scispace - formally typeset
Search or ask a question

Showing papers in "Applied Optics in 2015"


Journal ArticleDOI
TL;DR: In this article, the optical constants in the energy range 0.1 −6 eV for bulk Cu, Ag, and Au were determined using Kramers-Kronig analysis of previously unpublished reflectance data.
Abstract: We have determined the optical constants in the energy range 0.1–6 eV for bulk Cu, Ag, and Au using Kramers–Kronig analysis of previously unpublished reflectance data. The results are compared to those commonly used from the literature.

436 citations


Journal ArticleDOI
TL;DR: Using ray-trace simulations, it is shown that the absorption of laser light by a powder of metal spheres, typical of the powder employed in laser powder-bed fusion additive manufacturing, is significantly larger than its value for normal incidence on a flat surface, due to multiple scattering.
Abstract: We have calculated the absorption of laser light by a powder of metal spheres, typical of the powder employed in laser powder-bed fusion additive manufacturing. Using ray-trace simulations, we show that the absorption is significantly larger than its value for normal incidence on a flat surface, due to multiple scattering. We investigate the dependence of absorption on powder content (material, size distribution, and geometry) and on beam size.

258 citations


Journal ArticleDOI
TL;DR: Using a transmission-spectrum-based method, the refractive index of a 50 μm thick sample of poly(methyl methacrylate) (PMMA) was measured as a function of wavelength to mitigate the effects of nonplane-parallel surfaces.
Abstract: Using a transmission-spectrum-based method, the refractive index of a 50 μm thick sample of poly(methyl methacrylate) (PMMA) was measured as a function of wavelength. To mitigate the effects of nonplane-parallel surfaces, the sample was measured at 16 different locations. The technique resulted in the measurement of index at several thousand independent wavelengths from 0.42 to 1.62 μm, with a relative RMS accuracy <0.5×10(-4) and absolute accuracy <2×10(-4).

200 citations


Journal ArticleDOI
TL;DR: Using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, analysis of the aperture-averaged scintillation index is carried out, for a horizontally propagating plane wave and spherical wave, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate are analyzed.
Abstract: In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

163 citations


Journal ArticleDOI
TL;DR: Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.
Abstract: Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.

126 citations


Journal ArticleDOI
TL;DR: A forward model is introduced in which the metamaterial elements are approximated as polarizable magnetic dipoles, excited by the fields propagating within the waveguide, which can have arbitrarily assigned polarizability characteristics.
Abstract: Recently, a frequency-diverse, metamaterial-based aperture has been introduced in the context of microwave and millimeter wave imaging. The generic form of the aperture is that of a parallel plate waveguide, in which complementary metamaterial elements patterned into the upper plate couple energy from the waveguide mode to the scene. To reliably predict the imaging performance of such an aperture prior to fabrication and experiments, it is necessary to have an accurate forward model that predicts radiation from the aperture, a model for scattering from an arbitrary target in the scene, and a set of image reconstruction approaches that allow scene estimation from an arbitrary set of measurements. Here, we introduce a forward model in which the metamaterial elements are approximated as polarizable magnetic dipoles, excited by the fields propagating within the waveguide. The dipoles used in the model can have arbitrarily assigned polarizability characteristics. Alternatively, fields measured from actual metamaterial samples can be decomposed into a set of effective dipole radiators, allowing the performance of actual samples to be quantitatively modeled and compared with simulated apertures. To confirm the validity of our model, we simulate measurements and scene reconstructions with a virtual multiaperture imaging system operating in the K-band spectrum (18-26.5 GHz) and compare its performance with an experimental system.

123 citations


Journal ArticleDOI
TL;DR: The proposed fringe-projection-profilometry-based 3D imaging and shape measurement system employs a number of advanced approaches, such as: composition of phase-shifted fringe patterns, externally triggered synchronization of system components, generalized system setup, ultrafast phase-unwrapping algorithm, flexible system calibration method, robust gamma correction scheme, multithread computation and processing, and graphics-processing-unit-based image display.
Abstract: In spite of the recent advances in 3D shape measurement and geometry reconstruction, simultaneously achieving fast-speed and high-accuracy performance remains a big challenge in practice. In this paper, a 3D imaging and shape measurement system is presented to tackle such a challenge. The fringe-projection-profilometry-based system employs a number of advanced approaches, such as: composition of phase-shifted fringe patterns, externally triggered synchronization of system components, generalized system setup, ultrafast phase-unwrapping algorithm, flexible system calibration method, robust gamma correction scheme, multithread computation and processing, and graphics-processing-unit-based image display. Experiments have shown that the proposed system can acquire and display high-quality 3D reconstructed images and/or video stream at a speed of 45 frames per second with relative accuracy of 0.04% or at a reduced speed of 22.5 frames per second with enhanced accuracy of 0.01%. The 3D imaging and shape measurement system shows great promise of satisfying the ever-increasing demands of scientific and engineering applications.

122 citations


Journal ArticleDOI
TL;DR: There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence.
Abstract: In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

122 citations


Journal ArticleDOI
TL;DR: A beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera, which greatly eases the reconstruction problem and yields high-quality 3D spectral data.
Abstract: Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

118 citations


Journal ArticleDOI
Chenliang Chang1, Jun Xia1, Lei Yang1, Wei Lei1, Zhiming Yang, Jianhong Chen 
TL;DR: This paper proposes a method to suppress the speckle noise by simultaneously reconstructing the desired amplitude and phase distribution of the phase-only computer-generated hologram by using the Gerchberg-Saxton algorithm.
Abstract: The Gerchberg-Saxton (GS) algorithm is widely used to calculate the phase-only computer-generated hologram (CGH) for holographic three-dimensional (3D) display. However, speckle noise exists in the reconstruction of the CGH due to the uncontrolled phase distribution. In this paper, we propose a method to suppress the speckle noise by simultaneously reconstructing the desired amplitude and phase distribution. The phase-only CGH is calculated by using a double-constraint GS algorithm, in which both the desired amplitude and phase information are constrained in the image plane in each iteration. The calculated phase-only CGH can reconstruct the 3D object on multiple planes with a desired amplitude distribution and uniform phase distribution. Thus the speckle noise caused by the phase fluctuation between adjacent pixels is suppressed. Both simulations and experiments are presented to demonstrate the effective speckle noise suppression by our algorithm.

116 citations


Journal ArticleDOI
TL;DR: Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided.
Abstract: The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

Journal ArticleDOI
TL;DR: Results show that the wet road surface can help to increase the received optical power and improve the BER performance above a certain distance, and the communications coverage range can reach up to 70 m at a data rate of 50 Mbps when a photodetector is mounted on the car at a height of 0–0.2 m above the road surface.
Abstract: This paper presents an analytical performance analysis of a car-to-car visible light communications system under different communication geometries during the daytime. A market-weighted headlamp beam-pattern model, measured dirt effects on light distribution, and the road-surface reflection model are employed. We consider both the line-of-sight and non-line-of-sight links and outline the relationship between the communication range and the system bit error rate (BER) performance. Results show that the wet road surface can help to increase the received optical power and improve the BER performance above a certain distance, and the communications coverage range can reach up to 70 m at a data rate of 50 Mbps when a photodetector is mounted on the car at a height of 0–0.2 m above the road surface.

Journal ArticleDOI
TL;DR: A self-consistent set of spectral IOPs, chlorophyll concentrations, and Jerlov water types useful for a variety of underwater optical communications and remote sensing applications.
Abstract: The diffuse attenuation coefficient Kd(λ) was first expressed in terms of the inherent optical properties (IOPs) of water according to well-established empirical bio-optical models. Boltzmann simulated annealing was then used to find the best sets of IOPs to fit Kd(λ) spectra to the reference spectra Kd0(λ) that define the Jerlov water types. Absorption a(λ) and scattering b(λ) coefficients were thus obtained for all Jerlov water types over the wavelength range 300-700 nm. The chlorophyll concentrations corresponding to the Jerlov water types were also obtained via bio-optical models. The result is a self-consistent set of spectral IOPs, chlorophyll concentrations, and Jerlov water types useful for a variety of underwater optical communications and remote sensing applications.

Journal ArticleDOI
TL;DR: The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties and it is shown that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions.
Abstract: Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

Journal ArticleDOI
TL;DR: This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-orderBessel beams.
Abstract: We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams.

Journal ArticleDOI
TL;DR: A theoretical and experimental comparison of both configurations for the simplified case where spatially variant aberrations are produced by a well-defined phase screen is provided, and conjugate AO is found to provide a significant FOV advantage.
Abstract: The imaging performance of an optical microscope can be degraded by sample-induced aberrations. A general strategy to undo the effect of these aberrations is to apply wavefront correction with a deformable mirror (DM). In most cases the DM is placed conjugate to the microscope pupil, called pupil adaptive optics (AO). When the aberrations are spatially variant an alternative configuration involves placing the DM conjugate to the main source of aberrations, called conjugate AO. We provide a theoretical and experimental comparison of both configurations for the simplified case where spatially variant aberrations are produced by a well-defined phase screen. We pay particular attention to the resulting correction field of view (FOV). Conjugate AO is found to provide a significant FOV advantage. While this result is well known in the astronomical community, our goal here is to recast it specifically for the optical microscopy community.

Journal ArticleDOI
TL;DR: In this paper, the authors derived hyperspectral (every 5nm) absorption coefficients of pure seawater in the range of 350-550 nm from remote sensing reflectance measured in oligotrophic oceans.
Abstract: Hyperspectral (every 5 nm) absorption coefficients of “pure” seawater in the range of 350–550 nm are derived from remote sensing reflectance measured in oligotrophic oceans. The absorption spectrum is reduced by ∼50–70% for the 350–400-nm range and ∼5–10% for the 510–530-nm range compared with the commonly adopted standard for ocean color processing and shows different spectral curvatures. The application of this new spectrum resulted in better retrievals of the phytoplankton absorption coefficient in oligotrophic oceans and will provide better closure of remote sensing reflectance for the UV–visible domain.

Journal ArticleDOI
TL;DR: A smartphone-based sample analysis by colorimetry was developed and tested with blind samples that matched with the training sets and can be adapted to any smartphone and used to conduct color change assays.
Abstract: A simple device and associated analytical methods are reported. We provide objective and accurate determination of saliva alcohol concentrations using smartphone-based colorimetric imaging. The device utilizes any smartphone with a miniature attachment that positions the sample and provides constant illumination for sample imaging. Analyses of histograms based on channel imaging of red-green-blue (RGB) and hue-saturation-value (HSV) color space provide unambiguous determination of blood alcohol concentration from color changes on sample pads. A smartphone-based sample analysis by colorimetry was developed and tested with blind samples that matched with the training sets. This technology can be adapted to any smartphone and used to conduct color change assays.

Journal ArticleDOI
TL;DR: This work suggests that the BP NPs-based SA is potentially useful for ultrashort, pulsed laser operations in the eye-safe region of 2 μm, and phenomena of multi-pulsing operations, including harmonic mode-locked states and soliton bunches, were obtained in the experiment.
Abstract: By coupling black phosphorus (BP) nanoplatelets (NPs) with a fiber-taper evanescent light field, a saturable absorber (SA) based on the BP NPs has been successfully fabricated and used in a thulium/holmium-doped fiber laser as the mode locker. The SA had a modulation depth of ∼9.8% measured at 1.93 μm. A stable mode-locking operation at 1898 nm was achieved with a pulse width of 1.58 ps and a fundamental mode-lock repetition rate of 19.2 MHz. By increasing the pump intensity, phenomena of multi-pulsing operations, including harmonic mode-locked states and soliton bunches, were obtained in the experiment, showing that the BP NPs possess an ultrafast optical response time. This work suggests that the BP NPs-based SA is potentially useful for ultrashort, pulsed laser operations in the eye-safe region of 2 μm.

Journal ArticleDOI
TL;DR: To the best of the knowledge, this is the first PhC single nanobeam geometry that features both high Q-factors and high sensitivity, and is potentially an ideal platform for realizing ultracompact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing.
Abstract: We propose a novel optical sensor based on a one-dimensional (1D) photonic crystal (PhC) single nanobeam air-mode cavity (SNAC). The performance of the device is investigated theoretically. By introducing a quadratically modulated width tapering structure, a waveguide-coupled 1D-PhC SNAC with a calculated high quality factor of 5.16×10(6) and an effective mode volume of V(eff)∼2.18(λ/n(si))(3) can be achieved. For the air mode mentioned above, the light field can be strongly localized inside the air region (low index) and overlaps sufficiently with the analytes. Thus, the suggested PhC SNAC can be used for high-sensitivity refractive index sensing with an estimated high sensitivity of 537.8 nm/RIU. To the best of our knowledge, this is the first PhC single nanobeam geometry that features both high Q-factors and high sensitivity, and is potentially an ideal platform for realizing ultracompact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing.

Journal ArticleDOI
TL;DR: It is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms.
Abstract: Two modified Gerchberg–Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input–output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems.

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional fabrication process by electron beam lithography was finely tuned in order to realize high-quality spiral phase plates (SPPs) for the generation of OAM-carrying optical beams.
Abstract: The discovery that light beams with a helical phase front carry orbital angular momentum (OAM) has enabled applications in many fields ranging from optical manipulation to quantum information processing and, recently, free-space information transfer and communications Here, a novel three-dimensional fabrication process by electron beam lithography was finely tuned in order to realize high-quality spiral phase plates (SPPs) for the generation of OAM-carrying optical beams Single- and multi-step SPPs have been realized for the generation of high-order Laguerre–Gaussian beams with different values of topological charge and radial index The optical response of these optical elements was experimentally investigated and compared with theoretical models

Journal ArticleDOI
Jing Ma1, Kangning Li1, Liying Tan1, Siyuan Yu1, Yubin Cao1 
TL;DR: The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity.
Abstract: The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity. Maximum ratio combining (MRC) and selection combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence. Bit-error rate (BER) performances for binary phase-shift keying modulated coherent detection and outage probabilities are analyzed and compared for SC diversity using analytical results and for MRC diversity through an approximation method with different numbers of receiving aperture each with the same aperture area. To show the net diversity gain of a multiple aperture receiver system, BER performances and outage probabilities of MRC and SC multiple aperture receiver systems are compared with a single monolithic aperture with the same total aperture area (same total average incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are verified by Monte-Carlo simulations.

Journal ArticleDOI
TL;DR: In this article, the fabrication chain for the development of an afocal all aluminum telescope using four anamorphic aspherical mirrors is described, and the optical and mechanical design are intended to achieve an enhanced system integration with reduced alignment effort by arranging two optical surfaces monolithically on common mirror bodies.
Abstract: The fabrication chain for the development of an afocal all aluminum telescope using four anamorphic aspherical mirrors is described. The optical and mechanical design are intended to achieve an enhanced system integration with reduced alignment effort by arranging two optical surfaces monolithically on common mirror bodies. Freeform machining is carried out by a hybrid fabrication approach combining diamond turning and diamond milling in the same machine setup. A direct figure correction of diamond turned aluminum mirrors by magnetorheological finishing is presented, resulting in high-precision athermal mirror modules with excellent figure properties. The interferometric system test highlights the diffraction limited telescope performance and the feasibility of the chosen approaches for freeform machining and mechanical integration.

Journal ArticleDOI
TL;DR: A novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation and the measurements show good consistency with the theoretical simulation.
Abstract: Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.

Journal ArticleDOI
TL;DR: The design, manufacturing, and testing of the two infrared channels of NOMAD, a spectrometer suite on board ESA's ExoMars trace gas orbiter, are described, where an echelle grating is used as a diffractive element and an acousto-optical tunable filter is combined with a diffraction order sorter.
Abstract: NOMAD is a spectrometer suite on board ESA’s ExoMars trace gas orbiter due for launch in January 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at dayside and nightside, and during solar occultations. In this paper, the design, manufacturing, and testing of the two infrared channels are described. We focus upon the optical working principle in these channels, where an echelle grating, used as a diffractive element, is combined with an acousto-optical tunable filter, used as a diffraction order sorter.

Journal ArticleDOI
TL;DR: Simulation results reveal that for the optimum design of the proposed PCF it is possible to obtain the highest relative sensitivity of about 42.27% at the wavelength λ=1.33 μm for the absorption line of methane (CH4) and hydrogen fluoride (HF) gases.
Abstract: In this paper, a highly sensitive gas sensor based on the microstructure core and cladding photonic crystal fiber (PCF) is presented over the wavelength range from 1.3 to 2.2 μm, which is advantageous for sensor fabrication. The guiding properties of the proposed structure are dependent on geometrical parameters and wavelengths, which are numerically investigated by using a finite element method (FEM). Introducing the microstructure core makes it possible to obtain higher relative sensitivity and achieves low confinement loss. Moreover, it can be shown that increasing the diameter of the air holes in the microstructure core and decreasing the size of hole to hole space (pitch), the relative sensitivity is enhanced. In addition, the confinement loss is reduced by increasing the value of the diameter of the air holes in the cladding. Simulation results reveal that for the optimum design of the proposed PCF it is possible to obtain the highest relative sensitivity of about 42.27% at the wavelength λ=1.33 μm for the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. In this case, the confinement loss of the fiber is 4.78345×10−6 dB/m.

Journal ArticleDOI
TL;DR: The results demonstrated that (1) the beam attenuation spectral slope correlates with the average particle size as suggested by theory for idealized particles and PSD; and (2) measurements of spectral backscattering also contain information reflective of the average particles size in spite of large deviations of the PSD from a spectral power law shape.
Abstract: Measurements of the particulate beam attenuation coefficient at multiple wavelengths in the ocean typically exhibit a power law dependence on wavelength, and the slope of that power law has been related to the slope of the particle size distribution (PSD), when assumed to be a power law function of particle size. Recently, spectral backscattering coefficient measurements have been made using sensors deployed at moored observatories, on autonomous underwater vehicles, and even retrieved from space-based measurements of remote sensing reflectance. It has been suggested that these backscattering measurements may also be used to obtain information about the shape of the PSD. In this work, we directly compared field-measured PSD with multispectral beam attenuation and backscattering coefficients in a coastal bottom boundary later. The results of this comparison demonstrated that (1) the beam attenuation spectral slope correlates with the average particle size as suggested by theory for idealized particles and PSD; and (2) measurements of spectral backscattering also contain information reflective of the average particle size in spite of large deviations of the PSD from a spectral power law shape.

Journal ArticleDOI
TL;DR: The fingertip OCT images indicated that the proposed NLM filter provides superior denoising performance, among the filters in terms of the contrast-to-noise ratio (CNR), the equivalent number of looks (ENL), and the speckle suppression index (SSI).
Abstract: Non-local means (NLM) filter is one of the state-of-the-art denoising filters. It exploits the presence of similar features in an image and averages those similar features to remove noise. However, a conventional NLM filter shows somewhat inferior performance of noise reduction around edges, suffering from low efficiency of collecting similar features to be averaged. In order to overcome this phenomenon, we propose a NLM filter with double Gaussian anisotropic kernels as a substitute for the conventional homogeneous kernel to effectively remove noise from OCT images corrupted by speckle noise. The proposed filter was evaluated by comparing with various denoising filters such as conventional NLM filter, median filter, bilateral filter, and Wiener filter. The fingertip OCT images, which were processed with the different denoising filters, indicated that the proposed NLM filter provides superior denoising performance, among the filters in terms of the contrast-to-noise ratio (CNR), the equivalent number of looks (ENL), and the speckle suppression index (SSI). A human retina OCT image was also used to compare and show the performances of noise reduction among different filters. In addition, the denoising performance with the proposed NLM filter was also investigated in the synthetic images for fair comparison among the filters by calculating the peak signal-to-noise ratio (PSNR). The proposed NLM filter outperformed the conventional NLM filter as well as the other filters.

Journal ArticleDOI
TL;DR: The effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose to study the relationship between reflectance versus particle diameter.
Abstract: We have recently developed vetted methods for obtaining quantitative infrared directional–hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance versus particle size are observed such as increased albedo for smaller particles: for most wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate and large size sample fractions: that is, ≳150 μm. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance versus particle diameter.