scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Microbiology in 2019"


Journal ArticleDOI
TL;DR: It can be concluded that EOs inhibit the growth of fungi of the genus Fusarium and reduce concentration levels of the mycotoxins zearalenone and group B trichothecenes.
Abstract: Essential oils (EOs) are products of plant origin and include mixtures of different chemical compounds. These volatile substances have many interesting properties, including antifungal properties. Fungi may develop under field conditions on crops such as wheat or corn and are able to synthesize mycotoxins, which adversely affect livestock and human health. In the present study, selected EOs were used to inhibit the growth of Fusarium graminearum and F. culmorum and reduce the concentrations of mycotoxins in wheat grain. The EOs significantly inhibited the growth of tested Fusarium species (90.99–99.99%), as determined based on ergosterol quantitative analysis. Only the addition of orange oil to F. culmorum exhibits a different inhibition capacity (68.13%). EO application resulted in a large reduction in zearalenone content (99.08–99.99%); only in the case of orange oil application was the reduction estimated at approximately 68.33%. However, all EOs provided a significant reduction in the concentration levels of group B trichothecenes (94.51–100%). It can be concluded that EOs inhibit the growth of fungi of the genus Fusarium and reduce concentration levels of the mycotoxins zearalenone and group B trichothecenes.

56 citations


Journal ArticleDOI
TL;DR: H2S concentrations toxicity toward Desulfovibrio, especially the study novelty should be emphasized where it was found that the exact H2S limits (> 4 mM) toward this bacterial strain inhabiting humans and animals intestine are found.
Abstract: Sulfate-reducing bacteria (SRB) belonging to the intestinal microbiota are the main producers of hydrogen sulfide and their increasing amount due to the accumulation of this compound in the bowel are involved in the initiation and maintenance of inflammatory bowel disease. The purpose of this experiment is to study the relative toxicity of hydrogen sulfide and survival of Desulfovibrio piger Vib-7 through monitoring: sulfate reduction parameters (sulfate consumption, hydrogen sulfide production, lactate consumption and acetate production) and kinetic parameters of these processes. The research is highlighting the survival of intestinal SRB, D. piger Vib-7 under the influence of different hydrogen sulfide concentrations (1-7 mM). The highest toxicity of H2S was measured in the presence of concentrations higher than 6 mM, where growing was stopped, though metabolic activities were not 100% inhibited. These findings are confirmed by cross correlation and principal component analysis that clearly supported the above mentioned results. The kinetic parameters of bacterial growth and sulfate reduction were inhibited proportionally with increasing H2S concentration. The presence of 5 mM H2S resulted in two times longer lag phase and generation time was eight times longer. Maximum rate of growth and hydrogen production was stopped under 4 mM, emphasizing the H2S toxicity concentrations to be 4 mM) toward this bacterial strain inhabiting humans and animals intestine.

54 citations


Journal ArticleDOI
TL;DR: High prevalence of Actinobacteria and antibiotic biosynthesis pathways in the fish gut microbiome indicated its potential for bioprospecting of potentially novel natural antibiotics.
Abstract: Gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. With the presence of 36 phyla, 326 families and 985 genera, the fish gut microbiota was found to be quite diverse in nature. However, at the phylum level, more than three-fourths of gut microbes belonged to Proteobacteria. Very low prevalence of commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) in fish gut suggested the need to search for alternative probiotics for aquaculture use. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy metabolism (4%) and fermentation (2%). In conformity with herbivorous feeding habit of L. rohita, gut microbiome also had pathways for the degradation of cellulose, hemicellulose, chitin, pectin, starch, and other complex carbohydrates. High prevalence of Actinobacteria and antibiotic biosynthesis pathways in the fish gut microbiome indicated its potential for bioprospecting of potentially novel natural antibiotics. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment. The role of ARGs in fish gut microbiome needs further investigations.

47 citations


Journal ArticleDOI
TL;DR: The co-inoculation of A. brasilense and B. japonicum alleviate adverse effects limited by drought stress to the growth of soybeans and improve leaf membrane stability under drought stress conditions; however, this lower damage to cell membranes was not sufficient to maintain the leaf water content of the plant under drought Stress.
Abstract: Harnessing the beneficial potential of plant growth-promoting rhizobacteria may be an alternative strategy to improve plant tolerance to drought stress. The effect of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense either alone or in combination on the plant growth and drought tolerance of soybean [Glycine max (L.) Merrill.] was investigated in this study in greenhouse conditions. Treatments were arranged in a randomized block design in a 3 × 4 factorial: three irrigation regimes [100% of pot capacity—PC (well-watered control), 50% of PC (moderate stress) and 25% of PC (severe stress)] and four inoculation treatments [control (non-inoculated), inoculation with B. japonicum, inoculation with A. brasilense, and co-inoculation with B. japonicum and A. brasilense]. Leaf relative water content, cell membrane stability, root nodulation, plant growth, and morphophysiological indexes were recorded. The inoculation of soybean plants with B. japonicum and A.brasilense either alone or in combination improved leaf membrane stability under drought stress conditions when compared to non-inoculated plants; however, this lower damage to cell membranes was not sufficient to maintain the leaf water content of the plant under drought stress. Plants co-inoculated with B. japonicum and A.brasilense improved the root nodulation under severe drought conditions. Inoculation of B. japonicum and A. brasilense either alone or in combination reduced the pod abortion rate under moderate drought stress, but had no effect under severe drought stress. In summary, the co-inoculation of A. brasilense and B. japonicum alleviate adverse effects limited by drought stress to the growth of soybeans.Author: Please check and confirm that the authors [Elijanara Raissa Silva, Carlos Eduardo Silva Oliveira, Alan Mario Zuffo, Eduardo Pradi Vendruscolo] and their initials have been correctly identified and amend if necessary.The authors were correctly identified.

44 citations


Journal ArticleDOI
TL;DR: This isolate possesses great potential to degrade polyethylene and become an option for LDPE bioremediation.
Abstract: The annual production of plastics has doubled over the past 15 years and, consequently, a large amount of plastic has accumulated in the environment generating ecological problems. In this study, a Paenibacillus sp. isolate was obtained from a landfill from Brazil and it presented the alkane hydroxylase gene (alkB). Weight loss of low-density polyethylene (LDPE) was measured and a significant difference in final weight compared to initial weight was assessed. Some chemical characteristics, such as bond scissions and formation of new functional groups [carboxylic acids (3300–2500 cm−1), esters (1210–1163 cm−1), and ethers (1075–1020 cm−1)], were detected by Fourier-transform infrared spectroscopy. Bacterial colonization on the plastic surface and physical changes, as formation of cracks and pits, was visualized by scanning electron microscopy. This isolate was susceptible to all the antimicrobials tested. Therefore, this isolate possesses great potential to degrade polyethylene and become an option for LDPE bioremediation.

44 citations


Journal ArticleDOI
TL;DR: A deep understanding of the shifts in microbial community and plant polysaccharide deconstructing capabilities of rumen microbiome in response to changes in the feed type and host animal is provided.
Abstract: Rumen microbial community harbors a distinct genetic reservoir of potent carbohydrate-active enzymes (CAZyme) that functions efficiently for the deconstruction of plant biomass. Based on this premise, metagenomics approach was applied to characterize the rumen microbial community and identify carbohydrate-active genes of Bos taurus (cow) and Bubalus bubalis (buffalo) fed on green or dry roughage. Metadata was generated from the samples: green roughage-fed cow (NDC_GR), buffalo (NDB_GR) and dry roughage-fed cow (NDC_DR), buffalo (NDB_DR). Phylogenetic analysis revealed the dominance of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria and Fibrobacter in all the four samples, covering 90–96% of the total bacterial population. On finer resolution, higher abundance of bacterial genera Fibrobacter, Bacteroides, Clostridium, Prevotella and Ruminococcus involved in plant biomass hydrolysis was observed in NDB_DR. Functional annotation using dbCAN annotation algorithm identified 28.13%, 8.08% 10.93% and 12.53% of the total contigs as putatively carbohydrate-active against NDC_GR, NDB_GR, NDC_DR and NDB_DR, respectively. Additional profiling of CAZymes revealed an over representation and diversity of putative glycoside hydrolases (GHs) in the animals fed on dry roughage with substantial enrichments of genes encoding GHs from families GH2, GH3, GH13 and GH43. GHs of families GH45, GH12, GH113, GH128, GH54 and GH27 were observed exclusively in NDB_DR metagenome. A higher abundance of cellulases, hemicellulases, debranching and oligosaccharide hydrolyzing enzymes was revealed in NDB_DR metagenome. Accordingly, it can be concluded that buffalo rumen microbiome are more efficient in plant biomass hydrolysis. The present study provides a deep understanding of the shifts in microbial community and plant polysaccharide deconstructing capabilities of rumen microbiome in response to changes in the feed type and host animal. Activity-specific microbial consortia procured from these animals can be used further for efficient plant biomass hydrolysis. The study also establishes the utility of rumen microbiome as a unique resource for mining diverse lignocellulolytic enzymes.

43 citations


Journal ArticleDOI
TL;DR: It is concluded that the combined effects of PGPR and PGRs have profound effects on the biochemical responses and drought tolerance of wheat grown in sandy soils.
Abstract: The present study was aimed to investigate the effects of plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) on the physiology and yield of wheat grown in less fertile sandy soil. The isolated PGPR strains were identified by 16S-rRNA gene sequencing as Planomicrobium chinense (P1), Bacillus cereus (P2) and Pseudomonas fluorescens (P3). Wheat varieties (Galaxy-13 and Pak-2013) differing in sensitivity to drought were soaked in fresh cultures of bacterial isolates and the PGRs (salicylic acid and putrescine) were sprayed at 150 mg/L on seedlings at three leaf stage. PGPR and PGRs treated plants showed significant increase in the contents of chlorophyll, sugar and protein even under harsh environmental conditions. Drought stress enhanced the production of proline, antioxidant enzymes and lipid peroxidation but a decrease was noted in the biochemical content (i.e. chlorophyll, protein and sugar) of inoculated plants. PGPR inoculation also significantly enhanced the yield parameters (i.e. plant height, spike length, grain yield and weight) and improved the fertility status of sandy soil. The accumulation of macronutrient, total NO3-N and P concentration and soil moisture content of rhizosphere soil was also enhanced by PGPRs inoculation. It is concluded that the combined effects of PGPR and PGRs have profound effects on the biochemical responses and drought tolerance of wheat grown in sandy soils.

42 citations


Journal ArticleDOI
TL;DR: This review will try to unlock one aspect of AMF which is important to achieve global food demand in a sustainable way, the fungal ability to reduce different nutrient losses from the soil system.
Abstract: Arbuscular mycorrhiza fungi's (AMF) role in plant nutrition and stress management is well known, but very few researches and studies have been conducted so far on the fungal ability to reduce different nutrient losses (runoff, leaching and volatilization) from the soil system. This important ecosystem service of AMF had been neglected largely. From the recent findings, it has been confirmed that mycorrhizal symbiosis has potential to check the losses of applied nutrients. The role of soil biota in nutrient cycling is indispensable and determines the nutrient availability to plants. Among these biota, AMF's association with plants is the most prevalent, but the exact mechanisms followed by AMF in nutrient cycling, transformation and reducing nutrient loss ability are still inconclusive. In this review, we will try to unlock this particular aspect of AMF which is important to achieve global food demand in a sustainable way.

41 citations


Journal ArticleDOI
TL;DR: The results obtained indicate that the wild-type P. fluorescens YsS6, but not its mutant defective in ACC deaminase production, increase the nodulation abilities of both alpha- and beta-rhizobia, resulting in an increased leguminous plant growth.
Abstract: Ethylene acts as a major regulator of the nodulation process of leguminous plants. Several rhizobial strains possess the ability to modulate plant ethylene levels through the expression of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase; however, rhizobia present low enzymatic activities. One possible alternative to this problem resides on the use of free-living bacteria, such as Pseudomonas, presenting high levels of ACC deaminase activity that may be used as adjuvants in the nodulation process by decreasing inhibitory ethylene levels. Nevertheless, not much is understood about the specific role of ACC deaminase in the possible role of free-living bacteria as nodulation adjuvants. Therefore, this work aims to study the effect of ACC deaminase in the plant growth-promoting bacterium, Pseudomonas fluorescens YsS6, ability to facilitate alpha- and beta-rhizobia nodulation. The ACC deaminase-producing P. fluorescens YsS6 and its ACC deaminase mutant were used in co-inoculation assays to evaluate their impact in the nodulation process of alpha- (Rhizobium tropici CIAT899) and beta-rhizobia (Cupriavidus taiwanensis STM894) representatives, in Phaseolus vulgaris and Mimosa pudica plants, respectively. The results obtained indicate that the wild-type P. fluorescens YsS6, but not its mutant defective in ACC deaminase production, increase the nodulation abilities of both alpha- and beta-rhizobia, resulting in an increased leguminous plant growth. Moreover, this is the first report of the positive effect of free-living bacteria in the nodulation process of beta-rhizobia. The modulation of inhibitory ethylene levels by free-living ACC deaminase-producing bacteria plays an important role in facilitating the nodulation process of alpha- and beta-rhizobia.

35 citations


Journal ArticleDOI
Yuan Heng1, Min Jung Kim, Hye Jeong Yang, Suna Kang1, Sunmin Park1 
TL;DR: The bacterium Lactobacillus intestinalis efficiently produces equol from not only daidzein but also in chungkookjang, which is a good source of equol for menopausal symptoms and it is synthesized from daidzesin, one of the isoflavonoids in soybeans.
Abstract: Equol improves menopausal symptoms and it is synthesized from daidzein, one of the isoflavonoids in soybeans, by the bacteria in the large intestines of some people. The purpose of this study was to isolate equol-producing bacteria using daidzein from the intestinal microflora and to produce equol-containing chungkookjang (short-term fermented soybean). Equol-producing bacteria from the feces of Sprague–Dawley female rats were isolated using media containing daidzein. The isolated bacteria were cultured in thioglycollate media and equol production was identified through thin-layer chromatography and ultraperformance liquid chromatography–mass spectrometry. The bacteria were identified by 16S rRNA sequencing. The rate of equol production in different concentrations of daidzein was assessed. The expression of genes that code for enzymes associated with the production of equol from daidzein was detected through reverse transcription quantitative PCR. The bacterium we isolated was Lactobacillus intestinalis (LC096206.1, 99%). L. intestinalis was found to express daidzein reductase, dihydrodaidzein reductase, and tetrahydrodaidzein reductase, the enzymes involved in producing equol from daidzein. The conversion rate of equol from daidzein was highest (29.5%) using 200 μM daidzein for 48 h of incubation. When chungkookjang fermented with Bacillus amyloquencies SRCM100001 was incubated with L. intestinalis, 0.32 ± 0.04 mg equol/g chungkookjang was produced. In conclusion, L. intestinalis efficiently produces equol from not only daidzein but also in chungkookjang.

35 citations


Journal ArticleDOI
TL;DR: The heterotrophic bacterium B. amyloliquefaciens MTCC 12716 might, therefore, serve as a potential therapeutic candidate to develop products with wide pharmaceutical applications.
Abstract: The rich diversity of marine macroalgae and their associated bacterial flora represent a potential reservoir of bioactive compounds with valuable biotechnological and pharmaceutical use. Heterotrophic bacteria associated with the intertidal macroalgae were isolated and evaluated for their pharmacological properties using various in vitro models. Among 148 cultivable isolates, more than 50% were dominated by γ-Proteobacteria and Firmicutes, wherein 53 of them showed consistent antibacterial activity against a broad spectrum of clinically significant pathogens. The bacteria were characterized by extensive microbiological, molecular and chemical identification tools. The heterotrophs Bacillus amyloliquefaciens MTCC 12716 and Shewanella algae MTCC 12715 isolated from a red marine macroalga Hypnea valentiae exhibited potential anti-infective properties against multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis (minimum inhibitory concentration of 6.25–12.5 µg/mL). The organic extract of B. amyloliquefaciens displayed significantly greater antioxidative properties (IC90 0.8, P < 0.05) with the inhibitory activities against angiotensin converting enzyme-I, pro-inflammatory cyclooxygenases and 5-lipoxygenase, dipeptidyl peptidase-4 and hydroxymethylglutaryl coenzyme A reductase, which were associated with hypertension, inflammation, diabetes, and hypercholesterolemia, respectively. The applications of nuclear magnetic resonance-based fingerprinting to analyze the characteristic signals in the solvent extracts and to correlate them with the pharmaceutical properties were underlined. The heterotrophic bacterium B. amyloliquefaciens MTCC 12716 might, therefore, serve as a potential therapeutic candidate to develop products with wide pharmaceutical applications.

Journal ArticleDOI
TL;DR: In vivo analysis confirmed the plant growth promotion ability of two strains (Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215) in both sterilized and semi-natural conditions and these two strains may be used to develop an eco-friendly biofertilizer to boost white lupine productivity.
Abstract: The present study aims to characterize nodule endophytic bacteria of spontaneous lupine plants regarding their diversity and their plant growth promoting (PGP) traits. The potential of PGPR inoculation was investigated to improve white lupine growth across controlled, semi-natural and field conditions. Lupinus luteus and Lupinus angustifolius nodules were shown inhabited by a large diversity of endophytes. Several endophytes harbor numerous plant growth promotion traits such as phosphates solubilization, siderophores production and 1-aminocyclopropane-1-carboxylate deaminase activity. In vivo analysis confirmed the plant growth promotion ability of two strains (Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215) in both sterilized and semi-natural conditions. Under field conditions, the co-inoculation of lupine by these strains increased shoot N content and grain yield by 25% and 36%, respectively. These two strains Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215 are effective plant growth-promoting bacteria and they may be used to develop an eco-friendly biofertilizer to boost white lupine productivity.

Journal ArticleDOI
TL;DR: This review gives the insight of psychrophilic enzyme adaptations and their industrial applications.
Abstract: Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.

Journal ArticleDOI
TL;DR: It is concluded that fermentative ammonification by Nir allows for the energetically favorable fermentation of glucose to formate and acetate, which is important for maximization of non-respiratory ATP production during anaerobic growth in the presence of nitrite.
Abstract: Nitrate and nitrite reduction are of paramount importance for nitrogen assimilation and anaerobic metabolism, and understanding the specific roles of each participating reductase is necessary to describe the biochemical balance that dictates cellular responses to their environments. The soluble, cytoplasmic siroheme NADH-nitrite reductase (Nir) in Escherichia coli is necessary for nitrate/nitrite assimilation but has also been reported to either “detoxify” nitrite, or to carry out fermentative ammonification in support of anaerobic catabolism. Theoretically, nitrite detoxification would be important for anaerobic growth on nitrate, during which excess nitrite would be reduced to ammonium. Fermentative ammonification by Nir would be important for maximization of non-respiratory ATP production during anaerobic growth in the presence of nitrite. Experiments reported here were designed to test the potential role of Nir in fermentative ammonification directly by growing E. coli along with mutant strains lacking Nir or the respiratory nitrite reductase (Nrf) under anaerobic conditions in defined media while monitoring nitrogen utilization and fermentation metabolites. To focus on the role of Nir in fermentative ammonification, pH control was used in most experiments to eliminate nitrite toxicity due to nitric acid formation. Our results demonstrate that Nir confers a significant benefit during fermentative growth that reflects fermentative ammonification rather than detoxification. We conclude that fermentative ammonification by Nir allows for the energetically favorable fermentation of glucose to formate and acetate. These results and conclusions are discussed in light of the roles of Nir in other bacteria and in plants.

Journal ArticleDOI
TL;DR: ZK4 degraded lambda-cyhalothrin and deltamethrin, and may serve as a reference for the preparation of future degrading microbial agents to assist with environmental restoration efforts.
Abstract: We examined how Raoultella ornithinolytica-ZK4 degraded pyrethroid pesticides within soil sediment from an abandoned pesticide plant. Lambda-cypermethrin and deltamethrin are two pyrethroid insecticides with high insecticidal activity and a wide range of applications. However, their increased use has raised concerns regarding toxicity and accumulation. We isolated a strain of ZK4 (Raoultella ornithinolytica-ZK4) from soil taken from a channel that surrounded a pesticide plant. We used enzyme localization to study degrading bacteria ZK4. The ZK4 strain underwent intracellular enzyme degradation. The degradation rates of lambda-cyhalothrin and deltamethrin were 55% and 53%, respectively. The optimum pH of the two kinds of pyrethroids in ZK4 was 6.5, and their optimum temperature was 37 °C. The intracellular degradation of the crude enzyme produced by the ZK4 strain had a pH of 6.0–8.0 and a temperature of 20–42 °C. The ZK4 strain genome contained 5310 genes with a total length of 4,864,494 bp. Sugar metabolism and exogenous chemical metabolism accounted for the largest proportion of metabolic activities. We used the clusters of orthologous groups (COG) alignment and found numbers for 4686 protein sequences, accounting for 88.25% of the total predicted protein. ZK4 degraded lambda-cyhalothrin and deltamethrin, and may serve as a reference for the preparation of future degrading microbial agents to assist with environmental restoration efforts.

Journal ArticleDOI
TL;DR: Analysis of metabolic fingerprints of three toluene-degrading bacteria isolated from tannery effluents of Southern Punjab confirmed existence of a unique metabolic pathway that involved conversion of toLUene into intermediates such ascyclohexene, cyclohexane, cyclehexanone and cyclo hexanol.
Abstract: Tanneries are the primary source of toluene pollution in the environment and toluene due to its hazardous effects has been categorized as persistent organic pollutant. Present study was initiated to trace out metabolic fingerprints of three toluene-degrading bacteria isolated from tannery effluents of Southern Punjab. Using selective enrichment and serial dilution methods followed by biochemical, molecular and antibiotic resistance analysis, isolated bacteria were subjected to metabolomics analysis. GC–MS/LC–MS analysis of bacterial metabolites helped to identify toluene transformation products and underlying pathways. Three toluene-metabolizing bacteria identified as Bacillus paralicheniformis strain KJ-16 (IUBT4 and IUBT24) and Brevibacillus agri strain NBRC 15538 (IUBT19) were found tolerant to toluene and capable of degrading toluene. Toluene-degrading potential of these isolates was detected to be IUBT4 (10.35 ± 0.084 mg/h), IUBT19 (14.07 ± 3.14 mg/h) and IUBT24 (11.1 ± 0.282 mg/h). Results of GC–MS analysis revealed that biotransformation of toluene is accomplished not only through known metabolic routes such as toluene 3-monooxygenase (T3MO), toluene 2-monooxygenase (T2MO), toluene 4-monooxygenase (T4MO), toluene methyl monooxygenase (TOL), toluene dioxygenase (Tod), meta- and ortho-ring fission pathways. But additionally, confirmed existence of a unique metabolic pathway that involved conversion of toluene into intermediates such as cyclohexene, cyclohexane, cyclohexanone and cyclohexanol. LC–MS analysis indicated the presence of fatty acid amides, stigmine, emmotin A and 2, 2-dinitropropanol in supernatants of bacterial cultures. As the isolated bacteria transformed toluene into relatively less toxic molecules and thus can be preferably exploited for the eco-friendly remediation of toluene.

Journal ArticleDOI
TL;DR: An effort is made to summarize the exploitation of endophytic bacteria as a biological substitute to control biotic stresses in agricultural practices.
Abstract: Bacterial endophytes are the internal association of bacteria with the plants, cherished whole or any part of their life cycle inside the plant. They are reported to improve plant health against the biotic stresses via de novo synthesis of structural compounds and stimulation of plant immunity. They are found to be vital in development of host resistance against phytopathogens and capable in reducing and elimination of deleterious effects of plant pathogens. Fungal-, bacterial-, viral-, insect- and nematode-associated negative effect can be reduced by the bacterial endophytes. They are also reported to control plant pathogens through several defense mechanisms such as by producing antimicrobial compounds and antibiotics, de novo synthesis of structural compounds, keeping out of pathogens by niche competition and induction of plant immunity or induced systemic resistance. In this review, an effort is made to summarize the exploitation of endophytic bacteria as a biological substitute to control biotic stresses in agricultural practices.

Journal ArticleDOI
TL;DR: The phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado supports the description of the novel species Paraburkholderia guartelaensis sp.
Abstract: A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7–98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA–DNA hybridization revealed a maximum of 55.9% of DNA–DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.

Journal ArticleDOI
TL;DR: Although sediment bacterial abundance was relatively insensitive to metal (metalloid) spill, bacterial richness, diversity and community structure displayed considerable temporal variations.
Abstract: Bacteria are highly abundant in freshwater sediments and play a crucial role in biogeochemical cycling. Bacterial assemblage is known to be sensitive to heavy metal pollution. However, the shift in freshwater sediment bacterial community after a sudden exposure to heavy metal spill remains unknown. The present study explored the impact of metal (metalloid) spill on sediment bacterial community in a freshwater reservoir. Although sediment bacterial abundance was relatively insensitive to metal (metalloid) spill, bacterial richness, diversity and community structure displayed considerable temporal variations. In addition, the proportions of Proteobacteria Chloroflexi, Nitrospirae, Acidobacteria and Bacteroidetes drastically declined, while a significant enrichment of Firmicutes was observed.

Journal ArticleDOI
TL;DR: The proteases from extremophilic bacteria are described and use of biotechnological techniques such as site-directed mutagenesis and codon optimization to engineer enzymes with better hot spots in the active sites to meet industrial challenges are described.
Abstract: Proteases, one of the largest groups of industrial enzymes occupy a major share in detergent industry. To meet the existing demands, proteases with efficient catalytic properties are being explored from bacteria residing in extreme habitats. Alkaline proteases are also considered as promising candidates for industrial sectors due to the activity and stability under alkaline and harsh environment. Therefore, a systematic review on experimental studies of bacterial proteases was conducted with emphasis on purification, characterization, cloning and expression and their suitability as detergent additive. Relevant searches using a combination of filters/keywords were performed in the online databases; PubMed, Science Direct, Scopus and Web of Science. Over thousands of research papers, 71 articles in Scopus, 48 articles in Science Direct, 18 articles in PubMed and 8 articles in Web of Science were selected with regard to bacterial extracellular proteases till date. Selected articles revealed majority of the studies conducted between the years 2015 and 17 and were focused on purification of proteases from bacteria. Among microbes, a total of 41 bacterial genera have been explored with limited studies from extreme habitats. Majority of the studies have reported the involvement of subtilisin-like serine proteases with effective properties for detergent industries. The studies revealed shifting of trend from purification to cloning to genetic engineering to meet the industrial demands. The present systematic review describes the proteases from extremophilic bacteria and use of biotechnological techniques such as site-directed mutagenesis and codon optimization to engineer enzymes with better hot spots in the active sites to meet industrial challenges.

Journal ArticleDOI
TL;DR: Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.
Abstract: In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.

Journal ArticleDOI
TL;DR: The bacteriocin can be used successfully as a preservative to improve the hygienic quality and enhance the shelf life of fish paté in particular and food products in general and can be safely used as a protective culture.
Abstract: This work was aimed to screen bacteriocin-producing LAB from freshwater fish, select a prominent strain and evaluate its safety, characterise the bacteriocin produced, and evaluate its potential to be used as biopreservatives. Isolate 3MT showed the ability to produce bacteriocin-like substances and was identified as Lactococcus lactis subsp. lactis. This strain proved to be free from virulence factors as well as biogenic amine production and antibiotic resistance patterns. The bacteriocin produced displayed high resistance to heat, pH, detergents, and its partial purification led to a 4.35-fold increase in specific activity. Moreover, this bacteriocin showed the ability to inhibit the growth of Vibrio sp. 1T1 in fish pâte stored at 10 °C for 20 days, without altering its sensory properties. The bacteriocin can be used successfully as a preservative to improve the hygienic quality and enhance the shelf life of fish pate in particular and food products in general. Lactococcus lactis subsp. lactis strain 3MT can also be safely used as a protective culture.

Journal ArticleDOI
TL;DR: The current knowledge on the chemistry, genetics, biosynthesis, and incidence and environmental relevance of pantocin A and related histidine-reversible antibiotics produced by Pantoea are reviewed.
Abstract: The genus Pantoea contains a broad range of plant-associated bacteria, including some economically important plant pathogens as well as some beneficial members effective as biological control agents of plant pathogens. The most well-characterized representatives of biological control agents from this genus generally produce one or more antimicrobial compounds adding to biocontrol efficacy. Some Pantoea species evaluated as biocontrol agents for fire blight disease of apple and pear produce a histidine-reversible antibiotic. Three commonly studied histidine-reversible antibiotics produced by Pantoea spp. are herbicolin O, MccEh252, and pantocin A. Pantocin A is a novel ribosomally encoded and post-translationally modified peptide natural product. Here, we review the current knowledge on the chemistry, genetics, biosynthesis, and incidence and environmental relevance of pantocin A and related histidine-reversible antibiotics produced by Pantoea.

Journal ArticleDOI
TL;DR: High-throughput sequencing revealed that crop domestication had a stronger effect on the fungal communities than on the bacterial communities and had improved the microbial relationship in rhizosphere of cultivated crops.
Abstract: Plant domestication was a pivotal accomplishment in human history, which led to a reduction in genetic diversity of crop species; however, there was less research focus on how this reduced genetic diversity of crops in affecting rhizosphere microbial communities during crop domestication process. Here, we used high-throughput sequencing to explore the different effects of crops domestication on rhizosphere microbial community structure of rice (Oryza sativa L. and Oryza rufipogon Griff.) and soybean (Glycine max L. and Glycine soja Sieb. et Zucc.). Results indicated that rhizosphere fungal communities are more strongly influenced by crop domestication than bacterial communities. There was a stronger relationship for fungi and bacteria in the cultivated crops than in the wild relatives. Results also showed that the wild varieties had a higher abundance of beneficial symbionts and a lower abundance of pathogens comparing with the cultivated varieties. There was a similar tendency for both rice and soybean in rhizosphere microbial communities by comparing wild crops and their cultivated varieties. In conclusion, crop domestication had a stronger effect on the fungal communities than on the bacterial communities and had improved the microbial relationship in rhizosphere of cultivated crops.

Journal ArticleDOI
TL;DR: The review summarized the main points related to antimicrobial action of the bacteriocins including steps of peptide’s interaction with bacterial membranes and details of membrane damaging.
Abstract: Peptides and proteins are important bioorganic compounds in nature, among which a special place is occupied by antimicrobial substances. There are more than 2000 different antimicrobial peptides (AMPs) produced by a variety of living organisms. Bacteriocins produced by bacteria are the minor group, whose chemical structures are most complicated among all AMPs. The review summarized the main points related to antimicrobial action of the bacteriocins including steps of peptide’s interaction with bacterial membranes and details of membrane damaging. The membrane-disordered bacteriocins were described in accordance with structural–functional relationships.

Journal ArticleDOI
TL;DR: In this article, the authors investigated microbial communities of 12 anaerobic sludge samples acclimated under different environmental conditions and found that the type of feed stock was one of the most important process parameters affecting the shape of microbial community (e.g., Syntrophus, Methylomonas and Methylobacillus).
Abstract: Anaerobic processes are widely used for treating high-strength organic wastewater. Understanding the ecological patterns of the microorganisms involved and the effect of environmental factors on microbial community are important to manage the performance of anaerobic processes. Microbial communities of 12 anaerobic sludge samples acclimated under different environmental conditions were investigated. Genera detected from these anaerobic sludge samples generally presented three distribution patterns: frequently detected with high abundance, frequently detected with low abundance and occasionally detected with permanently low abundance. The type of feed stock was one of the most important process parameters affecting the shape of microbial community (e.g., Syntrophus, Methylomonas and Methylobacillus). Dye wastewater (Bacteroides) and the supplement of conductive materials (genus T78) were also found to shape the microbial community. Some syntrophic bacteria and methanogens were rare in many anaerobic samples. However, correlation analysis suggested that rare genera are potential syntrophic partners and are responsible for syntrophic methanogenesis.

Journal ArticleDOI
TL;DR: A flow cytometry analysis of the bacterial pathogens Escherichia coli and Staphylococcus aureus is developed based on a ligand–bioreceptor interaction based on fluorescently labeled plant lectins as natural receptors that could specifically interact with the cell wall carbohydrates of bacteria.
Abstract: This study develops a flow cytometry analysis of the bacterial pathogens Escherichia coli and Staphylococcus aureus based on a ligand–bioreceptor interaction. We used fluorescently labeled plant lectins as natural receptors that could specifically interact with the cell wall carbohydrates of bacteria. An epifluorescence microscopy was used as an additional approach to confirm and visualize lectin–carbohydrate interactions. The binding specificity of plant lectins to E. coli and S. aureus cells was studied, and wheat germ agglutinin, which provided high-affinity interactions, was selected as a receptor. Using this method, bacterial pathogens can be detected in concentrations of up to 106 cells/mL within 5 min. Their accessibility and universality make lectin reagents a promising tool to control a wide range of bacterial pathogens.

Journal ArticleDOI
TL;DR: The structure of endophytic bacterial communities associated with different tissues and soil of Jingbai Pear trees was analyzed with Illumina Miseq sequencing of bacterial 16S rDNA and it was demonstrated that different tissues harbored a unique bacterial assemblage.
Abstract: Plant endophytes play a crucial role in plant growth, health and ecological function. Jingbai pear (the best quality cultivar of Pyrus ussuriensi Maxim. ex Rupr.) has important ecological and economic value in north China. Conversation of its genetics has great meanings to pear genus (Pyrus L.). However, the bacterial community associated with the cultivar remains unknown. In this study, the structure of endophytic bacterial communities associated with different tissues and soil of Jingbai Pear trees was analyzed with Illumina Miseq sequencing of bacterial 16S rDNA. This is the first report on bacterial microbiome associated with Jingbai pear. Our results demonstrated that different tissues harbored a unique bacterial assemblage. Interestingly, Cyanobacteria was the most abundant phylum, followed by Proteobacteria and Actinobacteria. Samples from three different sites (soils) had significant differences in microbial communities structure. Redundancy analysis (RDA) showed that the bacterial community structure correlated significantly with soil properties-temperature, pH, nitrogen and carbon contents. The conclusion could facilitate to understand the interaction and ecological function of endophytic bacteria with host Jingbai pear trees, so as to benefit the pear variety genetic resource conservation and protection.

Journal ArticleDOI
Geeta Chhetri1, Dahye Yang1, Jiwon Choi1, Hyungdong Kim1, Taegun Seo1 
TL;DR: The data accumulated in this study support the suggestion that the strain DMN11T is considered to represent a novel species of the genus Flavobacterieum, for which the name Flavobacteria edaphi sp.
Abstract: An aerobic, Gram-stain-negative, bright yellow-pigmented, oxidase and catalase-positive, non-motile, non-spore forming, rod-shaped strain designated DMN11T was isolated from the soil of crossroads of Jeju Island in South Korea. Colonies were circular, bright yellow-pigmented and smooth with regular edges and measured approximately 1–2 mm in diameter. Flexirubin-type pigments were absent. Phylogenetic tree analysis based on the 16SrRNA gene sequence revealed that the strain DMN11T formed a lineage within the family Flavobacteriaceae of the phylum Bacteroidetes, and it was the most closely related to Flavobacterium suzhouense XIN-1T and Flavobacterium hauense BX12T (98.6% and 98.2% similarity, respectively). The major isoprenoid quinone was MK-6. The major fatty acids were summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), iso-C15:0 and iso-C15:0 3OH. The polar lipid profile of the strain DMN11T showed the presence of phosphatidylethanolamine (PE) as major lipid. The DNA G+C content was 35.3 mol%, as determined by the thermal denaturation method. The mean levels of DNA–DNA relatedness of the strain DMN11T with F. suzhouense XIN-1T and F. hauense BX12T were 20.5% and 29.2%, respectively. Thus, the data accumulated in this study support the suggestion that the strain DMN11T is considered to represent a novel species of the genus Flavobacterieum, for which the name Flavobacterium edaphi sp. nov. is proposed. The type strain is DMN11T (= KCTC 62114T = JCM 32372T).

Journal ArticleDOI
TL;DR: This study emphasizes the dominant association of Aspergillus fumigatus sensu stricto in avian mycoses and shows the lack of itraconazole resistance in the studied isolates.
Abstract: Aspergillosis causes high morbidity and mortality in avian species. The main goal of this study was to use molecular techniques to identify Aspergillus species collected from different avian species with aspergillosis. A subsample of those isolates was also screened for resistance to itraconazole. Over a 2-year period, clinical samples were recovered from 44 birds with clinical signs of the disease, clinical pathology results suspicious of aspergillosis, or from birds that died from Aspergillus spp. infection. Environmental sampling was also performed in seabird rehabilitation centers and natural seabird environments. Seventy-seven isolates (43 clinical and 34 environmental) were identified as Aspergillus fumigatus sensu stricto. No cryptic species from the Fumigati section were detected. Two environmental isolates were identified as Aspergillus nidulans var. dentatus and Aspergillus spinulosporus. None of the Aspergillus isolates tested were resistant to itraconazole. Our study emphasizes the dominant association of Aspergillus fumigatus sensu stricto in avian mycoses and shows the lack of itraconazole resistance in the studied isolates.