scispace - formally typeset
Search or ask a question

Showing papers in "Astronomy and Astrophysics in 2019"


Journal ArticleDOI
TL;DR: CIGALE as mentioned in this paper is a tool to estimate the spectral energy distribution (SED) of galaxies from the far-ultraviolet (FUV) to radio spectrum of galaxies.
Abstract: Context . Measuring how the physical properties of galaxies change across cosmic times is essential to understand galaxy formation and evolution. With the advent of numerous ground-based and space-borne instruments launched over the past few decades we now have exquisite multi-wavelength observations of galaxies from the far-ultraviolet (FUV) to the radio domain. To tap into this mine of data and obtain new insight into the formation and evolution of galaxies, it is essential that we are able to extract information from their spectral energy distribution (SED).Aims . We present a completely new implementation of Code Investigating GALaxy Emission (CIGALE). Written in python, its main aims are to easily and efficiently model the FUV to radio spectrum of galaxies and estimate their physical properties such as star formation rate, attenuation, dust luminosity, stellar mass, and many other physical quantities.Methods . To compute the spectral models, CIGALE builds composite stellar populations from simple stellar populations combined with highly flexible star formation histories, calculates the emission from gas ionised by massive stars, and attenuates both the stars and the ionised gas with a highly flexible attenuation curve. Based on an energy balance principle, the absorbed energy is then re-emitted by the dust in the mid- and far-infrared domains while thermal and non-thermal components are also included, extending the spectrum far into the radio range. A large grid of models is then fitted to the data and the physical properties are estimated through the analysis of the likelihood distribution.Results . CIGALE is a versatile and easy-to-use tool that makes full use of the architecture of multi-core computers, building grids of millions of models and analysing samples of thousands of galaxies, both at high speed. Beyond fitting the SEDs of galaxies and parameter estimations, it can also be used as a model-generation tool or serve as a library to build new applications.

548 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented a 0.16% precise and 0.27% accurate determination of R 0, the distance to the Galactic center using the star S2 on its 16-year orbit around the massive black hole Sgr A* that they followed astrometrically and spectroscopically for 27 years.
Abstract: We present a 0.16% precise and 0.27% accurate determination of R 0 , the distance to the Galactic center. Our measurement uses the star S2 on its 16-year orbit around the massive black hole Sgr A* that we followed astrometrically and spectroscopically for 27 years. Since 2017, we added near-infrared interferometry with the VLTI beam combiner GRAVITY, yielding a direct measurement of the separation vector between S2 and Sgr A* with an accuracy as good as 20 μ as in the best cases. S2 passed the pericenter of its highly eccentric orbit in May 2018, and we followed the passage with dense sampling throughout the year. Together with our spectroscopy, in the best cases with an error of 7 km s−1 , this yields a geometric distance estimate of R 0 = 8178 ± 13stat. ± 22sys. pc. This work updates our previous publication, in which we reported the first detection of the gravitational redshift in the S2 data. The redshift term is now detected with a significance level of 20σ with f redshift = 1.04 ± 0.05.

507 citations


Journal ArticleDOI
Jean-Luc Beuzit1, Jean-Luc Beuzit2, Arthur Vigan1, David Mouillet2, Kjetil Dohlen1, Raffaele Gratton3, Anthony Boccaletti4, Jean-François Sauvage5, Jean-François Sauvage1, H. M. Schmid6, Maud Langlois1, Maud Langlois7, Cyril Petit5, Andrea Baruffolo3, M. Feldt8, Julien Milli9, Zahed Wahhaj9, L. Abe10, U. Anselmi3, Jacopo Antichi3, Rudy Barette1, J. Baudrand4, Pierre Baudoz4, Andreas Bazzon6, P. Bernardi4, P. Blanchard1, R. Brast9, Pietro Bruno3, Tristan Buey4, Marcel Carbillet10, M. Carle1, Enrico Cascone11, F. Chapron4, Julien Charton2, Gael Chauvin2, Gael Chauvin12, Riccardo Claudi3, Anne Costille1, V. De Caprio11, J. de Boer13, A. Delboulbe2, Silvano Desidera3, Carsten Dominik14, Mark Downing9, O. Dupuis4, Christophe Fabron1, Daniela Fantinel3, G. Farisato3, Philippe Feautrier2, Enrico Fedrigo9, Thierry Fusco5, Thierry Fusco1, P. Gigan4, Christian Ginski14, Christian Ginski13, Julien Girard15, Julien Girard2, Enrico Giro3, D. Gisler6, L. Gluck2, Cecile Gry1, Th. Henning8, Norbert Hubin9, Emmanuel Hugot1, S. Incorvaia3, M. Jaquet1, M. Kasper9, Eric Lagadec10, Anne-Marie Lagrange2, H. Le Coroller1, D. Le Mignant1, B. Le Ruyet4, G. Lessio3, J. L. Lizon9, M. Llored1, Lars Lundin9, F. Madec1, Yves Magnard2, M. Marteaud4, Patrice Martinez10, D. Maurel2, Francois Menard2, Dino Mesa3, O. Möller-Nilsson8, Thibaut Moulin2, C. Moutou1, Alain Origne1, J. Parisot4, A. Pavlov8, D. Perret4, J. Pragt, Pascal Puget2, P. Rabou2, Joany Andreina Manjarres Ramos8, J.-M. Reess4, F. Rigal, S. Rochat2, Ronald Roelfsema, Gérard Rousset4, A. Roux2, Michel Saisse1, Bernardo Salasnich3, E. Sant'Ambrogio3, Salvo Scuderi3, Damien Ségransan16, Arnaud Sevin4, Ralf Siebenmorgen9, Christian Soenke9, Eric Stadler2, Marcos Suarez9, D. Tiphène4, Massimo Turatto3, Stéphane Udry16, Farrokh Vakili10, L. B. F. M. Waters14, L. B. F. M. Waters17, L. Weber16, Francois Wildi16, Gérard Zins9, Alice Zurlo18, Alice Zurlo1 
TL;DR: The Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) was designed and built for the ESO Very Large Telescope (VLT) in Chile as discussed by the authors.
Abstract: Observations of circumstellar environments that look for the direct signal of exoplanets and the scattered light from disks have significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing, and data processing, together with a consistent global system analysis have brought about a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive imagers is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE), which was designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs, and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), were designed to efficiently cover the near-infrared range in a single observation for an efficient search of young planets. The third instrument, ZIMPOL, was designed for visible polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. These three scientific instruments enable the study of circumstellar environments at unprecedented angular resolution, both in the visible and the near-infrared. In this work, we thoroughly present SPHERE and its on-sky performance after four years of operations at the VLT.

378 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explored the link between the globular clusters and known merging events that the Milky Way has experienced and found that about 40% of the clusters likely formed in situ and a similarly large fraction, 35%, appear to be possibly associated to known merger events.
Abstract: Context . The assembly history experienced by the Milky Way is currently being unveiled thanks to the data provided by the Gaia mission. It is likely that the globular cluster system of our Galaxy has followed a similarly intricate formation path.Aims . To constrain this formation path, we explore the link between the globular clusters and the known merging events that the Milky Way has experienced.Methods . To this end, we combined the kinematic information provided by Gaia for almost all Galactic clusters, with the largest sample of cluster ages available after carefully correcting for systematic errors. To identify clusters with a common origin we analysed their dynamical properties, particularly in the space of integrals of motion.Results . We find that about 40% of the clusters likely formed in situ. A similarly large fraction, 35%, appear to be possibly associated to known merger events, in particular to Gaia -Enceladus (19%), the Sagittarius dwarf galaxy (5%), the progenitor of the Helmi streams (6%), and to the Sequoia galaxy (5%), although some uncertainty remains due to the degree of overlap in their dynamical characteristics. Of the remaining clusters, 16% are tentatively associated to a group with high binding energy, while the rest are all on loosely bound orbits and likely have a more heterogeneous origin. The resulting age–metallicity relations are remarkably tight and differ in their detailed properties depending on the progenitor, providing further confidence on the associations made.Conclusions . We provide a table listing the likely associations. Improved kinematic data by future Gaia data releases and especially a larger, systematic error-free sample of cluster ages would help to further solidify our conclusions.

283 citations


Journal ArticleDOI
Timothy W. Shimwell1, Timothy W. Shimwell2, C. Tasse3, C. Tasse4, Martin J. Hardcastle5, A. P. Mechev1, Wendy L. Williams5, Philip Best6, Huub Röttgering1, Joseph R. Callingham2, T. J. Dijkema2, F. de Gasperin7, F. de Gasperin1, D. N. Hoang1, B. Hugo3, M. Mirmont, J. B. R. Oonk1, J. B. R. Oonk2, Isabella Prandoni8, D. A. Rafferty7, J. Sabater6, Oleg Smirnov3, R. J. van Weeren1, Glenn J. White9, Glenn J. White10, Marcellin Atemkeng3, L. Bester3, E. Bonnassieux11, Marcus Brüggen7, Gianfranco Brunetti8, Krzysztof T. Chyzy12, Rachel Cochrane6, John Conway13, Judith H. Croston9, A. Danezi, Kenneth Duncan1, Marijke Haverkorn14, George Heald15, Marco Iacobelli2, Huib Intema1, Neal Jackson16, Marek Jamrozy12, Matt J. Jarvis17, Matt J. Jarvis18, R. Lakhoo18, M. Mevius2, George K. Miley1, Leah K. Morabito18, R. Morganti19, R. Morganti2, D. Nisbet6, Emanuela Orru2, Simon Perkins, R. Pizzo2, C. Schrijvers, Daniel J. Smith5, R. C. Vermeulen2, Michael W. Wise20, Michael W. Wise2, L. Alegre6, David Bacon21, I. van Bemmel22, Robert Beswick16, Annalisa Bonafede8, Annalisa Bonafede7, A. Botteon8, A. Botteon23, Stephen Bourke13, Marisa Brienza2, Marisa Brienza19, G. Calistro Rivera1, Rossella Cassano8, A. O. Clarke16, Christopher J. Conselice24, R.-J. Dettmar25, A. Drabent, C. Dumba26, K. L. Emig1, Torsten A. Enßlin27, Chiara Ferrari28, M. A. Garrett1, M. A. Garrett16, Ricardo Genova-Santos29, Ricardo Genova-Santos30, Arti Goyal12, G. Gürkan15, C. L. Hale18, Jeremy J. Harwood5, Volker Heesen7, Matthias Hoeft, Cathy Horellou13, C. A. Jackson2, G. Kokotanekov20, R. Kondapally6, Magdalena Kunert-Bajraszewska, V. H. Mahatma5, Elizabeth K. Mahony15, Subhash C. Mandal1, John McKean19, John McKean2, Andrea Merloni27, Beatriz Mingo11, Arpad Miskolczi25, S. Mooney31, Błażej Nikiel-Wroczyński12, Shane O'Sullivan7, John L. Quinn31, Wolfgang Reich27, C. Roskowinski, Antonia Rowlinson20, Antonia Rowlinson2, F. Savini7, A. Saxena1, Dominik J. Schwarz32, Aleksandar Shulevski20, Aleksandar Shulevski2, S. S. Sridhar2, H. R. Stacey2, H. R. Stacey19, S. Urquhart9, M. H. D. van der Wiel2, Eskil Varenius16, Eskil Varenius13, B. Webster9, A. Wilber7 
TL;DR: The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168 MHz survey of the entire northern sky for which observations are now 20% complete as discussed by the authors.
Abstract: The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120–168 MHz survey of the entire northern sky for which observations are now 20% complete. We present our first full-quality public data release. For this data release 424 square degrees, or 2% of the eventual coverage, in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00′00″ to 57°00′00″) were mapped using a fully automated direction-dependent calibration and imaging pipeline that we developed. A total of 325 694 sources are detected with a signal of at least five times the noise, and the source density is a factor of ∼10 higher than the most sensitive existing very wide-area radio-continuum surveys. The median sensitivity is S 144 MHz = 71 μ Jy beam−1 and the point-source completeness is 90% at an integrated flux density of 0.45 mJy. The resolution of the images is 6″ and the positional accuracy is within 0.2″. This data release consists of a catalogue containing location, flux, and shape estimates together with 58 mosaic images that cover the catalogued area. In this paper we provide an overview of the data release with a focus on the processing of the LOFAR data and the characteristics of the resulting images. In two accompanying papers we provide the radio source associations and deblending and, where possible, the optical identifications of the radio sources together with the photometric redshifts and properties of the host galaxies. These data release papers are published together with a further ∼20 articles that highlight the scientific potential of LoTSS.

277 citations


Journal ArticleDOI
TL;DR: In this article, the authors combined the precise parallaxes and optical photometry delivered by Gaia's second data release with the photometric catalogues of Pan-STARRS1, 2MASS, and AllWISE, and derived Bayesian stellar parameters, distances, and extinctions for 265 million of the 285 million objects brighter than G ǫ = 18.
Abstract: Combining the precise parallaxes and optical photometry delivered by Gaia ’s second data release with the photometric catalogues of Pan-STARRS1, 2MASS, and AllWISE, we derived Bayesian stellar parameters, distances, and extinctions for 265 million of the 285 million objects brighter than G = 18. Because of the wide wavelength range used, our results substantially improve the accuracy and precision of previous extinction and effective temperature estimates. After cleaning our results for both unreliable input and output data, we retain 137 million stars, for which we achieve a median precision of 5% in distance, 0.20 mag in V -band extinction, and 245 K in effective temperature for G ≤ 14, degrading towards fainter magnitudes (12%, 0.20 mag, and 245 K at G = 16; 16%, 0.23 mag, and 260 K at G = 17, respectively). We find a very good agreement with the asteroseismic surface gravities and distances of 7000 stars in the Kepler , K2-C3, and K2-C6 fields, with stellar parameters from the APOGEE survey, and with distances to star clusters. Our results are available through the ADQL query interface of the Gaia mirror at the Leibniz-Institut fur Astrophysik Potsdam (gaia.aip.de) and as binary tables at data.aip.de. As a first application, we provide distance- and extinction-corrected colour-magnitude diagrams, extinction maps as a function of distance, and extensive density maps. These demonstrate the potential of our value-added dataset for mapping the three-dimensional structure of our Galaxy. In particular, we see a clear manifestation of the Galactic bar in the stellar density distributions, an observation that can almost be considered direct imaging of the Galactic bar.

247 citations


Journal ArticleDOI
TL;DR: In this paper, a hierarchical inversion algorithm was applied to the individual extinctions of stars in the Local Arm and surrounding regions to derive extinction toward stars that possess accurate photometry and relative uncertainties on DR2 parallaxes smaller than 20%.
Abstract: Gaia stellar measurements are currently revolutionizing our knowledge of the evolutionary history of the Milky Way. 3D maps of the interstellar dust provide complementary information and are a tool for a wide range of uses. We built 3D maps of the dust in the Local arm and surrounding regions. To do so, Gaia DR2 photometric data were combined with 2MASS measurements to derive extinction toward stars that possess accurate photometry and relative uncertainties on DR2 parallaxes smaller than 20%. We applied a new hierarchical inversion algorithm to the individual extinctions that is adapted to large datasets and to an inhomogeneous target distribution. Each step associates regularized Bayesian inversions in all radial directions and a subsequent inversion in 3D of all their results. Each inverted distribution serves as a prior for the subsequent step, and the spatial resolution is progressively increased. We present the resulting 3D distribution of the dust in a 6 × 6 × 0.8 kpc3 volume around the Sun. Its main features are found to be elongated along different directions that vary from below to above the mid-plane. The outer part of Carina-Sagittarius, mainly located above the mid-plane, the Local arm/Cygnus Rift around and above the mid-plane, and the fragmented Perseus arm are oriented close to the direction of circular motion. The spur of more than 2 kpc length (nicknamed the split ) that extends between the Local Arm and Carina-Sagittarius, the compact near side of Carina-Sagittarius, and the Cygnus Rift below the Plane are oriented along l ~40 to 55°. Dust density images in vertical planes reveal a wavy pattern in some regions and show that the solar neighborhood within ~500 pc remains atypical by its extent above and below the Plane. We show several comparisons with the locations of molecular clouds, HII regions, O stars, and masers. The link between the dust concentration and these tracers is markedly different from one region to the other.

227 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Hipparcos and Gaia's second data release (GDR2) catalogs to determine the long-term proper motion of the stars common to these two catalogs, and then searched for a proper motion anomaly (PMa) between the long term proper motion vector and the GDR2 measurements, indicative of the presence of a perturbing secondary object.
Abstract: Context. The census of stellar and substellar companions of nearby stars is largely incomplete, in particular toward the low-mass brown dwarf and long-period exoplanets. It is, however, fundamentally important in the understanding of the stellar and planetary formation and evolution mechanisms. Nearby stars are particularly favorable targets for high precision astrometry. Aims. We aim to characterize the presence of physical companions of stellar and substellar mass in orbit around nearby stars. Methods. Orbiting secondary bodies influence the proper motion of their parent star through their gravitational reflex motion. Using the Hipparcos and Gaia's second data release (GDR2) catalogs, we determined the long-term proper motion of the stars common to these two catalogs. We then searched for a proper motion anomaly (PMa) between the long-term proper motion vector and the GDR2 (or Hipparcos) measurements, indicative of the presence of a perturbing secondary object. We focussed our analysis on the 6741 nearby stars located within 50 pc, and we also present a catalog of the PMa for 99% of the Hipparcos catalog (≈117 000 stars). Results. 30% of the stars studied present a PMa greater than 3σ. The PMa allows us to detect orbiting companions, or set stringent limits on their presence. We present a few illustrations of the PMa analysis to interesting targets. We set upper limits of 0.1−0.3 M J to potential planets orbiting Proxima between 1 and 10 au (P orb = 3 to 100 years). We confirm that Proxima is gravitationally bound to α Cen. We recover the masses of the known companions of Eri, Ind, Ross 614 and β Pic. We also detect the signature of a possible planet of a few Jovian masses orbiting τ Ceti. Conclusions. Based on only 22 months of data, the GDR2 has limitations. But its combination with the Hipparcos catalog results in very high accuracy PMa vectors, that already enable us to set valuable constraints on the binarity of nearby objects. The detection of tangential velocity anomalies at a median accuracy of σ(∆v T) = 1.0 m s −1 per parsec of distance is already possible with the GDR2. This type of analysis opens the possibility to identify long period orbital companions otherwise inaccessible. For long orbital periods, Gaia's complementarity to radial velocity and transit techniques (that are more sensitive to short orbital periods) already appears to be remarkably powerful.

201 citations


Journal ArticleDOI
TL;DR: In this article, the Gaia second Data Release (DR2) presents a first mapping of full-sky RR Lyrae stars and Cepheids observed by the spacecraft during the initial 22 months of science operations.
Abstract: Context. The Gaia second Data Release (DR2) presents a first mapping of full-sky RR Lyrae stars and Cepheids observed by the spacecraft during the initial 22 months of science operations.Aims. The Specific Objects Study (SOS) pipeline, developed to validate and fully characterise Cepheids and RR Lyrae stars (SOS Cep&RRL) observed by Gaia , has been presented in the documentation and papers accompanying the Gaia first Data Release. Here we describe how the SOS pipeline was modified to allow for processing the Gaia multi-band (G , G BP , and G RP ) time-series photometry of all-sky candidate variables and produce specific results for confirmed RR Lyrae stars and Cepheids that are published in the DR2 catalogue.Methods. The SOS Cep&RRL processing uses tools such as the period–amplitude and the period–luminosity relations in the G band. For the analysis of the Gaia DR2 candidates we also used tools based on the G BP and G RP photometry, such as the period–Wesenheit relation in (G , G RP ).Results. Multi-band time-series photometry and characterisation by the SOS Cep&RRL pipeline are published in Gaia DR2 for 150 359 such variables (9575 classified as Cepheids and 140 784 as RR Lyrae stars) distributed throughout the sky. The sample includes variables in 87 globular clusters and 14 dwarf galaxies (the Magellanic Clouds, 5 classical and 7 ultra-faint dwarfs). To the best of our knowledge, as of 25 April 2018, the variability of 50 570 of these sources (350 Cepheids and 50 220 RR Lyrae stars) has not been reported before in the literature, therefore they are likely new discoveries by Gaia . An estimate of the interstellar absorption is published for 54 272 fundamental-mode RR Lyrae stars from a relation based on the G -band amplitude and the pulsation period. Metallicities derived from the Fourier parameters of the light curves are also released for 64 932 RR Lyrae stars and 3738 fundamental-mode classical Cepheids with periods shorter than 6.3 days.

199 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe the validation and properties of the median radial velocities published in Gaia DR2, which provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G ≤ 12.5 mag).
Abstract: Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than G RVS = 12 mag.Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2.Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with T eff in the range [3550, 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G ≤ 12.5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s−1 . In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around G RVS ~ 9 mag and reaches about + 500 m s−1 at G RVS = 11.75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s−1 . The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, G RVS ∈ [4, 8] mag, the precision, estimated using the full dataset, is in the range 220–350 m s−1 , which is about three to five times more precise than the pre-launch specification of 1 km s−1 . At the faint end, G RVS = 11.75 mag, the precisions for T eff = 5000 and 6500 K are 1.4 and 3.7 km s−1 , respectively.

196 citations


Journal ArticleDOI
TL;DR: The Kilo-Degree Survey (KiDS) dataset as mentioned in this paper is a large-scale optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope, specifically designed for measuring weak gravitational lensing by galaxies and large scale structure.
Abstract: Context . The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope, specifically designed for measuring weak gravitational lensing by galaxies and large-scale structure. When completed it will consist of 1350 square degrees imaged in four filters (ugri ).Aims . Here we present the fourth public data release which more than doubles the area of sky covered by data release 3. We also include aperture-matched Z Y J H K s photometry from our partner VIKING survey on the VISTA telescope in the photometry catalogue. We illustrate the data quality and describe the catalogue content.Methods . Two dedicated pipelines are used for the production of the optical data. The ASTRO-WISE information system is used for the production of co-added images in the four survey bands, while a separate reduction of the r -band images using the THELI pipeline is used to provide a source catalogue suitable for the core weak lensing science case. All data have been re-reduced for this data release using the latest versions of the pipelines. The VIKING photometry is obtained as forced photometry on the THELI sources, using a re-reduction of the VIKING data that starts from the VISTA pawprints. Modifications to the pipelines with respect to earlier releases are described in detail. The photometry is calibrated to the Gaia DR2 G band using stellar locus regression.Results . In this data release a total of 1006 square-degree survey tiles with stacked ugri images are made available, accompanied by weight maps, masks, and single-band source lists. We also provide a multi-band catalogue based on r -band detections, including homogenized photometry and photometric redshifts, for the whole dataset. Mean limiting magnitudes (5σ in a 2″ aperture) and the tile-to-tile rms scatter are 24.23 ± 0.12, 25.12 ± 0.14, 25.02 ± 0.13, 23.68 ± 0.27 in ugri , respectively, and the mean r -band seeing is 0.​​″70.

Journal ArticleDOI
TL;DR: In this paper, the imprint of primordial baryon acoustic oscillations (BAOs) in the correlation function of Lyα absorption in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) and the extended BOSS (eBOSS).
Abstract: We measure the imprint of primordial baryon acoustic oscillations (BAOs) in the correlation function of Lyα absorption in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) and the extended BOSS (eBOSS) in Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS)-IV. In addition to 179 965 spectra with absorption in the Lyman-α (Lyα ) region, we use Lyα absorption in the Lyman-β region of 56 154 spectra for the first time. We measure the Hubble distance, D H , and the comoving angular diameter distance, D M , relative to the sound horizon at the drag epoch r d at an effective redshift z = 2.34. Using a physical model of the correlation function outside the BAO peak, we find D H (2.34)/r d = 8.86 ± 0.29 and D M (2.34)/r d = 37.41 ± 1.86, within 1σ from the flat-ΛCDM model consistent with CMB anisotropy measurements. With the addition of polynomial “broadband” terms, the results remain within one standard deviation of the CMB-inspired model. Combined with the quasar-Lyα cross-correlation measurement presented in a companion paper, the BAO measurements at z = 2.35 are within 1.7σ of the predictions of this model.

Journal ArticleDOI
TL;DR: In this article, a measurement of the baryon acoustic oscillation (BAO) scale at redshift z ǫ = 2.35 from the three-dimensional correlation of Lyman-α (Lyα ) forest absorption and quasars is presented.
Abstract: We present a measurement of the baryon acoustic oscillation (BAO) scale at redshift z = 2.35 from the three-dimensional correlation of Lyman-α (Lyα ) forest absorption and quasars. The study uses 266 590 quasars in the redshift range 1.77 absorption occurring in the Lyβ wavelength band of the spectra. From the measured BAO peak position along and across the line of sight, we determined the Hubble distance D H and the comoving angular diameter distance D M relative to the sound horizon at the drag epoch r d : D H (z = 2.35)/r d = 9.20 ± 0.36 and D M (z = 2.35)/r d = 36.3 ± 1.8. These results are consistent at 1.5σ with the prediction of the best-fit spatially-flat cosmological model with the cosmological constant reported for the Planck (2016) analysis of cosmic microwave background anisotropies. Combined with the Lyα auto-correlation measurement presented in a companion paper, the BAO measurements at z = 2.34 are within 1.7σ of the predictions of this model.

Journal ArticleDOI
TL;DR: In this article, an automated Bayesian tool, BASE-9, was used to fit stellar isochrones on the observed G, G BP, G RP magnitudes of the high probability member stars.
Abstract: Context . The Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for better understanding of the disk properties.Aims . The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry.Methods . We have made use of the membership determination based on the precise Gaia astrometry and photometry. We applied an automated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G , G BP , G RP magnitudes of the high probability member stars.Results . We derive parameters such as age, distance modulus, and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.

Journal ArticleDOI
TL;DR: In this paper, the transit least squares (TLS) algorithm was proposed to detect planetary transits from time-series photometry, the TLS algorithm searches for transit-like features while taking the stellar limb darkening and planetary ingress and egress into account.
Abstract: We present a new method to detect planetary transits from time-series photometry, the transit least squares (TLS) algorithm. TLS searches for transit-like features while taking the stellar limb darkening and planetary ingress and egress into account. We have optimized TLS for both signal detection efficiency (SDE) of small planets and computational speed. TLS analyses the entire, unbinned phase-folded light curve. We compensated for the higher computational load by (i.) using algorithms such as “Mergesort” (for the trial orbital phases) and by (ii.) restricting the trial transit durations to a smaller range that encompasses all known planets, and using stellar density priors where available. A typical K2 light curve, including 80 d of observations at a cadence of 30 min, can be searched with TLS in ∼10 s real time on a standard laptop computer, as fast as the widely used box least squares (BLS) algorithm. We perform a transit injection-retrieval experiment of Earth-sized planets around sun-like stars using synthetic light curves with 110 ppm white noise per 30 min cadence, corresponding to a photometrically quiet K P = 12 star observed with Kepler . We determine the SDE thresholds for both BLS and TLS to reach a false positive rate of 1% to be SDE = 7 in both cases. The resulting true positive (or recovery) rates are ∼93% for TLS and ∼76% for BLS, implying more reliable detections with TLS. We also test TLS with the K2 light curve of the TRAPPIST-1 system and find six of seven Earth-sized planets using an iterative search for increasingly lower signal detection efficiency, the phase-folded transit of the seventh planet being affected by a stellar flare. TLS is more reliable than BLS in finding any kind of transiting planet but it is particularly suited for the detection of small planets in long time series from Kepler , TESS, and PLATO. We make our python implementation of TLS publicly available.

Journal ArticleDOI
TL;DR: PetitRADTRANS as mentioned in this paper is a Python package for spectral characterization of exoplanet atmospheres, which can calculate both transmission and emission spectra within a few seconds.
Abstract: We present the easy-to-use, publicly available, Python package petitRADTRANS, built for the spectral characterization of exoplanet atmospheres. The code is fast, accurate, and versatile; it can calculate both transmission and emission spectra within a few seconds at low resolution (λ /Δλ = 1000; correlated-k method) and high resolution (λ /Δλ = 106 ; line-by-line method), using only a few lines of input instruction. The somewhat slower, correlated-k method is used at low resolution because it is more accurate than methods such as opacity sampling. Clouds can be included and treated using wavelength-dependent power law opacities, or by using optical constants of real condensates, specifying either the cloud particle size, or the atmospheric mixing and particle settling strength. Opacities of amorphous or crystalline, spherical or irregularly-shaped cloud particles are available. The line opacity database spans temperatures between 80 and 3000 K, allowing to model fluxes of objects such as terrestrial planets, super-Earths, Neptunes, or hot Jupiters, if their atmospheres are hydrogen-dominated. Higher temperature points and species will be added in the future, allowing to also model the class of ultra hot-Jupiters, with equilibrium temperatures T eq ≳ 2000 K. Radiative transfer results were tested by cross-verifying the low- and high-resolution implementation of petitRADTRANS, and benchmarked with the petitCODE, which itself is also benchmarked to the ATMO and Exo-REM codes. We successfully carried out test retrievals of synthetic JWST emission and transmission spectra (for the hot Jupiter TrES-4b, which has a T eq of ∼1800 K).

Journal ArticleDOI
TL;DR: In this paper, the authors used the Gaia Data Release 2 catalogue of 75 globular clusters proper motions and recent measurements of the proper motions of another 20 distant clusters obtained with the Hubble Space Telescope.
Abstract: Aims. We estimate the mass of the inner ( We use the Gaia Data Release 2 catalogue of 75 globular clusters’ proper motions and recent measurements of the proper motions of another 20 distant clusters obtained with the Hubble Space Telescope. We describe the globular cluster system with a distribution function (DF) with two components: a flat, rotating disc-like one and a rounder, more extended halo-like one. While fixing the Milky Way’s disc and bulge, we let the mass and shape of the dark matter halo and we fit these two parameters, together with six others describing the DF, with a Bayesian method.Results. We find the mass of the Galaxy within 20 kpc to be , of which is in dark matter, and the density axis ratio of the dark matter halo to be q = 1.30 ± 0.25. Assuming a concentration-mass relation, this implies a virial mass M vir = 1.3±0.3×1012 M ⊙ . Our analysis rules out oblate (q > 1.9) with 99% probability. Our preferred model reproduces well the observed phase-space distribution of globular clusters and has a disc component that closely resembles that of the Galactic thick disc. The halo component follows a power-law density profile ρ ∝ r −3.3 , has a mean rotational velocity of V rot ≃ −14km s−1 at 20 kpc, and has a mildly radially biased velocity distribution (β ≃ 0.2 ± 0.07, which varies significantly with radius only within the inner 15 kpc). We also find that our distinction between disc and halo clusters resembles, although not fully, the observed distinction in metal-rich ([Fe/H] > −0.8) and metal-poor ([Fe/H] ≤ −0.8) cluster populations.

Journal ArticleDOI
TL;DR: In this article, a maximum-likelihood analysis of the Joint Light-curve Analysis catalogue of Type Ia supernovae was performed, and it was shown that the deceleration parameter has a much bigger dipole component aligned with the cosmic microwave background dipole, which falls exponentially with redshift z: q0 = qm + qd.
Abstract: Observations reveal a “bulk flow” in the local Universe which is faster and extends to much larger scales than are expected around a typical observer in the standard ΛCDM cosmology. This is expected to result in a scale-dependent dipolar modulation of the acceleration of the expansion rate inferred from observations of objects within the bulk flow. From a maximum-likelihood analysis of the Joint Light-curve Analysis catalogue of Type Ia supernovae, we find that the deceleration parameter, in addition to a small monopole, indeed has a much bigger dipole component aligned with the cosmic microwave background dipole, which falls exponentially with redshift z: q0 = qm + qd.n exp(-z/S). The best fit to data yields qd = −8.03 and S = 0.0262 (⇒d ∼ 100 Mpc), rejecting isotropy (qd = 0) with 3.9σ statistical significance, while qm = −0.157 and consistent with no acceleration (qm = 0) at 1.4σ. Thus the cosmic acceleration deduced from supernovae may be an artefact of our being non-Copernican observers, rather than evidence for a dominant component of “dark energy” in the Universe.

Journal ArticleDOI
TL;DR: In this article, the optical transmission spectrum of KELT-9 b was searched for absorption lines by metals using the cross-correlation technique, and the detected absorption lines are significantly deeper than predicted by the model, suggesting that the material is transported to higher altitudes where the density is enhanced compared to a hydrostatic profile.
Abstract: Context. KELT-9 b exemplifies a newly emerging class of short-period gaseous exoplanets that tend to orbit hot, early type stars – termed ultra-hot Jupiters. The severe stellar irradiation heats their atmospheres to temperatures of ~4000 K, similar to temperatures of photospheres of dwarf stars. Due to the absence of aerosols and complex molecular chemistry at such temperatures, these planets offer the potential of detailed chemical characterization through transit and day-side spectroscopy. Detailed studies of their chemical inventories may provide crucial constraints on their formation process(es) and evolution history.Aims. We aim to search the optical transmission spectrum of KELT-9 b for absorption lines by metals using the cross-correlation technique.Methods. We analysed two transit observations obtained with the HARPS-N spectrograph. We used an isothermal equilibrium chemistry model to predict the transmission spectrum for each of the neutral and singly ionized atoms with atomic numbers between three and 78. Of these, we identified the elements that are expected to have spectral lines in the visible wavelength range and used those as cross-correlation templates.Results. We detect (>5σ ) absorption by Na I, Cr II, Sc II and Y II, and confirm previous detections of Mg I, Fe I, Fe II, and Ti II. In addition, we find evidence of Ca I, Cr I, Co I, and Sr II that will require further observations to verify. The detected absorption lines are significantly deeper than predicted by our model, suggesting that the material is transported to higher altitudes where the density is enhanced compared to a hydrostatic profile, and that the material is part of an extended or outflowing envelope. There appears to be no significant blue-shift of the absorption spectrum due to a net day-to-night side wind. In particular, the strong Fe II feature is shifted by 0.18 ± 0.27 km s−1 , consistent with zero. Using the orbital velocity of the planet we derive revised masses and radii of the star and the planet: M * = 1.978 ± 0.023 M ⊙ , R * = 2.178 ± 0.011 R ⊙ , m p = 2.44 ± 0.70 M J and R p = 1.783 ± 0.009 R J .

Journal ArticleDOI
TL;DR: In this article, a detailed analysis of the filamentary structures identified with Herschel in eight nearby molecular clouds (at distances of about 1.5 km) was performed using the column density maps derived from Herschel data and the DisPerSE algorithm to trace a network of individual filament in each cloud.
Abstract: Context. Molecular filaments have received special attention recently thanks to new observational results on their properties. In particular, our early analysis of filament properties from Herschel imaging data in three nearby molecular clouds revealed a narrow distribution of median inner widths centered at a characteristic value of about 0.1 pc.Aims. Here, we extend and complement our initial study with a detailed analysis of the filamentary structures identified with Herschel in eight nearby molecular clouds (at distances We use the column density ( ) maps derived from Herschel data and the DisPerSE algorithm to trace a network of individual filaments in each cloud. We analyze the density structure along and across the main filament axes in detail. We build synthetic maps of filamentary clouds to assess the completeness limit of our extracted filament sample and validate our measurements of the filament properties. These tests also help us to select the best choice of parameters to be used for tracing filaments with DisPerSE and fitting their radial column density profiles.Methods. Our analysis yields an extended sample of 1310 filamentary structures and a selected sample of 599 filaments with aspect ratios larger than 3 and column density contrasts larger than 0.3. We show that our selected sample of filaments is more than 95% complete for column density contrasts larger than 1, with only ~ 5% spurious detections. On average, more than 15% of the total gas mass in the clouds, and more than 80% of the dense gas mass (at cm−2 ), is found to be in the form of filaments. Analysis of the radial column density profiles of the 599 filaments in the selected sample indicates a narrow distribution of crest-averaged inner widths, with a median value of 0.10 pc and an interquartile range of 0.07 pc. In contrast, the extracted filaments span wide ranges in length, central column density, column density contrast, and mass per unit length. The characteristic filament width is well resolved by Herschel observations, and a median value of ~0.1 pc is consistently found using three distinct estimates based on (1) a direct measurement of the width at half power after background subtraction, as well as (2) Gaussian and (3) Plummer fits. The existence of a characteristic filament width is further supported by the presence of a tight correlation between mass per unit length and central column density for the observed filaments.Results. Our detailed analysis of a large filament sample confirms our earlier result that nearby molecular filaments share a common mean inner width of ~0.1 pc, with typical variations along and on either side of the filament crests of about ± 0.06 pc around the mean value. This observational result sets strong constraints on possible models for the formation and evolution of filaments in molecular clouds. It also provides important hints on the initial conditions of star formation.

Journal ArticleDOI
TL;DR: In this paper, the Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(3-2) emission in a sample of seven Seyfert/LINER galaxies at the unprecedented spatial resolution of 4-8 pc.
Abstract: We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(3-2) emission in a sample of seven Seyfert/LINER galaxies at the unprecedented spatial resolution of 0 .″ 1 = 4-8 pc. Our aim is to explore the close environment of active galactic nuclei (AGN), and the dynamical structures leading to their fueling, through the morphology and kinematics of the gas inside the sphere of influence of the black hole. The selected galaxies host low-luminosity AGN and have a wide range of activity types (Seyferts 1 to 2, LINERs), and barred or ringed morphologies. The observed maps reveal the existence of circumnuclear disk structures, defined by their morphology and decoupled kinematics, in most of the sample. We call these structures molecular tori, even though they often appear as disks without holes in the center. They have varying orientations along the line of sight, unaligned with the host galaxy orientation. The radius of the tori ranges from 6 to 27 pc, and their mass from 0.7 × 10 7 to 3.9 × 10 7 M · . The most edge-on orientations of the torus correspond to obscured Seyferts. In only one case (NGC 1365), the AGN is centered on the central gas hole of the torus. On a larger scale, the gas is always piled up in a few resonant rings 100 pc in scale that play the role of a reservoir to fuel the nucleus. In some cases, a trailing spiral is observed inside the ring, providing evidence for feeding processes. More frequently, the torus and the AGN are slightly off-centered with respect to the bar-resonant ring position, implying that the black hole is wandering by a few 10 pc amplitude around the center of mass of the galaxy. Our spatial resolution allows us to measure gas velocities inside the sphere of influence of the central black holes. By fitting the observations with different simulated cubes, varying the torus inclination and the black hole mass, it is possible to estimate the mass of the central black hole, which is in general difficult for such late-type galaxies, with only a pseudo-bulge. In some cases, AGN feedback is revealed through a molecular outflow, which will be studied in detail in a subsequent article.

Journal ArticleDOI
TL;DR: In this article, an updated list of X-ray binary pulsars with magnetic fields on the order of several 1012 Gauss is presented, along with a discussion of the underlying physics of accretion onto highly magnetized neutron stars.
Abstract: Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012 Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.

Journal ArticleDOI
TL;DR: In this article, the authors presented the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey.
Abstract: Context. The hot plasma in a galaxy cluster is expected to be heated to high temperatures through shocks and adiabatic compression. The thermodynamical properties of the gas encode information on the processes leading to the thermalization of the gas in the cluster's potential well and on non-gravitational processes such as gas cooling, AGN feedback, shocks, turbulence, bulk motions, cosmic rays and magnetic field. Aims: In this work we present the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey. We determine the universal profiles of gas density, temperature, pressure, and entropy over more than two decades in radius, from 0.01R500 to 2R500. Methods: We exploited X-ray information from XMM-Newton and Sunyaev-Zel'dovich constraints from Planck to recover thermodynamic properties out to 2R500. We provide average functional forms for the radial dependence of the main quantities and quantify the slope and intrinsic scatter of the population as a function of radius. Results: We find that gas density and pressure profiles steepen steadily with radius, in excellent agreement with previous observational results. Entropy profiles beyond R500 closely follow the predictions for the gravitational collapse of structures. The scatter in all thermodynamical quantities reaches a minimum in the range [0.2 - 0.8]R500 and increases outward. Somewhat surprisingly, we find that pressure is substantially more scattered than temperature and density. Conclusions: Our results indicate that once accreting substructures are properly excised, the properties of the ICM beyond the cooling region (R > 0.3R500) follow remarkably well the predictions of simple gravitational collapse and require few non-gravitational corrections.

Journal ArticleDOI
TL;DR: In this article, the authors explore the retrograde halo with an augmented version of the Gaia DR2 RVS sample, extended with data from three large spectroscopic surveys, namely RAVE, APOGEE, and LAMOST.
Abstract: Aims. Several kinematic and chemical substructures have been recently found amongst Milky Way halo stars with retrograde motions. It is currently unclear how these various structures are related to each other. This Letter aims to shed light on this issue.Methods. We explore the retrograde halo with an augmented version of the Gaia DR2 RVS sample, extended with data from three large spectroscopic surveys, namely RAVE, APOGEE, and LAMOST. In this dataset, we identify several structures using the HDBSCAN clustering algorithm. We discuss their properties and possible links using all the available chemical and dynamical information.Results. In concordance with previous work, we find that stars with [Fe/H] −1. The retrograde halo contains a mixture of debris from objects like Gaia -Enceladus, Sequoia, and even the chemically defined thick disc. We find that the Sequoia has a smaller range in orbital energies than previously suggested and is confined to high energy. Sequoia could be a small galaxy in itself, but since it overlaps both in integrals-of-motion space and chemical abundance space with the less bound debris of Gaia -Enceladus, its nature cannot yet be fully settled. In the low-energy part of the halo, we find evidence for at least one more distinct structure: Thamnos. Stars in Thamnos are on low-inclination, mildly eccentric retrograde orbits, moving at v ϕ ≈ −150 km s−1 , and are chemically distinct from the other structures.Conclusions. Even with the excellent Gaia DR2 data, piecing together all the fragments found in the retrograde halo remains challenging. At this point, we are very much in need of large datasets with high-quality high-resolution spectra and tailored high-resolution hydrodynamical simulations of galaxy mergers.

Journal ArticleDOI
TL;DR: In this article, the stellar kinematic fossil record shows the imprint left by this accretion event, which heated the old galactic disc, and it is shown that the accretion occurred between nine and 11 Gyr ago, and that it led to the last significant heating of the galactic disc.
Abstract: Previous studies based on the analysis of Gaia DR2 data have revealed that accreted stars, possibly originating from a single progenitor satellite, are a significant component of the halo of our Galaxy, potentially constituting most of the halo stars at [Fe/H] DR2 with elemental abundances from APOGEE DR14 to characterise the kinematics and chemistry of in-situ and accreted populations up to [Fe/H] ∼ −2. Accreted stars appear to significantly impact the galactic chemo–kinematic relations, not only at [Fe/H] < −1, but also at metallicities typical of the thick and metal-poor thin discs. They constitute about 60% of all stars at [Fe/H] < −1, the remaining 40% being made of (metal-weak) thick-disc stars. We find that the stellar kinematic fossil record shows the imprint left by this accretion event, which heated the old galactic disc. We are able to age-date this kinematic imprint, showing that the accretion occurred between nine and 11 Gyr ago, and that it led to the last significant heating of the galactic disc. An important fraction of stars with abundances typical of the (metal-rich) thick disc, and heated by this interaction, is now found in the galactic halo. Indeed, about half of the kinematically defined halo at few kpc from the Sun is composed of metal-rich thick-disc stars. Moreover, we suggest that this metal-rich thick-disc component dominates the stellar halo of the inner Galaxy. The new picture that emerges from this study is one where the standard, non-rotating in-situ halo population, the collapsed halo, seems to be more elusive than ever.

Journal ArticleDOI
TL;DR: In this article, it was shown that a difference of a factor of two in the pebble mass flux is enough to change the evolution from the terrestrial to the super-Earth growth mode.
Abstract: Super-Earths - planets with sizes between the Earth and Neptune - are found in tighter orbits than that of the Earth around more than one third of main sequence stars. It has been proposed that super-Earths are scaled-up terrestrial planets that also formed similarly, through mutual accretion of planetary embryos, but in discs much denser than the solar protoplanetary disc. We argue instead that terrestrial planets and super-Earths have two clearly distinct formation pathways that are regulated by the pebble reservoir of the disc. Through numerical integrations, which combine pebble accretion and N-body gravity between embryos, we show that a difference of a factor of two in the pebble mass flux is enough to change the evolution from the terrestrial to the super-Earth growth mode. If the pebble mass flux is small, then the initial embryos within the ice line grow slowly and do not migrate substantially, resulting in a widely spaced population of approximately Mars-mass embryos when the gas disc dissipates. Subsequently, without gas being present, the embryos become unstable due to mutual gravitational interactions and a small number of terrestrial planets are formed by mutual collisions. The final terrestrial planets are at most five Earth masses. Instead, if the pebble mass flux is high, then the initial embryos within the ice line rapidly become sufficiently massive to migrate through the gas disc. Embryos concentrate at the inner edge of the disc and growth accelerates through mutual merging. This leads to the formation of a system of closely spaced super-Earths in the five to twenty Earth-mass range, bounded by the pebble isolation mass. Generally, instabilities of these super-Earth systems after the disappearance of the gas disc trigger additional merging events and dislodge the system from resonant chains. Therefore, the key difference between the two growth modes is whether embryos grow fast enough to undergo significant migration. The terrestrial growth mode produces small rocky planets on wider orbits like those in the solar system whereas the super-Earth growth mode produces planets in short-period orbits inside 1 AU, with masses larger than the Earth that should be surrounded by a primordial H/He atmosphere, unless subsequently lost by stellar irradiation. The pebble flux - which controls the transition between the two growth modes - may be regulated by the initial reservoir of solids in the disc or the presence of more distant giant planets that can halt the radial flow of pebbles. (Less)

Journal ArticleDOI
TL;DR: In this article, the authors studied the atmosphere of a hot exoplanet, MASCARA-2b/KELT-20b, using four transit observations with high-resolution spectroscopy facilities.
Abstract: Ultra-hot Jupiters orbit very close to their host star and consequently receive strong irradiation, causing their atmospheric chemistry to be different from the common gas giants. Here, we have studied the atmosphere of one of these particular hot planets, MASCARA-2b/KELT-20b, using four transit observations with high resolution spectroscopy facilities. Three of these observations were performed with HARPS-N and one with CARMENES. Additionally, we simultaneously observed one of the transits with MuSCAT2 to monitor possible spots in the stellar surface. At high resolution, the transmission residuals show the effects of Rossiter-McLaughlin and centre-to-limb variations from the stellar lines profiles, which we have corrected to finally extract the transmission spectra of the planet. We clearly observe the absorption features of CaII, FeII, NaI, Hα , and Hβ in the atmosphere of MASCARA-2b, and indications of Hγ and MgI at low signal-to-noise ratio. In the case of NaI, the true absorption is difficult to disentangle from the strong telluric and interstellar contamination. The results obtained with CARMENES and HARPS-N are consistent, measuring an Hα absorption depth of 0.68 ± 0.05 and 0.59 ± 0.07%, and NaI absorption of 0.11 ± 0.04 and 0.09 ± 0.05% for a 0.75 Å passband, in the two instruments respectively. The Hα absorption corresponds to ~1.2 R p , which implies an expanded atmosphere, as a result of the gas heating caused by the irradiation received from the host star. For Hβ and Hγ only HARPS-N covers this wavelength range, measuring an absorption depth of 0.28 ± 0.06 and 0.21 ± 0.07%, respectively. For CaII, only CARMENES covers this wavelength range measuring an absorption depth of 0.28 ± 0.05, 0.41 ± 0.05 and 0.27 ± 0.06% for CaII λ 8498Å, λ 8542Å and λ 8662Å lines, respectively. Three additional absorption lines of FeII are observed in the transmission spectrum by HARPS-N (partially covered by CARMENES), measuring an average absorption depth of 0.08 ± 0.04% (0.75 Å passband). The results presented here are consistent with theoretical models of ultra-hot Jupiters atmospheres, suggesting the emergence of an ionised gas on the day-side of such planets. Calcium and iron, together with other elements, are expected to be singly ionised at these temperatures and be more numerous than its neutral state. The Calcium triplet lines are detected here for the first time in transmission in an exoplanet atmosphere.

Journal ArticleDOI
TL;DR: In this article, an extensive numerical study of the evolution of massive binary systems is performed to predict the peculiar velocities that stars obtain when their companion collapses and disrupts the system.
Abstract: We perform an extensive numerical study of the evolution of massive binary systems to predict the peculiar velocities that stars obtain when their companion collapses and disrupts the system. Our aim is to (i) identify which predictions are robust against model uncertainties and assess their implications, (ii) investigate which physical processes leave a clear imprint and may therefore be constrained observationally, and (iii) provide a suite of publicly available model predictions to allow for the use of kinematic constraints from the Gaia mission. We find that 22+26−8% of all massive binary systems merge prior to the first core-collapse in the system. Of the remainder, 86+11−9% become unbound because of the core-collapse. Remarkably, this rarely produces runaway stars (observationally defined as stars with velocities above 30 km s−1). These are outnumbered by more than an order of magnitude by slower unbound companions, or “walkaway stars”. This is a robust outcome of our simulations and is due to the reversal of the mass ratio prior to the explosion and widening of the orbit, as we show analytically and numerically. For stars more massive than 15 M⊙, we estimate that 10+5−8% are walkaways and only 0.5+1.0−0.4% are runaways, nearly all of which have accreted mass from their companion. Our findings are consistent with earlier studies; however, the low runaway fraction we find is in tension with observed fractions of about 10%. Thus, astrometric data on presently single massive stars can potentially constrain the physics of massive binary evolution. Finally, we show that the high end of the mass distributions of runaway stars is very sensitive to the assumed black hole natal kicks, and we propose this as a potentially stringent test for the explosion mechanism. We also discuss companions remaining bound that can evolve into X-ray and gravitational wave sources.

Journal ArticleDOI
TL;DR: In this paper, the authors used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR 8799 e planet situated at 390 mas from the star.
Abstract: Aims. To date, infrared interferometry at best achieved contrast ratios of a few times 10^(−4) on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR 8799, a young planetary system composed of four known giant exoplanets. Methods. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR 8799 e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100 μas. Results. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of ≈5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150 ± 50 K and a surface gravity of 10^(4.3 ± 0.3) cm s^2. This corresponds to a radius of 1.17_(−0.11)^(+0.13) R_(Jup) and a mass of 10_(−4)^(+7) M_(Jup), which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.

Journal ArticleDOI
TL;DR: In this paper, the relative dust, gas, and metal contents of galaxies evolve by using metallicity and gas fraction as proxies for evolutionary state, and the global oxygen abundance and nitrogen-to-oxygen ratio are found to increase monotonically as galaxies evolve.
Abstract: Observations of evolution in the dust-to-metal ratio allow us to constrain the dominant dust processing mechanisms. In this work, we present a study of the dust-to-metal and dust-to-gas ratios in a sub-sample of ~500 DustPedia galaxies. Using literature and MUSE emission line fluxes, we derived gas-phase metallicities (oxygen abundances) for over 10 000 individual regions and determine characteristic metallicities for each galaxy. We study how the relative dust, gas, and metal contents of galaxies evolve by using metallicity and gas fraction as proxies for evolutionary state. The global oxygen abundance and nitrogen-to-oxygen ratio are found to increase monotonically as galaxies evolve. Additionally, unevolved galaxies (gas fraction >60%, metallicity 12 + log(O∕H) 80%) than the typical dust-to-metal ratio (Md∕MZ ~ 0.214) for more evolved sources. However, for high gas fractions, the scatter is larger due to larger observational uncertainties as well as a potential dependence of the dust grain growth timescale and supernova dust yield on local conditions and star formation histories. We find chemical evolution models with a strong contribution from dust grain growth describe these observations reasonably well. The dust-to-metal ratio is also found to be lower for low stellar masses and high specific star formation rates (with the exception of some sources undergoing a starburst). Finally, the metallicity gradient correlates weakly with the HI-to-stellar mass ratio, the effective radius and the dust-to-stellar mass ratio, but not with stellar mass.