scispace - formally typeset

JournalISSN: 0004-6361

Astronomy and Astrophysics 

About: Astronomy and Astrophysics is an academic journal. The journal publishes majorly in the area(s): Galaxy & Stars. It has an ISSN identifier of 0004-6361. Over the lifetime, 59443 publication(s) have been published receiving 2118445 citation(s).
Topics: Galaxy, Stars, Star formation, Population, Metallicity


Papers
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,334 citations

Journal ArticleDOI
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

7,158 citations

Journal ArticleDOI
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

7,024 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

6,641 citations

Journal ArticleDOI
Abstract: We present the final data release of observations of ?21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Atlas of Galactic Neutral Hydrogen) of the sky north of ? = ?30? with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000, AA and Bajaja et al. 2005, A&A, 440, 767) of the sky south of ? = ?25?. The angular resolution of the combined material is HPBW ? 0. ?6. The LSR velocity coverage spans the interval ?450 km s?1 to +400 km s?1, at a resolution of 1.3 kms?1. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07?0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20?40 mK. It would be necessary to construct a telescope with a main beam efficiency of ?MB >? 99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic HI is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way HI survey to date, with the most extensive coverage both spatially and kinematically.

4,122 citations

Network Information
Related Journals (5)
arXiv: Astrophysics

63.1K papers, 2.2M citations

95% related
arXiv: Solar and Stellar Astrophysics

27.6K papers, 462.5K citations

94% related
arXiv: Astrophysics of Galaxies

23.4K papers, 430.5K citations

93% related
The Astrophysical Journal

119.3K papers, 7.1M citations

93% related
Monthly Notices of the Royal Astronomical Society

67K papers, 2.9M citations

92% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20211,983
20202,125
20192,026
20181,899
20171,813
20161,847