scispace - formally typeset
Search or ask a question

Showing papers in "Applied Sciences in 2015"


Journal ArticleDOI
TL;DR: In this article, the authors focus on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2, and review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode locking fiber lasers.
Abstract: Two-dimensional (2D) nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

191 citations


Journal ArticleDOI
TL;DR: In this article, the influence of non-uniform electric filed on Fe3O4-Ethylene glycol nanofluid hydrothermal treatment in an enclosure with sinusoidal upper and moving lower walls is investigated.
Abstract: The influence of non-uniform electric filed on Fe3O4-Ethylene glycol nanofluid hydrothermal treatment in an enclosure with sinusoidal upper and moving lower walls is investigated in this study. Control Volume based Finite Element Method (CVFEM) is utilized to simulate in the presented model. Numerical investigation are conducted for the sundry parameters such as Reynolds number; nanoparticle volume fraction and supplied. Results show that supplied voltage can change the flow shape. Coulomb force causes isotherms denser near the moving wall. Heat transfer rises with augment of supplied voltage and Reynolds number. Effect of electric filed on heat transfer is more pronounced at low Reynolds number. Finally, a comparison with the existing literature is also made.

152 citations


Journal ArticleDOI
TL;DR: The simulations show that the proposed algorithms provide with the best optimal results with a fast convergence rate, as compared to the existing techniques.
Abstract: In this paper, we propose mathematical optimization models of household energy units to optimally control the major residential energy loads while preserving the user preferences. User comfort is modelled in a simple way, which considers appliance class, user preferences and weather conditions. The wind-driven optimization (WDO) algorithm with the objective function of comfort maximization along with minimum electricity cost is defined and implemented. On the other hand, for maximum electricity bill and peak reduction, min-max regret-based knapsack problem (K-WDO) algorithm is used. To validate the effectiveness of the proposed algorithms, extensive simulations are conducted for several scenarios. The simulations show that the proposed algorithms provide with the best optimal results with a fast convergence rate, as compared to the existing techniques.

109 citations


Journal ArticleDOI
TL;DR: In this article, partial chemical modification of polyvinyl alcohol (PVA) was performed through tosylation followed by azidation, where a good leaving group, azide group and amine group were attached to PVA polymer chains.
Abstract: Partial chemical modification of poly(vinyl alcohol) (PVA) was performed through tosylation followed by azidation. Amine functional PVA was also prepared by grafting propargylamine using click chemistry reaction. Through this approach, a tosyl group (a good leaving group), azide group (a group used in click chemistry) and amine group (a group used for amidation) were attached to PVA polymer chains. The three chemical modifications were performed in water. FTIR and XPS analysis confirmed the chemical modification after each step. Thermogravimetric analysis (TGA) was used to study the thermal stability of the modified PVA.

107 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the recent development of chitosan-based catalysts, particularly in the aspects of the main mechanisms for preparing the materials and their applications in environmental green chemistry.
Abstract: Chitosan, a bio-based polymer which has similar characteristics to those of cellulose, exhibits cationic behavior in acidic solutions and strong affinity for metals ions. Thus, it has received increased attention for the preparation of heterogeneous catalysts. Recent studies demonstrated that chitosan-based catalysts had high sorption capacities, chelating activities, stability and versatility, which could be potentially applied as green reactants in various scientific and engineering applications. This study intends to review the recent development of chitosan-based catalysts, particularly in the aspects of the main mechanisms for preparing the materials and their applications in environmental green chemistry. Studies on the preparation of catalyst nanoparticles/nanospheres supported on chitosan were also reviewed.

102 citations


Journal ArticleDOI
TL;DR: In this paper, four transition metal oxides (V2O5, MoO3, WO3 and ReO3) were thermally evaporated as front p-type contacts in planar n-type crystalline silicon heterojunction solar cells.
Abstract: During the last decade, transition metal oxides have been actively investigated as hole- and electron-selective materials in organic electronics due to their low-cost processing. In this study, four transition metal oxides (V2O5, MoO3, WO3, and ReO3) with high work functions (>5 eV) were thermally evaporated as front p-type contacts in planar n-type crystalline silicon heterojunction solar cells. The concentration of oxygen vacancies in MoO3−x was found to be dependent on film thickness and redox conditions, as determined by X-ray Photoelectron Spectroscopy. Transfer length method measurements of oxide films deposited on glass yielded high sheet resistances (~109 Ω/sq), although lower values (~104 Ω/sq) were measured for oxides deposited on silicon, indicating the presence of an inversion (hole rich) layer. Of the four oxide/silicon solar cells, ReO3 was found to be unstable upon air exposure, while V2O5 achieved the highest open-circuit voltage (593 mV) and conversion efficiency (12.7%), followed by MoO3 (581 mV, 12.6%) and WO3 (570 mV, 11.8%). A short-circuit current gain of ~0.5 mA/cm2 was obtained when compared to a reference amorphous silicon contact, as expected from a wider energy bandgap. Overall, these results support the viability of a simplified solar cell design, processed at low temperature and without dopants.

89 citations


Journal ArticleDOI
TL;DR: In this paper, the properties of composites that different carbon materials with different measurements can reinforce are examined using a melt compounding method, which combines polypropylene and graphene nano-sheets (GNs) or carbon fiber (CF) to make PP/GNs and PP/CF conductive composites, respectively.
Abstract: This study aims to examine the properties of composites that different carbon materials with different measurements can reinforce. Using a melt compounding method, this study combines polypropylene (PP) and graphene nano-sheets (GNs) or carbon fiber (CF) to make PP/GNs and PP/CF conductive composites, respectively. The DSC results and optical microscopic observation show that both GNs and CF enable PP to crystalize at a high temperature. The tensile modulus of PP/GNs and PP/CF conductive composites remarkably increases as a result of the increasing content of conductive fillers. The tensile strength of the PP/GNs conductive composites is inversely proportional to the loading level of GNs. Containing 20 wt% of GNs, the PP/GNs conductive composites have an optimal conductivity of 0.36 S/m and an optimal EMI SE of 13 dB. PP/CF conductive composites have an optimal conductivity of 10−6 S/m when composed of no less than 3 wt% of CF, and an optimal EMI SE of 25 dB when composed of 20 wt% of CF.

83 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the heat transfer in the flow of water-based nanofluids in a channel with non-parallel stretchable walls, and the influence of the emerging parameters on the velocity and temperature profiles was highlighted with the help of graphs coupled with comprehensive discussions.
Abstract: This article is dedicated to analyzing the heat transfer in the flow of water-based nanofluids in a channel with non-parallel stretchable walls. The magnetohydrodynamic (MHD) nature of the flow is considered. Equations governing the flow are transformed into a system of nonlinear ordinary differential equations. The said system is solved by employing two different techniques, the variational iteration method (VIM) and the Runge-Kutta-Fehlberg method (RKF). The influence of the emerging parameters on the velocity and temperature profiles is highlighted with the help of graphs coupled with comprehensive discussions. A comparison with the already existing solutions is also made, which are the special cases of the current problem. It is observed that the temperature profile decreases with an increase in the nanoparticle volume fraction. Furthermore, a magnetic field can be used to control the possible separation caused by the backflows in the case of diverging channels. The effects of parameters on the skin friction coefficient and Nusselt number are also presented using graphical aid. The nanoparticle volume fraction helps to reduce the temperature of the channel and to enhance the rate of heat transfer at the wall.

78 citations


Journal ArticleDOI
TL;DR: An overview of the latest developments of kilowatt-level diode pumped solid state lasers for advanced applications at the HiLASE Centre is presented in this paper, where the beamlines are based on Yb:YAG thin-disk amplifiers and chirped pulse amplification.
Abstract: An overview of the latest developments of kilowatt-level diode pumped solid state lasers for advanced applications at the HiLASE Centre is presented. An overview of subcontracted and in-house-developed laser beamlines is presented. The aim of development is to build kW-class beamlines delivering picosecond pulses between 1- and 100-kHz repetition rates and high-energy nanosecond pulses at 10 Hz. The picosecond beamlines are based on Yb:YAG thin-disk amplifiers and chirped pulse amplification. The current status of the beamlines’ performance is reported. The advantages of zero-phonon line and pulsed pumping are demonstrated with respect to efficiency, thin disk temperature and beam quality. New diagnostics methods supporting the high average power lasers’ development, such as the high-resolution spectroscopy of Yb-doped materials, in situ thin disk deformation measurements, single-shot M2 measurement, realization of wavefront correction by a deformable mirror and the laser performance of a new mixed garnet ceramics, are described. The energetic, thermal and fluid-mechanical numerical modeling for the optimization of the multi-slab amplifiers is also described.

71 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed an alternative recentering device characterized by smart structures, which mitigate the damage for such steel energy dissipation slit dampers, by implementing superelastic shape memory alloy (SMA) bending bars in parallel motion with the steel energy-dissipating damper.
Abstract: Although the steel slit dampers commonly utilized for aseismic design approach can dissipate considerable energy created by the yielding of base materials, large residual deformation may happen in the entire frame structure. After strong external excitation, repair costs will be incurred in restoring a structure to its original condition and to replace broken components. For this reason, alternative recentering devices characterized by smart structures, which mitigate the damage for such steel energy dissipation slit dampers, are developed in this study. These devices, feasibly functioning as seismic restrainers, can be improved by implementing superelastic shape memory alloy (SMA) bending bars in a parallel motion with the steel energy-dissipating damper. The bending bars fabricated with superelastic SMAs provide self-centering forces upon unloading, and accordingly contribute to reducing permanent deformation in the integrated slit damper system. The steel slit dampers combined with the superelastic SMA bending bars are evaluated with respect to inelastic behavior as simulated by refined finite element (FE) analyses. The FE slit damper models subjected to cyclic loads are calibrated to existing test results in an effort to predict behavior accurately. The responses of the proposed slit damper systems are compared to those of the conventionally used slit damper systems. From the analysis results, it is concluded that innovative steel slit dampers combined with superelastic SMA bending bars generate remarkable performance improvements in terms of post-yield strength, energy dissipation, and recentering capability.

70 citations


Journal ArticleDOI
TL;DR: The relationship between HCI/affective computing and the emotions affected by light and color are introduced in first place and the color models generally used in affective computing are briefly described.
Abstract: Light and color are ubiquitous environmental factors which have an influence on the human being. Hence, light and color issues have to be considered especially significant in human-computer interaction (HCI) and fundamental in affective computing. Affective computing is an interdisciplinary research field which aims to integrate issues dealing with emotions and computers. As a consequence, it seems important to provide an updated review on the significance of light and color in affective computing. With this purpose, the relationship between HCI/affective computing and the emotions affected by light and color are introduced in first place. So far, there is a considerable number of studies and experiments that offer empirical results on the topic. In addition, the color models generally used in affective computing are briefly described. The review on the usage of color and light in affective computing includes a detailed study of the characteristics of methods and the most recent research trends. The paper is complemented with the study of the importance of light and color from demographic, gender and cultural perspectives.

Journal ArticleDOI
TL;DR: In this article, the authors describe a fiber Raman laser cladding-pumped directly by diodes, achieving 20 W of laser output power with a record slope efficiency of 80%.
Abstract: We describe novel fiber Raman lasers pumped directly by spectrally combined high power multimode laser diodes at ~975 nm and emitting at ~1019 nm. With a commercial multimode graded-index fiber, we reached 20 W of laser output power with a record slope efficiency of 80%. With an in-house double-clad fiber, the beam quality improved to M2 = 1.9, albeit with lower output power and slope efficiency due to higher fiber loss. We believe this is the first publication of a fiber Raman laser cladding-pumped directly by diodes.

Journal ArticleDOI
TL;DR: In this article, a novel piezoelectric energy harvester equipped with two PAs and two cylinders was proposed, which can convert the kinetic energy of water into electrical energy by means of vortex induced vibration (VIV) and wake-induced vibration (WIV).
Abstract: A novel piezoelectric energy harvester equipped with two piezoelectric beams and two cylinders was proposed in this work. The energy harvester can convert the kinetic energy of water into electrical energy by means of vortex-induced vibration (VIV) and wake-induced vibration (WIV). The effects of load resistance, water velocity and cylinder diameter on the performance of the harvester were investigated. It was found that the vibration of the upstream cylinder was VIV which enhanced the energy harvesting capacity of the upstream piezoelectric beam. As for the downstream cylinder, both VIV and the WIV could be obtained. The VIV was found with small L/D, e.g., 2.125, 2.28, 2.5, and 2.8. Additionally, the WIV was stimulated with the increase of L/D (such as 3.25, 4, and 5.5). Due to the WIV, the downstream beam presented better performance in energy harvesting with the increase of water velocity. Furthermore, it revealed that more electrical energy could be obtained by appropriately matching the resistance and the diameter of the cylinder. With optimal resistance (170 kΩ) and diameter of the cylinder (30 mm), the maximum output power of 21.86 μW (sum of both piezoelectric beams) was obtained at a water velocity of 0.31 m/s.

Journal ArticleDOI
TL;DR: This paper presents the design and implementation of an IoT access point that supports functionalities of coordination of various wireless transmission protocols and embedded a ZigBee module and implemented ZigBee and UPnP protocols into the designed IoTaccess point, which supports ZigBee communication capabilities over the Internet.
Abstract: Network communication and micro-electro-mechanical embedded technologies have attracted much attention in recent years. Through these technologies, the capabilities of sensing, identification, and communication can be embedded in various smart devices. These smart devices can automatically connect to the Internet and form an intelligent network called Internet of Things (IoT). However, these devices are embedded with different wireless communication interfaces such as Wi-Fi and ZigBee. This paper presents the design and implementation of an IoT access point that supports functionalities of coordination of various wireless transmission protocols. Based on the existing Wi-Fi access point, we have embedded a ZigBee module and implemented ZigBee and UPnP protocols into the designed IoT access point, which supports ZigBee communication capabilities over the Internet.

Journal ArticleDOI
TL;DR: This paper investigates the state-of-the-art smart grid information subsystem, communication infrastructure and its emerging trends and potentials, called anSDN-enabled smart grid, and presents an abstract business model, candidate SDN applications and common architecture of the SDN- enabled smart grid.
Abstract: Context and situational awareness are key features and trends of the smart grid and enable adaptable, flexible and extendable smart grid services. However, the traditional hardware-dependent communication infrastructure is not designed to identify the flow and context of data, and it focuses only on packet forwarding using a pre-defined network configuration profile. Thus, the current network infrastructure may not dynamically adapt the various business models and services of the smart grid system. To solve this problem, software-defined networking (SDN) is being considered in the smart grid, but the design, architecture and system model need to be optimized for the smart grid environment. In this paper, we investigate the state-of-the-art smart grid information subsystem, communication infrastructure and its emerging trends and potentials, called an SDN-enabled smart grid. We present an abstract business model, candidate SDN applications and common architecture of the SDN-enabled smart grid. Further, we compare recent studies into the SDN-enabled smart grid depending on its service functionalities, and we describe further challenges of the SDN-enabled smart grid network infrastructure.

Journal ArticleDOI
TL;DR: Results show that the proposed modified feature selection and modified ANN (m(FS + ANN))-based model for SGs is able to capture the non-linearity(ies) in the history load curve with 97 .
Abstract: In the operation of a smart grid (SG), day-ahead load forecasting (DLF) is an important task. The SG can enhance the management of its conventional and renewable resources with a more accurate DLF model. However, DLF model development is highly challenging due to the non-linear characteristics of load time series in SGs. In the literature, DLF models do exist; however, these models trade off between execution time and forecast accuracy. The newly-proposed DLF model will be able to accurately predict the load of the next day with a fair enough execution time. Our proposed model consists of three modules; the data preparation module, feature selection and the forecast module. The first module makes the historical load curve compatible with the feature selection module. The second module removes redundant and irrelevant features from the input data. The third module, which consists of an artificial neural network (ANN), predicts future load on the basis of selected features. Moreover, the forecast module uses a sigmoid function for activation and a multi-variate auto-regressive model for weight updating during the training process. Simulations are conducted in MATLAB to validate the performance of our newly-proposed DLF model in terms of accuracy and execution time. Results show that our proposed modified feature selection and modified ANN (m(FS + ANN))-based model for SGs is able to capture the non-linearity(ies) in the history load curve with 97 . 11 % accuracy. Moreover, this accuracy is achieved at the cost of a fair enough execution time, i.e., we have decreased the average execution time of the existing FS + ANN-based model by 38 . 50 % .

Journal ArticleDOI
TL;DR: Parkins and co-workers in 1995 as discussed by the authors, is the most versatile catalyst currently available for the hydration of C≡N bonds, features remarkable activity under relatively mild conditions and exceptionally high functional group compatibility, facts that have allowed the implementation of this complex in the synthesis of a large number of structurally complex, biologically active molecules and natural products.
Abstract: The air-stable hydride-platinum(II) complex [PtH{(PMe2O)2H}(PMe2OH)], reported by Parkins and co-workers in 1995, is the most versatile catalyst currently available for the hydration of C≡N bonds. It features remarkable activity under relatively mild conditions and exceptionally high functional group compatibility, facts that have allowed the implementation of this complex in the synthesis of a large number of structurally complex, biologically active molecules and natural products. In this contribution, synthetic applications of the Parkins catalyst are reviewed.

Journal ArticleDOI
TL;DR: In this article, the authors propose to concatenate elementary organic and organometallic steps to novel sequences in the sense of one-pot domino and multicomponent reactions.
Abstract: Sequentially Pd-catalyzed processes are excellent entries to heterocycle synthesis. The broad mechanistic variety combined with often very mild reaction conditions allow the concatenation of elementary organic and organometallic steps to novel sequences in the sense of one-pot domino and multicomponent reactions. Given the numerous opportunities of alkyne coordination and their Pd-mediated transformations, alkynylation and carbometallation play a key role, both for purely organometallic sequences as well as in those processes that are intercepted by cyclocondensation. Pd-catalyzed aminations also find more and more entry into novel heterocycle syntheses based upon this theme.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the recent advances and the future perspectives in relation to cancer screening applications, focussing on cervical and oral cancer, and discuss the potential of IR and Raman spectroscopy together with multivariate statistical analysis techniques for the detection of a variety of cancers.
Abstract: Vibrational spectroscopy analyses vibrations within a molecule and can be used to characterise a molecular structure. Raman spectroscopy is one of the vibrational spectroscopic techniques, in which incident radiation is used to induce vibrations in the molecules of a sample, and the scattered radiation may be used to characterise the sample in a rapid and non-destructive manner. Infrared (IR) spectroscopy is a complementary vibrational spectroscopic technique based on the absorption of IR radiation by the sample. Molecules absorb specific frequencies of the incident light which are characteristic of their structure. IR and Raman spectroscopy are sensitive to subtle biochemical changes occurring at the molecular level allowing spectral variations corresponding to disease onset to be detected. Over the past 15 years, there have been numerous reports demonstrating the potential of IR and Raman spectroscopy together with multivariate statistical analysis techniques for the detection of a variety of cancers including, breast, lung, brain, colon, oral, oesophageal, prostate and cervical cancer. This paper discusses the recent advances and the future perspectives in relation to cancer screening applications, focussing on cervical and oral cancer.

Journal ArticleDOI
TL;DR: This paper proposes a new method for assessing the vulnerability of power systems based on the controllability theories of complex networks, which can not only effectively reveal the important nodes but also maintain full control of the power systems.
Abstract: This paper proposes a new method for assessing the vulnerability of power systems based on the controllability theories of complex networks. A novel controllability index is established, taking into consideration the full controllability of the power systems, for identifying critical nodes. The network controllability model is used to calculate the minimum number of driver nodes (ND), which can solve the computable problems of the controllability of power systems. The proposed approach firstly applies the network controllability theories to research the power systems' vulnerability, which can not only effectively reveal the important nodes but also maintain full control of the power systems. Meanwhile, the method can also overcome the limitation of the hypothesis that the weight of each link or transmission line must be known compared with the existing literature. In addition, the power system is considered as a directed network and the power system model is also redefined. The proposed methodology is then used to identify critical nodes of the IEEE 118 and 300 bus system. The results show that the failure of the critical nodes can clearly increase ND and lead a significant driver node shift. Thus, the rationality and validity are verified.

Journal ArticleDOI
TL;DR: In this paper, the structure of synthesized triangular colloidal silver nanoplates in solution and the growth of the nanoplate on a silicon surface using 3-aminopropyltrimethoxysilane (APTMS) as a coupling agent were studied.
Abstract: In this work, we studied the structure of synthesized triangular silver nanoplates in solution and the growth of the nanoplates on a silicon surface using 3-aminopropyltrimethoxysilane (APTMS) as a coupling agent. The triangular-shaped colloidal silver nanoplates were simply synthesized by a direct chemical reduction approach. We studied the three characteristic peaks of the unique optical absorbance of triangular silver nanoplates and subsequently measured an average edge length of 26 ± 1 nm. The nanoplate thickness was determined to be 7 ± 2 nm from transmission electron microscopy images. Depositing the nanoplates on a silicon surface was carried out to determine the coverage of triangular nanoplates obtained when adhesion was promoted by a coupling agent. The APTMS film assisted the attachment of the nanoplates to the silicon surface and the coverage of the nanoplates increased with increasing deposition time. The triangular silver nanoplate thin film was a monolayer and a high coverage (near complete) was obtained after eight hours of exposure to the nanoplate solution. The silver film formed was shown to be a good surface-enhanced Raman scattering (SERS) substrate as it gave an enormous Raman enhancement for bisphenol A (BPA).

Journal ArticleDOI
TL;DR: In this paper, a solenoid actuator with a ferromagnetic plunger was developed to generate both rectilinear and turning motions of a multi-segmented robot.
Abstract: We develop a solenoid actuator with a ferromagnetic plunger to generate both rectilinear and turning motions of a multi-segmented robot. Each segment of the miniaturized robot is actuated by a pair of solenoids, and in-phase and out-of-phase actuations of the solenoid pair cause the linear and turning motions. The theoretical analysis on the actuation force by the solenoid with the magnetic plunger is implemented based on the Biot-Savart law. The optimal design parameters of the solenoid are determined to actuate a segmented body. We manufacture the miniaturized robot consisting of two segments and a pair of solenoids. Experiments are performed to measure the linear and angular displacements of the two-segmented robot for various frictional conditions.

Journal ArticleDOI
TL;DR: In this article, the optimum parameters of secondary optical elements (SOEs) for concentrated photovoltaic (CPV) units with flat Fresnel lenses were determined by parametric design process, and the resulting optical performance of the CPV unit with the optimum SOE was evaluated in both singlewavelength and broadband simulation of solar spectrum.
Abstract: The goal of this presented study was to determine the optimum parameters of secondary optical elements (SOEs) for concentrated photovoltaic (CPV) units with flat Fresnel lenses. Three types of SOEs are under consideration in the design process, including kaleidoscope with equal optical path design (KOD), kaleidoscope with flat top surface (KFTS), and open-truncated tetrahedral pyramid with specular walls (SP). The function of using a SOE with a Fresnel lens in a CPV unit is to achieve high optical efficiency, low sensitivity to the sun tracking error, and improved uniformity of irradiance distribution on the solar cell. Ray tracing technique was developed to simulate the optical characteristics of the CPV unit with various design parameters of each type of SOE. Finally, an optimum KOD-type SOE was determined by parametric design process. The resulting optical performance of the CPV unit with the optimum SOE was evaluated in both single-wavelength and broadband simulation of solar spectrum.

Journal ArticleDOI
TL;DR: In this article, the authors present the current status of carrier-envelope offset (CEO) frequency-stabilized DPSSLs based on various approaches and operating in different wavelength regimes.
Abstract: Optical frequency combs have been revolutionizing many research areas and are finding a growing number of real-world applications. While initially dominated by Ti:Sapphire and fiber lasers, optical frequency combs from modelocked diode-pumped solid-state lasers (DPSSLs) have become an attractive alternative with state-of-the-art performance. In this article, we review the main achievements in ultrafast DPSSLs for frequency combs. We present the current status of carrier-envelope offset (CEO) frequency-stabilized DPSSLs based on various approaches and operating in different wavelength regimes. Feedback to the pump current provides a reliable scheme for frequency comb CEO stabilization, but also other methods with faster feedback not limited by the lifetime of the gain material have been applied. Pumping DPSSLs with high power multi-transverse-mode diodes enabled a new class of high power oscillators and gigahertz repetition rate lasers, which were initially not believed to be suitable for CEO stabilization due to the pump noise. However, this challenge has been overcome, and recently both high power and gigahertz DPSSL combs have been demonstrated. Thin disk lasers have demonstrated the highest pulse energy and average power emitted from any ultrafast oscillator and present a high potential for the future generation of stabilized frequency combs with hundreds of watts average output power.

Journal ArticleDOI
TL;DR: In this article, the microwave assisted conversion of levulinic acid (LA) has been studied using low-loaded supported Fe-based catalysts on porous silicates, with moderate LA conversion achieved in the case of non-noble metal-based iron oxide catalysts, with a significant potential for further improvements to compete with noble metal based catalysts.
Abstract: The microwave-assisted conversion of levulinic acid (LA) has been studied using low-loaded supported Fe-based catalysts on porous silicates. A very simple, productive, and highly reproducible continuous flow method has been used for the homogeneous deposition of metal oxide nanoparticles on the silicate supports. Formic acid was used as a hydrogen donating agent for the hydrogenation of LA to effectively replace high pressure H2 mostly reported for LA conversion. Moderate LA conversion was achieved in the case of non-noble metal-based iron oxide catalysts, with a significant potential for further improvements to compete with noble metal-based catalysts.

Journal ArticleDOI
TL;DR: In this article, an auralizator for pass-bys of accelerating passenger cars is described, where the sound propagation is simulated by applying a series of time-variant digital filters.
Abstract: While the technique of auralization has been in use for quite some time in architectural acoustics, the application to environmental noise has been discovered only recently. With road traffic noise being the dominant noise source in most countries, particular interest lies in the synthesis of realistic pass-by sounds. This article describes an auralizator for pass-bys of accelerating passenger cars. The key element is a synthesizer that simulates the acoustical emission of different vehicles, driving on different surfaces, under different operating conditions. Audio signals for the emitted tire noise, as well as the propulsion noise are generated using spectral modeling synthesis, which gives complete control of the signal characteristics. The sound of propulsion is synthesized as a function of instantaneous engine speed, engine load and emission angle, whereas the sound of tires is created in dependence of vehicle speed and emission angle. The sound propagation is simulated by applying a series of time-variant digital filters. To obtain the corresponding steering parameters of the synthesizer, controlled experiments were carried out. The tire noise parameters were determined from coast-by measurements of passenger cars with idling engines. To obtain the propulsion noise parameters, measurements at different engine speeds, engine loads and emission angles were performed using a chassis dynamometer. The article shows how, from the measured data, the synthesizer parameters are calculated using audio signal processing.

Journal ArticleDOI
TL;DR: It is expected that the technique and models that integrate the transcriptor can provide support for the development of robot-assisted language learning activities for children and young adults.
Abstract: Within the context of service robotics (SR), the development of assistive technologies has become an important research field. However, the accomplishment of assistive tasks requires precise and fine control of the mechanic systems that integrate the robotic entity. Among the most challenging tasks in robot control, the handwriting task (transcription) is of particular interest due to the fine control required to draw single and multiple alphabet characters to express words and sentences. For language learning activities, robot-assisted speech transcription can motivate the student to practice pronunciation and writing tasks in a dynamic environment. Hence, this paper is aimed to provide the techniques and models to accomplish accurate robot-assisted transcription of Spanish speech. The transcriptor is integrated by a multi-user speech recognizer for continuous speech and the kinematic models for the Mexican Spanish alphabet characters. The Bioloid system with the standard humanoid configuration and no special modifications or tools was considered for implementation. Particularly, the proposed transcriptor could perform the handwriting task with the Bioloid’s two two DOF (degrees-of-freedom) arms. This enabled writing of one-line short and long sentences with small alphabet characters (width <1.0 cm). It is expected that the technique and models that integrate the transcriptor can provide support for the development of robot-assisted language learning activities for children and young adults.

Journal ArticleDOI
TL;DR: This paper presents an application of optical word recognition and fuzzy control to a smartphone automatic test system and the proposed control scheme allows the robot arm to perform different assigned test functions successfully.
Abstract: This paper presents an application of optical word recognition and fuzzy control to a smartphone automatic test system. The system consists of a robot arm and two webcams. After the words from the control panel that represent commands are recognized by the robot system, the robot arm performs the corresponding actions to test the smartphone. One of the webcams is utilized to capture commands on the screen of the control panel, the other to recognize the words on the screen of the tested smartphone. The method of image processing is based on the Red-Green-Blue (RGB) and Hue-Saturation-Luminance (HSL) color spaces to reduce the influence of light. Fuzzy theory is used in the robot arm’s position control. The Optical Character Recognition (OCR) technique is applied to the word recognition, and the recognition results are then checked by a dictionary process to increase the recognition accuracy. The camera which is used to recognize the tested smartphone also provides object coordinates to the fuzzy controller, then the robot arm moves to the desired positions and presses the desired buttons. The proposed control scheme allows the robot arm to perform different assigned test functions successfully.

Journal ArticleDOI
TL;DR: In this article, different concentrations of Cu ion (1, 2, 5 and 10 wt %) were doped in the TiO2 film by a sol-gel method and dip coating process.
Abstract: In the present work, different concentrations of Cu ion (1, 2, 5 and 10 wt %) were doped in the TiO2 film by a sol-gel method and dip coating process. The morphology of the Cu-doped TiO2 films were characterized by scanning electron microscopy (SEM) and the results showed that the doped Cu made no change to the TiO2 films. The nitric oxide (NO) release experiment showed that these Cu-doped surfaces showed the ability of catalytic decomposition of exogenous donor S-nitroso-N-acetyl-penicillamine (SNAP) to generate (NO). Based on fluorescence analysis and CCK-8 quantitative results, such films had the ability to inhibit smooth muscle cells adhesion, proliferation and migration with SNAP in vitro. The macrophage adhesion assay and anti-bacterial test proved that such Cu-doped TiO2 films also possessed anti-inflammatory and anti-bacterial abilities. All the abilities above showed positive correlation with the amounts of the doped Cu. This study suggested that the Cu-doped TiO2 films were capable of generating physiological levels of NO in the presence of endogenous donor S-nitrosothiols (RSNO), endowing the TiO2 films with anti-hyperplasia, anti-inflammatory and anti-bacterial abilities.

Journal ArticleDOI
TL;DR: In this article, the aging detection of three way catalysts with a microwave cavity perturbation method was conducted, and two physico-chemical effects correlate with the aging state.
Abstract: Initial studies on aging detection of three way catalysts with a microwave cavity perturbation method were conducted. Two physico-chemical effects correlate with the aging state. At high temperatures, the resonance frequencies for oxidized catalysts (λ = 1.02) are not influenced by aging, but are significantly affected by aging in the reduced case (λ = 0.98). The catalyst aging state can therefore potentially be inferred from the resonance frequency differences between reduced and oxidized states or from the resonance frequency amplitudes during lambda oscillations. Secondly, adsorbed water at low temperatures strongly affects the resonance frequencies. Light-off experiment studies showed that the resonance frequency depends on the aging state at temperatures below the oxygen storage light-off. These differences were attributed to different water sorption capabilities of differently aged samples due to a surface area decrease with proceeding aging. In addition to the aging state, the water content in the feed gas and the temperature affect the amount of adsorbed water, leading to different integral electrical material properties of the catalyst and changing the resonance properties of the catalyst-filled canning. The classical aging-related properties of the catalyst (oxygen storage capacity, oxygen storage light-off, surface area), agreed very well with data obtained by the microwave-based method.