh tissue. Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses.

Journal ArticleDOI
TL;DR: This work investigates the use of partial least squares discriminant analysis (PLS-DA) for explosives detection and extends the study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model.
Abstract: A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate the importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.

Journal ArticleDOI
TL;DR: Four atmospheric radiative transfer codes incorporated into different satellite data processing algorithms are compared, namely, 6SV1.1 (second simulation of a satellite signal in the solar spectrum, vector, version 1.1), RT3 (radiative transfer), MODTRAN (moderate resolution atmospheric transmittance and radiance code), and SHARM (spherical harmonics).
Abstract: Results are summarized for a scientific project devoted to the comparison of four atmospheric radiative transfer codes incorporated into different satellite data processing algorithms, namely, 6SV1.1 (second simulation of a satellite signal in the solar spectrum, vector, version 1.1), RT3 (radiative transfer), MODTRAN (moderate resolution atmospheric transmittance and radiance code), and SHARM (spherical harmonics). The performance of the codes is tested against well-known benchmarks, such as Coulson's tabulated values and a Monte Carlo code. The influence of revealed differences on aerosol optical thickness and surface reflectance retrieval is estimated theoretically by using a simple mathematical approach. All information about the project can be found at http://rtcodes.ltdri.org.

Journal ArticleDOI
TL;DR: A new approach based on the synthetic aperture technique and use of linear CCD scanning is presented to obtain digital holographic images with high resolution and a wide field of view.
Abstract: Theoretical analysis shows that, to improve the resolution and the range of the field of view of the reconstructed image in digital lensless Fourier transform holography, an effective solution is to increase the area and the pixel number of the recorded digital hologram. A new approach based on the synthetic aperture technique and use of linear CCD scanning is presented to obtain digital holographic images with high resolution and a wide field of view. By using a synthetic aperture technique and linear CCD scanning, we obtained digital lensless Fourier transform holograms with a large area of 3.5 cm×3.5 cm (5000×5000 pixels). The numerical reconstruction of a 4 mm object at a distance of 14 cm by use of a Rayleigh-Sommerfeld integral shows that a theoretically minimum resolvable distance of 2.57 μm can be achieved at a wavelength of 632.8 nm. The experimental results are consistent with the theoretical analysis.

Journal ArticleDOI
TL;DR: The filtered amplitude is used as a real-valued quality map, rather than a binary mask, which makes the phase-unwrapping algorithm more tolerant to low-quality regions in a wrapped-phase map, and the process is more automatic.
Abstract: We propose a windowed Fourier-filtered and quality-guided phase-unwrapping algorithm that is an extension and improvement of our previous phase-unwrapping algorithm based on windowed Fourier transform [Opt. Laser Technol.37, 458 (2005)OLTCAS0030-399210.1016/j.optlastec.2004.07.007, Key Eng. Mater.326-328, 67 (2006)KEMAEY1013-9826]. First, the filtered amplitude is used as a real-valued quality map, rather than a binary mask, which makes the phase-unwrapping algorithm more tolerant to low-quality regions in a wrapped-phase map, and the process is more automatic. Second, the window size selection is considered, which enables the algorithm to be adapted to tackle different phase-unwrapping problems. A large window size is useful for removing noise, building long barriers along phase discontinuities, and identifying invalid regions, while a small window size is useful for preserving local features, such as small regions and high-quality narrow channels. Eight typical examples in Ghiglia and Pritt's excellent book Two-Dimensional Phase Unwrapping: Theory, Algorithm and Software (Wiley, 1998) are used to evaluate the proposed algorithm. The proposed algorithm is able to unwrap all these examples successfully. The windowed Fourier ridges algorithm, another algorithm based on windowed Fourier transform, is also tested and found to be useful in building barriers along phase discontinuities.

Journal ArticleDOI
TL;DR: A method to analytically compute the light distribution of triangles directly in frequency space, which allows for fast evaluation, shading, and propagation of light from 3D mesh objects using angular spectrum methods.
Abstract: We present a method to analytically compute the light distribution of triangles directly in frequency space. This allows for fast evaluation, shading, and propagation of light from 3D mesh objects using angular spectrum methods. The algorithm complexity is only dependent on the hologram resolution and the polygon count of the 3D model. In contrast to other polygon based computer generated holography methods we do not need to perform a Fourier transform per surface. The theory behind the approach is derived, and a suitable algorithm to compute a digital hologram from a general triangle mesh is presented. We review some first results rendered on a spatial-light-modulator-based display by our proof-of-concept software.

Journal ArticleDOI
TL;DR: An all-fiber sensor capable of simultaneous measurement of temperature and strain is newly presented, and can be used to improve the strain and temperature resolution by suitably choosing the multimode fiber.
Abstract: An all-fiber sensor capable of simultaneous measurement of temperature and strain is newly presented. The sensing head is formed by a fiber Bragg grating combined with a section of multimode fiber that acts as a Mach-Zehnder interferometer for temperature and strain discrimination. The strain and temperature coefficients of multimode fibers vary with the core sizes and materials. This feature can be used to improve the strain and temperature resolution by suitably choosing the multimode fiber. For a 10 pm wavelength resolution, a resolution of 9.21 mu epsilon in strain and 0.26 degrees C in temperature can be achieved.

Journal ArticleDOI
TL;DR: The results of a study of optical scattering and backscattering of particulates for three coastal sites that represent a wide range of optical properties that are found in U.S. near-shore waters can be well approximated by a power-law function of wavelength.
Abstract: We present the results of a study of optical scattering and backscattering of particulates for three coastal sites that represent a wide range of optical properties that are found in U.S. near-shore waters. The 6000 scattering and backscattering spectra collected for this study can be well approximated by a power-law function of wavelength. The power-law exponent for particulate scattering changes dramatically from site to site (and within each site) compared with particulate backscattering where all the spectra, except possibly the very clearest waters, cluster around a single wavelength power-law exponent of -0.94. The particulate backscattering-to-scattering ratio (the backscattering ratio) displays a wide range in wavelength dependence. This result is not consistent with scattering models that describe the bulk composition of water as a uniform mix of homogeneous spherical particles with a Junge-like power-law distribution over all particle sizes. Simultaneous particulate organic matter (POM) and particulate inorganic matter (PIM) measurements are available for some of our optical measurements, and site-averaged POM and PIM mass-specific cross sections for scattering and backscattering can be derived. Cross sections for organic and inorganic material differ at each site, and the relative contribution of organic and inorganic material to scattering and backscattering depends differently at each site on the relative amount of material that is present.

Journal ArticleDOI
TL;DR: A model of turbulence spectra changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere is suggested.
Abstract: Turbulence properties of communication links (optical and microwave) in terms of log-amplitude variance are studied on the basis of a three-layer model of refractive index fluctuation spectrum in the free atmosphere. We suggest a model of turbulence spectra (Kolmogorov and non-Kolmogorov) changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere.

Journal ArticleDOI
TL;DR: This work presents a method for full spatial phase and amplitude control of a laser beam using a twisted nematic LCD combined with a spatial filter that allows precise control of fields even with imperfect modulators.
Abstract: We present a method for full spatial phase and amplitude control of a laser beam using a twisted nematic LCD combined with a spatial filter. By spatial filtering we combine four neighboring pixels into one superpixel. At each superpixel we are able to independently modulate the phase and the amplitude of light. We experimentally demonstrate the independent phase and amplitude modulation using this novel technique. Our technique does not impose special requirements on the spatial light modulator and allows precise control of fields even with imperfect modulators.

Journal ArticleDOI
TL;DR: A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line.
Abstract: A 2 μm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 29 GHz from the center of a CO2 absorption line Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 19 MHz standard deviation about the setpoint This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO2 concentrations The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO2 concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure Range-resolved CO2 measurements were made with <24% standard deviation using 500 m range bins and 67 min⁡ (1000 pulse pairs) integration time Measurement of a horizontal column showed a precision of the CO2 concentration to <07% standard deviation using a 30 min⁡ (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO2 perturbations For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 79 ppm rms difference between the DIAL and the in situ sensor using a 30 min⁡ rolling average on the DIAL measurement