scispace - formally typeset
Search or ask a question

Showing papers in "Astrophysical Journal Supplement Series in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmology data sets.
Abstract: We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO) scale, and the Hubble constant, the matter and energy densities, bh 2 , ch 2 , and , are each determined to a precision of 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to k = 0.0027 +0.0039 0.0038 ; the summed mass of neutrinos is limited to P m < 0.44 eV (95% CL); and the number of relativistic species is found to lie within Ne = 3.84±0.40, when the full data are analyzed. The joint constraint on Ne and the primordial helium abundance, YHe, agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev‐Zel’dovich eect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe. Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter, space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

5,488 citations


Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations


Journal ArticleDOI
TL;DR: The final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission are presented in this paper, where the authors present a highly constrained Lambda-CDM cosmological model with precise and accurate parameters.
Abstract: We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = −0.0027+0.0039/−0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.

2,622 citations


Journal ArticleDOI
TL;DR: In this article, the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars were analyzed using optical spectra taken with the SMARTS 1.5m telescope.
Abstract: We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars using the F0 through M9 type members of nearby, negligibly reddened groups: η Cha cluster, TW Hydra Association, β Pic Moving Group, and Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5m telescope. Combining these new types with published spectral types, and photometry from the literature (Johnson-Cousins BV IC, 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (Teff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new Teff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new Teff scale for pre-MS stars is within ≃100 K of dwarfs at a given spectral type for stars

1,811 citations


Journal ArticleDOI
Natalie M. Batalha1, Natalie M. Batalha2, Jason F. Rowe1, Stephen T. Bryson1, Thomas Barclay1, Christopher J. Burke1, Douglas A. Caldwell1, Jessie L. Christiansen1, Fergal Mullally1, Susan E. Thompson1, Timothy M. Brown3, Andrea K. Dupree4, Daniel C. Fabrycky5, Eric B. Ford6, Jonathan J. Fortney5, Ronald L. Gilliland7, Howard Isaacson8, David W. Latham4, Geoffrey W. Marcy8, Samuel N. Quinn9, Samuel N. Quinn4, Darin Ragozzine4, Avi Shporer3, William J. Borucki1, David R. Ciardi10, Thomas N. Gautier10, Michael R. Haas1, Jon M. Jenkins1, David G. Koch1, Jack J. Lissauer1, William Rapin1, Gibor Basri8, Alan P. Boss11, Lars A. Buchhave12, Joshua A. Carter4, David Charbonneau4, Joergen Christensen-Dalsgaard13, Bruce D. Clarke10, William D. Cochran14, Brice-Olivier Demory15, Jean-Michel Desert4, Edna DeVore16, Laurance R. Doyle16, Gilbert A. Esquerdo4, Mark E. Everett, Francois Fressin4, John C. Geary4, Forrest R. Girouard1, Alan Gould17, Jennifer R. Hall1, Matthew J. Holman4, Andrew W. Howard8, Steve B. Howell1, Khadeejah A. Ibrahim1, Karen Kinemuchi1, Hans Kjeldsen13, Todd C. Klaus1, Jie Li1, Philip W. Lucas18, Søren Meibom4, Robert L. Morris1, Andrej Prsa19, Elisa V. Quintana1, Dwight T. Sanderfer1, Dimitar Sasselov4, Shawn Seader1, Jeffrey C. Smith1, Jason H. Steffen20, Martin Still1, Martin C. Stumpe1, Jill Tarter16, Peter Tenenbaum1, Guillermo Torres4, Joseph D. Twicken1, Kamal Uddin1, Jeffrey Van Cleve1, Lucianne M. Walkowicz21, William F. Welsh22 
TL;DR: In this paper, the authors verified nearly 5000 periodic transit-like signals against astrophysical and instrumental false positives yielding 1108 viable new transiting planet candidates, bringing the total count up to over 2300.
Abstract: New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.

1,271 citations


Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Marco Ajello3, Alice Allafort4  +254 moreInstitutions (60)
TL;DR: In this article, a catalog of gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite is presented.
Abstract: This catalog summarizes 117 high-confidence > 0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data, through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

929 citations


Journal ArticleDOI
TL;DR: The DEEP2 Galaxy Redshift Survey (DEEP2) as discussed by the authors is the largest high-precision redshift survey of galaxies at z ~ 1 completed to date, covering an area of 2.8 deg^2 divided into four separate fields observed to a limiting apparent magnitude of R_(AB) = 24.1.
Abstract: We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = −20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg^2 divided into four separate fields observed to a limiting apparent magnitude of R_(AB) = 24.1. Objects with z ≾0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O ii] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm^(−1) grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z ~ 1, approaching ~5%–10% at z > 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z ~ 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far.

776 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a CANDELS/GOODS-S multi-wavelength catalog based on source detection in the WFC3 F160W band, which contains 34,930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1?AB.
Abstract: We present a UV to mid-infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5? limiting depth (within an aperture of radius 0.''17) of 27.4, 28.2, and 29.7?AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34,930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1?AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 ?m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zero-point offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 1010 M ? at a 50% completeness level to z ~ 3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z ~ 2-4 via the Balmer break. It is also used to study the color-magnitude diagram of galaxies at 0 < z < 4.

541 citations


Journal ArticleDOI
TL;DR: The Swift/Burst Alert Telescope (BAT) provides near real-time coverage of the X-ray sky in the energy range 15-50 keV with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s as mentioned in this paper.
Abstract: The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

520 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands.
Abstract: We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {submore » 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less

419 citations


Journal ArticleDOI
TL;DR: In this paper, an absolute flux density scale for centimeter-wavelength astronomy was developed by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe.
Abstract: We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive theirmore » brightness temperatures over the same frequency range.« less

Journal ArticleDOI
TL;DR: A new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog is presented in this paper.
Abstract: We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

Journal ArticleDOI
TL;DR: In this article, a grid-based analysis was used to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars using the NASA Kepler data obtained during the first 10 months of Kepler science operations, when these solar-type targets were observed for one month each in survey mode.
Abstract: We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data Homogeneous sets of effective temperatures, T eff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths) The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 108% (54%) in mass, 44% (22%) in radius, 0017 dex (0010 dex) in log g, and 43% (28%) in mean density Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important

Journal ArticleDOI
TL;DR: In this article, the authors studied the statistical properties of the occurrence rate of superflares on G-type dwarfs, and confirmed the previous results, i.e., occurrence rate (dN/dE) of super-flares versus flare energy (E) shows a power-law distribution with dN/DEE −α, where α ~ 2.
Abstract: By extending our previous study by Maehara et al., we searched for superflares on G-type dwarfs (solar-type stars) using Kepler data for a longer period (500 days) than that (120 days) in our previous study. As a result, we found 1547 superflares on 279 G-type dwarfs, which is much more than the previous 365 superflares on 148 stars. Using these new data, we studied the statistical properties of the occurrence rate of superflares, and confirmed the previous results, i.e., the occurrence rate (dN/dE) of superflares versus flare energy (E) shows a power-law distribution with dN/dEE –α, where α ~ 2. It is interesting that this distribution is roughly similar to that for solar flares. In the case of the Sun-like stars (with surface temperature 5600-6000 K and slowly rotating with a period longer than 10 days), the occurrence rate of superflares with an energy of 1034-1035 erg is once in 800-5000 yr. We also studied long-term (500 days) stellar brightness variation of these superflare stars and found that in some G-type dwarfs the occurrence rate of superflares was extremely high, ~57 superflares in 500 days (i.e., once in 10 days). In the case of Sun-like stars, the most active stars show a frequency of one superflare (with 1034 erg) in 100 days. There is evidence that these superflare stars have extremely large starspots with a size about 10 times larger than that of the largest sunspot. We argue that the physical origin of the extremely high occurrence rate of superflares in these stars may be attributed to the existence of extremely large starspots.

Journal ArticleDOI
TL;DR: The most recent version of the PS1 Photometric Ladder, Release 12.01 as mentioned in this paper, is the first of a series of data releases to be generated as the survey coverage increases and the data analysis improves.
Abstract: As of 2012 January 21, the Pan-STARRS 1 3π Survey has observed the 3/4 of the sky visible from Hawaii with a minimum of 2 and mean of 7.6 observations in five filters, g P1, r P1, i P1, z P1, y P1. Now at the end of the second year of the mission, we are in a position to make an initial public release of a portion of this unprecedented data set. This article describes the PS1 Photometric Ladder, Release 12.01. This is the first of a series of data releases to be generated as the survey coverage increases and the data analysis improves. The Photometric Ladder has rungs every hour in right ascension and at four intervals in declination. We will release updates with increased area coverage (more rungs) from the latest data set until the PS1 survey and the final re-reduction are completed. The currently released catalog presents photometry of ~1000 objects per square degree in the rungs of the ladder. Saturation occurs at g P1, r P1, i P1 ~ 13.5; z P1 ~ 13.0; and y P1 ~ 12.0. Photometry is provided for stars down to g P1, r P1, i P1 ~ 19.1 in the AB system. This data release depends on the rigid "Ubercal" photometric calibration using only the photometric nights, with systematic uncertainties of (8.0, 7.0, 9.0, 10.7, 12.4) mmag in (g P1, r P1, i P1, z P1, y P1). Areas covered only with lower quality nights are also included, and have been tied to the Ubercal solution via relative photometry; photometric accuracy of the non-photometric regions is lower and should be used with caution.

Journal ArticleDOI
TL;DR: In this article, the authors presented the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost Equal-To-L * galaxies drawn from the COS-Halos survey.
Abstract: We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that themore » cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.« less

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Katsuaki Asano2, Magnus Axelsson3  +214 moreInstitutions (45)
TL;DR: The first Fermi-LAT catalog of gamma-ray bursts (GRBs) is presented in this paper. But it is limited to GRBs detected by the Gamma-Ray Burst Monitor (GBM).
Abstract: In three years of observations since the beginning of nominal science operations in August 2008, the Large Area Telescope (LAT) on board the Fermi Gamma Ray Space Telescope has observed high-energy (>20 MeV) \gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ~ 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared to emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

Journal ArticleDOI
TL;DR: In this paper, the effects of both the new atomic data and the κ-distribution on the strong-line techniques used to determine chemical abundances in H II regions were explored.
Abstract: Recently, Nicholls et al, inspired by in situ observations of solar system astrophysical plasmas, suggested that the electrons in H II regions are characterized by a κ-distribution of energies rather than a simple Maxwell-Boltzmann distribution Here, we have collected together new atomic data within a modified photoionization code to explore the effects of both the new atomic data and the κ-distribution on the strong-line techniques used to determine chemical abundances in H II regions By comparing the recombination temperatures (T {sub rec}) with the forbidden line temperatures (T {sub FL}), we conclude that κ ∼ 20 While representing only a mild deviation from equilibrium, this result is sufficient to strongly influence abundances determined using methods that depend on measurements of the electron temperature from forbidden lines We present a number of new emission line ratio diagnostics that cleanly separate the two parameters determining the optical spectrum of H II regions—the ionization parameter q or U and the chemical abundance, 12+log(O/H) An automated code to extract these parameters is presented Using the homogeneous data set from van Zee et al, we find self-consistent results between all of these different diagnostics The systematic errors between different line ratio diagnostics are much smallermore » than those found in the earlier strong-line work Overall, the effect of the κ-distribution on the strong-line abundances derived solely on the basis of theoretical models is rather small« less

Journal ArticleDOI
TL;DR: In this paper, the authors present a multiwavelength catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).
Abstract: We present the multiwavelength—ultraviolet to mid-infrared—catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, Rc , i', and z' band data from Subaru/Suprime-Cam; Y and Ks band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 μm from SEDS; 5.8 and 8.0 μm from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin2 and includes radio- and X-ray-detected sources and spectroscopic redshifts available for 210 sources.

Journal ArticleDOI
TL;DR: The eXtreme deep field (XDF) dataset as mentioned in this paper combines data from 10 years of observations with the Hubble Space Telescope Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR.
Abstract: The eXtreme Deep Field (XDF) combines data from 10 years of observations with the Hubble Space Telescope Advanced Camera for Surveys (ACS) and the Wide-Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR. Since the initial observations of the Hubble Ultra-Deep Field (HUDF) in 2003, numerous surveys and programs, including supernovae follow-up, HUDF09, CANDELS, and HUDF12, have contributed additional imaging data across this region. However, these images have never been combined and made available as one complete ultra-deep image dataset. We combine them now with the XDF program. Our new and improved processing techniques provide higher quality reductions of the total dataset. All WFC3/IR and optical ACS data sets have been fully combined and accurately matched, resulting in the deepest imaging ever taken at these wavelengths, ranging from 29.1 to 30.3 AB mag (5σ in a 0.''35 diameter aperture) in 9 filters. The combined image therefore reaches to 31.2 AB mag 5σ (32.9 at 1σ) for a flat f ν source. The gains in the optical for the four filters done in the original ACS HUDF correspond to a typical improvement of 0.15 mag, with gains of 0.25 mag in the deepest areas. Such gains are equivalent to adding ~130 to ~240 orbits of ACS data to the HUDF. Improved processing alone results in a typical gain of ~0.1 mag. Our 5σ (optical+near-IR) SExtractor catalogs reveal about 14,140 sources in the full field and about 7121 galaxies in the deepest part of the XDF.

Journal ArticleDOI
TL;DR: The Red MSX Source survey as mentioned in this paper is the largest statistically selected catalog of young massive protostars and H II regions to date, with a positional accuracy of better than 2 arcsec.
Abstract: We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

Journal ArticleDOI
TL;DR: In this article, the inclination of active galactic nuclei (AGNs) is determined by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph.
Abstract: Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk.

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Alice Allafort2, W. B. Atwood3  +188 moreInstitutions (45)
TL;DR: The first Fermi-LAT catalog of >10GeV sources (1FHL) has 514 sources as discussed by the authors, of which 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei.
Abstract: We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first three years of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10GeV (>25GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27+/-8 % of the isotropic gamma-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based gamma-ray observatories.

Journal ArticleDOI
TL;DR: AGORA as mentioned in this paper is a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology, which is run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M = 0.
Abstract: We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ~100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M_(vir) ≃ 10^(10), 10^(11), 10^(12), and 10^(13) M_☉ at z = 0 and two different ("violent" and "quiescent") assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust—i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy "metabolism." The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M_(vir) ≃ 1.7 × 10^(11) M_☉ by nine different versions of the participating codes is also presented to validate the infrastructure of the project.

Journal ArticleDOI
TL;DR: In the first systematic search for Type Ia supernovae (SNe Ia-CSM) as mentioned in this paper, the authors presented new spectra of 13 of them and analyzed them in depth for the first time.
Abstract: Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by Hα emission (with widths of ~2000 km s^(–1)) and exhibit large Hα/Hβ intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of Hα 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be –21.3 mag ≤ M_R ≤ –19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

Journal ArticleDOI
TL;DR: In this paper, a homogeneous analysis of line and continuum emission from simultaneous high-cadence spectra and photometry covering near-ultraviolet and optical wavelengths for 20?M dwarf flares is presented.
Abstract: We present a homogeneous analysis of line and continuum emission from simultaneous high-cadence spectra and photometry covering near-ultraviolet and optical wavelengths for 20?M dwarf flares. These data were obtained to study the white-light continuum components at bluer and redder wavelengths than the Balmer jump. Our goals were to break the degeneracy between emission mechanisms that have been fit to broadband colors of flares and to provide constraints for radiative-hydrodynamic (RHD) flare models that seek to reproduce the white-light flare emission. The main results from the analysis are the following: (1) the detection of Balmer continuum (in emission) that is present during all flares and with a wide range of relative contributions to the continuum flux at bluer wavelengths than the Balmer jump; (2) a blue continuum at flare maximum that is linearly decreasing with wavelength from ? = 4000-4800 ?, indicative of hot, blackbody emission with typical temperatures of T BB ~ 9000-14, 000?K; (3) a redder continuum apparent at wavelengths longer than H? (? 4900 ?) which becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component have been detected in previous studies of flares. However, we have found that although the hot blackbody emission component is relatively well-represented by a featureless, single-temperature Planck function, this component includes absorption features and has a continuum shape strikingly similar to the spectrum of an A-type star as directly observed in our flare spectra. New model constraints are presented for the time evolution among the hydrogen Balmer lines and between Ca II K and the blackbody continuum emission. We calculate Balmer jump flux ratios and compare to the solar-type flare heating predictions from RHD models. The model ratios are too large and the blue-optical (? = 4000-4800 ?) slopes are too red in both the impulsive and gradual decay phases of all 20 flares. This discrepancy implies that further work is needed to understand the heating at high column mass during dMe flares.

Journal ArticleDOI
TL;DR: In this article, the authors presented a catalog of bulge, disk, and total stellar mass estimates for ~660,000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7.
Abstract: We present a catalog of bulge, disk, and total stellar mass estimates for ~660,000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al., which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here.

Journal ArticleDOI
TL;DR: In this paper, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.
Abstract: Large-scale structures (LSSs) out to z 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.

Journal ArticleDOI
TL;DR: In this paper, the authors derived the transit timing of 1960 Kepler objects of interest (KOIs) using the pre-search data conditioning light curves of the first twelve quarters of the Kepler data.
Abstract: Following the works of Ford et al. and Steffen et al. we derived the transit timing of 1960 Kepler objects of interest (KOIs) using the pre-search data conditioning light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough signal-to-noise ratios, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant times of transit variations (TTVs) and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV—the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude.

Journal ArticleDOI
TL;DR: In this article, the authors present low-resolution Spitzer Infrared Spectrograph spectra covering 5-38 μm and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs.
Abstract: The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 μm and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10^(11) ≤ L_(IR)/L_☉ 60%) of the GOALS LIRGs have high 6.2 μm polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW_(6.2 μm) > 0.4 μm) and low levels of silicate absorption (s 9.7 μm > –1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L_(IR). U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW_(6.2 μm) < 0.1 μm) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR emission, suggesting that the obscuring (cool) dust is associated with the outer regions of the starburst and not simply a measure of the dust along the line of sight through a large, dusty disk. A marked decline is seen for the fraction of high EQW (star formation dominated) sources as the merger progresses. The decline is accompanied by an increase in the fraction of composite sources while the fraction of sources where an AGN dominates the MIR emission remains low. When compared to the MIR spectra of submillimeter galaxies (SMGs) at z ~ 2, both the average GOALS LIRG and ULIRG spectra are more absorbed at 9.7 μm and the average GOALS LIRG has more PAH emission. However, when the AGN contributions to both the local GOALS LIRGs and the high-z SMGs are removed, the average local starbursting LIRG closely resembles the starburst-dominated SMGs.