scispace - formally typeset
Search or ask a question
JournalISSN: 1079-5642

Arteriosclerosis, Thrombosis, and Vascular Biology 

Lippincott Williams & Wilkins
About: Arteriosclerosis, Thrombosis, and Vascular Biology is an academic journal published by Lippincott Williams & Wilkins. The journal publishes majorly in the area(s): Cholesterol & Lipoprotein. It has an ISSN identifier of 1079-5642. Over the lifetime, 13540 publications have been published receiving 989016 citations. The journal is also known as: ATVB online & ATVBAHA online.


Papers
More filters
Journal ArticleDOI
TL;DR: The discovery of the immune basis of allograft arteriosclerosis demonstrated that inflammation per se can drive arterial hyperplasia, even in the absence of traditional risk factors.
Abstract: Experimental work has elucidated molecular and cellular pathways of inflammation that promote atherosclerosis. Unraveling the roles of cytokines as inflammatory messengers provided a mechanism whereby risk factors for atherosclerosis can alter arterial biology, and produce a systemic milieu that favors atherothrombotic events. The discovery of the immune basis of allograft arteriosclerosis demonstrated that inflammation per se can drive arterial hyperplasia, even in the absence of traditional risk factors. Inflammation regulates aspects of plaque biology that trigger the thrombotic complications of atherosclerosis. Translation of these discoveries to humans has enabled both novel mechanistic insights and practical clinical advances.

4,307 citations

Journal ArticleDOI
TL;DR: This review will reconsider the current paradigm for understanding the critical, final steps in the progression of atherosclerotic lesions, and devise a simpler classification scheme that is consistent with the AHA categories but is easier to use, able to deal with a wide array of morphological variations, and not overly burdened by mechanistic implications.
Abstract: This review will reconsider the current paradigm for understanding the critical, final steps in the progression of atherosclerotic lesions. That scheme, largely an outgrowth of observations of autopsy tissues by Davies and colleagues,1 2 asserts that the cause of death in atherosclerotic coronary artery disease is rupture of an advanced atherosclerotic lesion. Although this assumption may be partially true, recent autopsy studies suggest that it is incomplete. To reconsider this paradigm, we reexamined the morphological classification scheme for lesions proposed by the American Heart Association (AHA).3 4 This scheme is difficult to use for 2 reasons. First, it uses a very long list of roman numerals modified by letter codes that are difficult to remember. Second, it implies an orderly, linear pattern of lesion progression. This tends to be ambiguous, because it is not clear whether there is a single sequence of events during the progression of all lesions. We have therefore tried to devise a simpler classification scheme that is consistent with the AHA categories but is easier to use, able to deal with a wide array of morphological variations, and not overly burdened by mechanistic implications. The current paradigm is based on the belief that type IV lesions, or “atheromas,” described by the AHA are stable because the fatty, necrotic core is contained by a smooth muscle cell–rich fibrous cap. Virchow’s analysis5 in 1858 pointed out that historically, the term “atheroma” refers to a dermal cyst (“Grutzbalg”), a fatty …

3,869 citations

Journal ArticleDOI
TL;DR: Results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy, and weight reduction significantly elevated plasma adip onectin levels in the diabetic subjects as well as the nondiabetic subjects.
Abstract: —Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)–matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6±0.4 versus 7.9±0.5 μg/mL in men, 7.6±0.7 versus 11.7±1.0 μg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0±0.4 versus 6.6±0.4 μg/mL, P<0.001 in men; 6.3±0.8 versus 7.6±0.7 μg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fas...

3,172 citations

Journal ArticleDOI
TL;DR: ins biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm, and the roles of individual mediators and their receptors in modulating the inflammatory response.
Abstract: Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.

2,713 citations

Journal ArticleDOI
TL;DR: These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.
Abstract: Fluid velocities were measured by laser Doppler velocimetry under conditions of pulsatile flow in a scale model of the human carotid bifurcation. Flow velocity and wall shear stress at five axial and four circumferential positions were compared with intimal plaque thickness at corresponding locations in carotid bifurcations obtained from cadavers. Velocities and wall shear stresses during diastole were similar to those found previously under steady flow conditions, but these quantities oscillated in both magnitude and direction during the systolic phase. At the inner wall of the internal carotid sinus, in the region of the flow divider, wall shear stress was highest (systole = 41 dynes/cm2, diastole = 10 dynes/cm2, mean = 17 dynes/cm2) and remained unidirectional during systole. Intimal thickening in this location was minimal. At the outer wall of the carotid sinus where intimal plaques were thickest, mean shear stress was low (-0.5 dynes/cm2) but the instantaneous shear stress oscillated between -7 and +4 dynes/cm2. Along the side walls of the sinus, intimal plaque thickness was greater than in the region of the flow divider and circumferential oscillations of shear stress were prominent. With all 20 axial and circumferential measurement locations considered, strong correlations were found between intimal thickness and the reciprocal of maximum shear stress (r = 0.90, p less than 0.0005) or the reciprocal of mean shear stress (r = 0.82, p less than 0.001). An index which takes into account oscillations of wall shear also correlated strongly with intimal thickness (r = 0.82, p less than 0.001). When only the inner wall and outer wall positions were taken into account, correlations of lesion thickness with the inverse of maximum wall shear and mean wall shear were 0.94 (p less than 0.001) and 0.95 (p less than 0.001), respectively, and with the oscillatory shear index, 0.93 (p less than 0.001). These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.

2,623 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023315
2022672
2021276
2020365
2019280
2018327