scispace - formally typeset
Search or ask a question

Showing papers in "Applied Physics Letters in 1999"


Journal ArticleDOI
TL;DR: In this paper, the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host was described.
Abstract: We describe the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host. These devices exhibit peak external quantum and power efficiencies of 8.0% (28 cd/A) and 31 lm/W, respectively. At 100 cd/m2, the external quantum and power efficiencies are 7.5% (26 cd/A) and 19 lm/W at an operating voltage of 4.3 V. This performance can be explained by efficient transfer of both singlet and triplet excited states in the host to Ir(ppy)3, leading to a high internal efficiency. In addition, the short phosphorescent decay time of Ir(ppy)3 (<1 μs) reduces saturation of the phosphor at high drive currents, yielding a peak luminance of 100 000 cd/m2.

3,594 citations


Journal ArticleDOI
TL;DR: In this article, a fully sealed field-emission display 4.5 in. in size has been fabricated using single-wall carbon nanotube (CNT)-organic binders.
Abstract: A fully sealed field-emission display 4.5 in. in size has been fabricated using single-wall carbon nanotube (CNT)-organic binders. The fabricated displays were fully scalable at low temperature, below 415 °C, and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1 V/μm and field emission current of 1.5 mA at 3 V/μm (J=90 μA/cm2) were observed. Brightness of 1800 cd/m2 at 3.7 V/μm was observed on the entire area of a 4.5 in. panel from the green phosphor-indium–tin–oxide glass. The fluctuation of the current was found to be about 7% over a 4.5 in. cathode area.

1,398 citations


Journal ArticleDOI
TL;DR: In this article, a holographic reconstruction procedure combining images taken at different distances from the specimen was developed, which results in quantitative phase mapping and, through association with threedimensional reconstruction, in holotomography, the complete three-dimensional mapping of the density in a sample.
Abstract: Because the refractive index for hard x rays is slightly different from unity, the optical phase of a beam is affected by transmission through an object. Phase images can be obtained with extreme instrumental simplicity by simple propagation provided the beam is coherent. But, unlike absorption, the phase is not simply related to image brightness. A holographic reconstruction procedure combining images taken at different distances from the specimen was developed. It results in quantitative phase mapping and, through association with three-dimensional reconstruction, in holotomography, the complete three-dimensional mapping of the density in a sample. This tool in the characterization of materials at the micrometer scale is uniquely suited to samples with low absorption contrast and radiation-sensitive systems.

903 citations


Journal ArticleDOI
TL;DR: A previously unreported ferroelectric phase has been discovered in a highly homogeneous sample of PbZr0.52Ti0.48O3 by high-resolution synchrotron x-ray powder diffraction measurements as mentioned in this paper.
Abstract: A previously unreported ferroelectric phase has been discovered in a highly homogeneous sample of PbZr0.52Ti0.48O3 by high-resolution synchrotron x-ray powder diffraction measurements. At ambient temperature the sample has tetragonal symmetry (at=4.037 A, ct=4.138 A), and transforms below ∼250 K into a phase which, unexpectedly, has monoclinic symmetry (am=5.717 A, bm=5.703 A, cm=4.143 A, β=90.53°, at 20 K). The intensity data strongly indicate that the polar axis lies in the monoclinic ac plane close to the pseudocubic [111] direction, which would be an example of the species m3m(12)A2Fm predicted on symmetry grounds by Shuvalov.

899 citations


Journal ArticleDOI
TL;DR: In this paper, a simple yet highly reproducible method to fabricate metallic electrodes with nanometer separation is presented, achieved by passing a large electrical current through a gold nanowire defined by electron-beam lithography and shadow evaporation.
Abstract: A simple yet highly reproducible method to fabricate metallic electrodes with nanometer separation is presented. The fabrication is achieved by passing a large electrical current through a gold nanowire defined by electron-beam lithography and shadow evaporation. The current flow causes the electromigration of gold atoms and the eventual breakage of the nanowire. The breaking process yields two stable metallic electrodes separated by ∼1 nm with high efficiency. These electrodes are ideally suited for electron-transport studies of chemically synthesized nanostructures, and their utility is demonstrated here by fabricating single-electron transistors based on colloidal cadmium selenide nanocrystals.

890 citations


Journal ArticleDOI
TL;DR: In this article, hydrogen adsorption on crystalline ropes of carbon single-walled nanotubes (SWNTs) was found to exceed 8 wt.%, which is the highest capacity of any carbon material.
Abstract: Hydrogen adsorption on crystalline ropes of carbon single-walled nanotubes (SWNT) was found to exceed 8 wt.%, which is the highest capacity of any carbon material. Hydrogen is first adsorbed on the outer surfaces of the crystalline ropes. At pressures higher than about 40 bar at 80 K, however, a phase transition occurs where there is a separation of the individual SWNTs, and hydrogen is physisorbed on their exposed surfaces. The pressure of this phase transition provides a tube-tube cohesive energy for much of the material of 5 meV/C atom. This small cohesive energy is affected strongly by the quality of crystalline order in the ropes.

858 citations


Journal ArticleDOI
TL;DR: In this article, a red electrophosphorescent device containing the luminescent dye 2,3,7,8, 12,13,17,18-octaethyl-21H23H-phorpine platinum(II) (PtOEP) doped in a 4,4′-N,N′-dicarbazolebiphenyl (CBP) host was used as a barrier to exciton diffusion.
Abstract: External quantum efficiencies of up to (5.6±0.1)% at low brightness and (2.2±0.1)% at 100 cd/m2 are obtained from a red electrophosphorescent device containing the luminescent dye 2,3,7,8, 12,13,17,18-octaethyl-21H23H-phorpine platinum(II) (PtOEP) doped in a 4,4′-N,N′-dicarbazolebiphenyl (CBP) host. Due to weak overlap between excitonic states in PtOEP and CBP, efficiency losses due to nonradiative recombination are low. However, energy transfer between the species is also poor. In compensation, a thin layer of 2,9-dimethyl-4,7 diphenyl-1,10-phenanthroline is used as a barrier to exciton diffusion in CBP, improving the energy transfer to PtOEP. This technique may be applied to improve the efficiency of other electrophosphorescent devices.

821 citations


Journal ArticleDOI
TL;DR: In this article, the mechanics of film-on-foil transistors on steel and plastic foils have been discussed in the context of thin-film transistors, where the transistors function well after the foils are rolled to small radii of curvature.
Abstract: The mechanics of film-on-foil devices is presented in the context of thin-film transistors on steel and plastic foils Provided the substrates are thin, such transistors function well after the foils are rolled to small radii of curvature When a substrate with a lower elastic modulus is used, smaller radii of curvature can be achieved Furthermore, when the transistors are placed in the neutral surface by sandwiching between a substrate and an encapsulation layer, even smaller radii of curvature can be attained Transistor failure clearly shows when externally forced and thermally induced strains add to, or subtract from, each other

722 citations


Journal ArticleDOI
TL;DR: In this article, self-determining collimated light is generated in a photonic crystal fabricated on silicon and the divergence of the collimated beam is insensitive to that of the incident beam and much smaller than the divergence generated in conventional Gaussian optics.
Abstract: We found that self-determining collimated light is generated in a photonic crystal fabricated on silicon. The divergence of the collimated beam is insensitive to that of the incident beam and much smaller than the divergence that would be generated in conventional Gaussian optics. The incident-angle dependence of the self-collimated light propagation including lens-like divergent propagation was interpreted in terms of the highly modulated dispersion surfaces with inflection points, where the curvature changes from downward to upward corresponding to respectively a concave/convex-lens case. This demonstration is an important step towards controlling beam profile in photonic crystal integrated light circuits and towards developing “photonic crystalline optics.”

717 citations


Journal ArticleDOI
TL;DR: In this paper, a two-step ultrahigh vacuum/chemical-vapor-deposition process followed by cyclic thermal annealing was proposed for making high-quality epilayers on Si.
Abstract: High-quality Ge epilayers on Si with low threading-dislocation densities were achieved by a two-step ultrahigh vacuum/chemical-vapor-deposition process followed by cyclic thermal annealing. On large Si wafers, Ge on Si with threading-dislocation density of 2.3×107 cm−2 was obtained. Combining selective area growth with cyclic thermal annealing produced an average threading-dislocation density of 2.3×106 cm−2.We also demonstrated small mesas of Ge on Si with no threading dislocations. The process described in this letter for making high-quality Ge on Si is uncomplicated and can be easily integrated with standard Si processes.

716 citations


Journal ArticleDOI
TL;DR: In this article, high-ordered arrays of parallel carbon nanotubes were grown by pyrolysis of acetylene on cobalt within a hexagonal close-packed nanochannel alumina template at 650°C.
Abstract: Highly-ordered arrays of parallel carbon nanotubes were grown by pyrolysis of acetylene on cobalt within a hexagonal close-packed nanochannel alumina template at 650 °C. The nanotubes are characterized by a narrow size distribution, large scale periodicity, and high densities. Using this method ordered nanotubes with diameters from 10 nm to several hundred nm and lengths up to 100 μm can be produced. The high level of ordering and uniformity in these arrays is useful for applications in data storage, field emission displays and sensors, and offers the prospect of deriving computational functions from the collective behavior of symmetrically coupled nanotubes. The fabrication method used is compatible with standard lithographic processes and thus enables future integration of such periodic carbon nanotube arrays with silicon microelectronics.

Journal ArticleDOI
TL;DR: In this paper, the authors induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode, and the maximum strain observed, 5.8±0.9%, gives a lower bound of 45±7 GPa for the tensile strength (specifically, yield stress) of single wall nanotube ropes.
Abstract: We have induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode. Freely suspended ropes were observed to deform as elastic strings with tension proportional to elongation. Ropes were elastically deformed over >10 cycles without showing signs of plastic deformation. The maximum strain observed, 5.8±0.9%, gives a lower bound of 45±7 GPa for the tensile strength (specifically, yield stress) of single-wall nanotube ropes.

Journal ArticleDOI
TL;DR: In this article, a surface-emitting laser with a two-dimensional photonic crystal structure is investigated, where the wavelength of the active layer is designed to match the folded (second-order) Γ point of the Γ−X direction.
Abstract: Lasing action of a surface-emitting laser with a two-dimensional photonic crystal structure is investigated. The photonic crystal has a triangular-lattice structure composed of InP and air holes, which is integrated with an InGaAsP/InP multiple-quantum-well active layer by a wafer fusion technique. Uniform two-dimensional lasing oscillation based on the coupling of light propagating in six equivalent Γ−X directions is successfully observed, where the wavelength of the active layer is designed to match the folded (second-order) Γ point of the Γ−X direction. The very narrow divergence angle of far field pattern and/or the lasing spectrum, which is considered to reflect the two-dimensional stop band, also indicate that the lasing oscillation occurs coherently.

Journal ArticleDOI
TL;DR: In this article, the lattice constants of both a and c axes of wurtzite Zn1−xMnxO films (x < 0.35) increase and the band gap expands although considerable in-gap absorption develops.
Abstract: Epitaxial thin films of an oxide-diluted magnetic semiconductor, Mn-doped ZnO, were fabricated by pulsed-laser deposition technique. Solubility of Mn into ZnO exceeds thermal equilibrium limit as a result of nonequilibrium film growth process. As Mn content is increased, the lattice constants of both a and c axes of wurtzite Zn1−xMnxO films (x<0.35) increase and the band gap expands although considerable in-gap absorption develops. Itinerant electrons over 1019 cm−3 can be doped into the Zn1−xMnxO films by Al doping, in contrast to low carrier density in the other II–VI diluted magnetic semiconductors. The temperature dependence of the resistivity is almost metallic and considerable magnetoresistance is observed at low temperatures.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the relaxation times of room-temperature thermal phonons through measurements of thermal conduction along monocrystalline silicon films of thickness down to 74 nm and showed that the effective mean free path of the dominant phonons at room temperature is close to 300 nm and thus much longer than the value of 43 nm predicted when phonon dispersion is neglected.
Abstract: Although progress has been made in the ab initio simulation of lattice dynamics in semiconducting crystals, information about the relaxation of nonequilibrium lattice vibrations remains incomplete. This work studies the relaxation times of room-temperature thermal phonons through measurements of thermal conduction along monocrystalline silicon films of thickness down to 74 nm. A repetitive oxidation and etching process ensures that the purity and crystalline quality of the films are comparable with those of bulk samples. Phonon-interface scattering reduces the thermal conductivity by up to 50% at room temperature. The data indicate that the effective mean-free path of the dominant phonons at room temperature is close to 300 nm and thus much longer than the value of 43 nm predicted when phonon dispersion is neglected. This study indicates that a broad variety of lattice transport characteristics for bulk silicon can be obtained through measurements on carefully prepared silicon nanostructures. The present data are also valuable for the thermal simulation of silicon-on-insulator (SOI) transistors.

Journal ArticleDOI
TL;DR: In this paper, a technique for generating waves on polydimethylsiloxane (PDMS) patterned in bas-relief is described, where the PDMS is heated and its surface oxidized in an oxygen plasma; this oxidation forms a thin, stiff silicate layer on the surface.
Abstract: This letter describes a technique for generating waves on polydimethylsiloxane (PDMS) patterned in bas-relief. The PDMS is heated, and its surface oxidized in an oxygen plasma; this oxidation forms a thin, stiff silicate layer on the surface. When the PDMS cools, it contracts and places the silicate layer under compressive stress. This stress is relieved by buckling to form patterns of waves with wavelengths from 0.5 to 10 μm. The waves are locally ordered near a step or edge in the PDMS. The wavelength, amplitude, and pattern of the waves can be controlled by controlling the temperature of the PDMS and the duration of the oxidation. The mechanism for the formation and order of the waves is described.

Journal ArticleDOI
TL;DR: In this article, three-dimensional photonic crystal structures were fabricated with laser microfabrication techniques through two-photon-absorption photopolymerization of resin, and significant band-gap effects in the infrared wavelength region were observed from layer-by-layer structures.
Abstract: Three-dimensional photonic crystal structures were fabricated with laser microfabrication techniques through two-photon-absorption photopolymerization of resin. Significant band-gap effects in the infrared wavelength region were observed from “layer-by-layer” structures.

Journal ArticleDOI
TL;DR: Gold nanoshells, consisting of a silica core coated with a thin gold shell, exhibit a strong optical resonance that depends sensitively on their core radius and shell thickness as discussed by the authors.
Abstract: Gold nanoshells, nanoparticles consisting of a silica core coated with a thin gold shell, exhibit a strong optical resonance that depends sensitively on their core radius and shell thickness. Gold nanoshells have been fabricated with a peak optical extinction that can be varied across the near-infrared region of the spectrum (800 nm–2.2 μm). Multipolar plasmon resonances are clearly resolvable in the extinction spectra and agree well with electromagnetic theory. Additional resonances due to particle aggregation are also observed. The frequency agile infrared properties of these nanoparticles make them particularly attractive for a range of technologically important applications.

Journal ArticleDOI
TL;DR: In this paper, the authors observed that field emitters made from carbon nanotubes exhibit excellent macroscopic emission properties; they can operate at a very large current density, as high as 4 A/cm2.
Abstract: We observe that field emitters made from carbon nanotubes exhibit excellent macroscopic emission properties; they can operate at a very large current density, as high as 4 A/cm2. At electric fields as low as 4–7 V/μm, they emit technologically useful current densities of 10 mA/cm2. We show that the emission originates from nanotube ends with a characteristic structured ring pattern. The emission characteristics and durability of the carbon nanotube cold cathodes offer promising applications for vacuum microelectronic devices.

Journal ArticleDOI
TL;DR: In this paper, a self-assembling method was used to grow InAs quantum dots with size fluctuations of less than 4% on GaAs using the self-assembly method and the photoluminescence linewidth was reduced to 21 meV at room temperature.
Abstract: InAs quantum dots with size fluctuations of less than 4% were grown on GaAs using the self-assembling method. By covering the quantum dots with In0.2Ga0.8As or In0.2Al0.8As, strain in InAs dots can be partly reduced due to relaxation of lattice constraint in the growth direction. This results in low-energy emission (about 1.3 μm) from the quantum dots. The photoluminescence linewidth can be reduced to 21 meV at room temperature. This width is completely comparable to the theoretical limit of a band-to-band emission from a quantum well at room temperature. Because the dots can be uniformly covered by the strain reducing layers, factors that degrade size uniformity during coverage, such as compositional mixing or segregation, will be suppressed, allowing for an almost ideal buried quantum dot structure.

Journal ArticleDOI
TL;DR: In this paper, the design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga, sub 0.93}As, sub 1.0 ev bandgap, lattice matched to GaAs was described, and hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm.
Abstract: The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

Journal ArticleDOI
TL;DR: In this paper, the authors report electroabsorption measurements of polymer light-emitting diodes, (LEDs), fabricated with poly(4-4′-diphenylene dioxythiophene), PDPV, as the emissive layer, Ca-Al cathodes, and indium tin oxide (ITO) anodes, with and without a doped conducting polymer hole injection/transport layer.
Abstract: We report electroabsorption measurements of polymer light-emitting diodes, (LEDs), fabricated with poly(4-4′-diphenylene diphenylvinylene), PDPV, as the emissive layer, Ca–Al cathodes, and indium tin oxide (ITO) anodes, with and without a doped conducting polymer hole injection/transport layer, namely poly(3,4-ethylene dioxythiophene), PEDOT, doped with poly(styrene sulfonate), PSS−. In these structures, the bias at which the electroabsorption signal is null corresponds to the difference between the electrodes’ work functions. We find that such a built-in voltage increases by 0.5 V when a PEDOT:PSS film is incorporated between the ITO electrode and the emissive layer. This leads to a marked reduction of the anode barrier height at the hole-injecting interface, and accounts for a variety of improvements brought about by the PEDOT insertion, namely: (a) the increase of luminescence efficiency, (b) the reduction of the turn-on voltage, and (c) the increase of the device lifetime.

Journal ArticleDOI
TL;DR: In this paper, a simple method for preparing polycrystalline ZnO thin films with good luminescent properties was reported: the oxidization of metallic Zn films. But this method is not suitable for the case of light-sensitive materials.
Abstract: We report a simple method for preparing polycrystalline ZnO thin films with good luminescent properties: the oxidization of metallic Zn films. In photoluminescence (PL) studies at room temperature for wavelengths between 370 and 675 nm, we have observed a single exciton peak around 390 nm without any deep-level emission and a small PL full width at half maximum (23 meV), indicating that the concentrations of the defects responsible for the deep-level emissions are negligible. We have also observed optically pumped lasing action in these films. The threshold intensity for lasing was ∼9 MW/cm2.

Journal ArticleDOI
TL;DR: Hafnium silicate (HfSixOy) gate dielectric films with ∼6 at. % Hf exhibit significantly improved leakage properties over SiO2 in the ultrathin regime while remaining thermally stable in direct contact with Si.
Abstract: Hafnium silicate (HfSixOy) gate dielectric films with ∼6 at. % Hf exhibit significantly improved leakage properties over SiO2 in the ultrathin regime while remaining thermally stable in direct contact with Si. Capacitance–voltage measurements show an equivalent oxide thickness (tox) of less than 18 A for a 50 A HfSixOy film deposited directly on a Si substrate, with no significant dispersion of the capacitance for frequencies ranging from 10 kHz to 1 MHz. Current–voltage measurements show for the same film a leakage current of 1.2×10−6 A/cm2 at 1 V bias. Hysteresis in these films is measured to be less than 20 mV, the breakdown field is measured to be EBD∼10 MV/cm, and the midgap interface state density is Dit∼1011 cm−2 eV−1. Cross-sectional transmission electron microscopy shows no signs of reaction or crystallization in HfSixOy films on Si after being annealed at 800 °C for 30 min.

Journal ArticleDOI
TL;DR: In this paper, the onset buckling strain and fracture strain were estimated to be ≈5% and ⩾18%, respectively, in uniaxially oriented multi-walled carbon nanotubes embedded in polymer matrices.
Abstract: Composites of uniaxially oriented multiwalled carbon nanotubes embedded in polymer matrices were fabricated and investigated by transmission electron microscopy. In strained composite films, buckling was ubiquitously observed in bent nanotubes with large curvatures. By analyses of a large number of bent nanotubes, the onset buckling strain and fracture strain were estimated to be ≈5% and ⩾18%, respectively. The buckling wavelengths are proportional to the dimensions of the nanotubes. Examination of the fracture surface showed adherence of the polymer to the nanotubes.

Journal ArticleDOI
TL;DR: In this article, a truncated-inverted-pyramid (TIP) chip geometry was proposed to decrease the mean photon path length within the crystal, and thus reduce the effects of internal loss mechanisms.
Abstract: A truncated-inverted-pyramid (TIP) chip geometry provides substantial improvement in light extraction efficiency over conventional AlGaInP/GaP chips of the same active junction area (∼0.25 mm2). The TIP geometry decreases the mean photon path-length within the crystal, and thus reduces the effects of internal loss mechanisms. By combining this improved device geometry with high-efficiency multiwell active layers, record-level performance for visible-spectrum light-emitting diodes is achieved. Peak efficiencies exceeding 100 lm/W are demonstrated (100 mA dc, 300 K) for orange-emitting (λp∼610 nm) devices, with a peak luminous flux of 60 lumens (350 mA dc, 300 K). In the red wavelength regime (λp∼650 nm), peak external quantum efficiencies of 55% and 60.9% are measured under direct current and pulsed operation, respectively (100 mA, 300 K).

Journal ArticleDOI
TL;DR: In this paper, the optical properties characteristic of the quantum size ZnO particles were investigated and the band-to-band and visible photoluminescence were progressively blue shifted with decreasing particle size in the film.
Abstract: Thin films of quantum size ZnO particles were fabricated by electrophoretic deposition from stable colloidal suspensions. The average particle size and hence the optical properties can be tailored by controlling the aging time and temperature of the suspensions. Thin films prepared by electrophoretic deposition exhibit optical properties characteristic of the quantum size particles. Both the band-to-band and visible photoluminescence were progressively blue shifted with decreasing particle size in the film.

Journal ArticleDOI
TL;DR: In this paper, a non-destructive mechanoluminescence (ML) from SrAl2O4:Eu was used to visualize the stress distribution in a single image, which can emit three magnitudes higher visible light than that of well-known ML substance of quartz.
Abstract: Visualization of stress distribution has been realized by a nondestructive mechanoluminescence (ML) from SrAl2O4:Eu, which can emit three magnitudes higher visible light than that of well-known ML substance of quartz. A simulation result confirms that such a ML image successfully reflects the stress distribution. A kinetic model for ML of SrAl2O4:Eu is proposed.

Journal ArticleDOI
TL;DR: In this article, single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties.
Abstract: Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ∼90%, ∼150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

Journal ArticleDOI
TL;DR: In this article, the growth of freestanding carbon nanotubes on submicron nickel dot(s) on silicon has been achieved by plasmaenhanced-hot-filamentchemical-vapor deposition (PE-HF-CVD).
Abstract: Patterned growth of freestanding carbon nanotube(s) on submicron nickel dot(s) on silicon has been achieved by plasma-enhanced-hot-filament-chemical-vapor deposition (PE-HF-CVD). A thin film nickel grid was fabricated on a silicon wafer by standard microlithographic techniques, and the PE-HF-CVD was done using acetylene (C2H2) gas as the carbon source and ammonia (NH3) as a catalyst and dilution gas. Well separated, single carbon nanotubes were observed to grow on the grid. The structures had rounded base diameters of approximately 150 nm, heights ranging from 0.1 to 5 μm, and sharp pointed tips. Transmission electron microscopy cross-sectional image clearly showed that the structures are indeed hollow nanotubes. The diameter and height depend on the nickel dot size and growth time, respectively. This nanotube growth process is compatible with silicon integrated circuit processing. Using this method, devices requiring freestanding vertical carbon nanotube(s) such as scanning probe microscopy, field emissi...