Journal•ISSN: 0004-6981
Atmospheric Environment
Elsevier BV
About: Atmospheric Environment is an academic journal. The journal publishes majorly in the area(s): Aerosol & Air quality index. Over the lifetime, 22971 publications have been published receiving 1068012 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This paper presents a general introduction and discussion of recent applications of the multilayer perceptron, one type of artificial neural network, in the atmospheric sciences.
Abstract: Artificial neural networks are appearing as useful alternatives to traditional statistical modelling techniques in many scientific disciplines. This paper presents a general introduction and discussion of recent applications of the multilayer perceptron, one type of artificial neural network, in the atmospheric sciences.
2,389 citations
[...]
TL;DR: The present status of knowledge of the gas phase reactions of inorganic Ox, Hox and NOx species and of selected classes of volatile organic compounds (VOCs) and their degradation products in the troposphere is discussed in this paper.
Abstract: The present status of knowledge of the gas-phase reactions of inorganic Ox, HOx and NOx species and of selected classes of volatile organic compounds (VOCs) [alkanes, alkenes, aromatic hydrocarbons, oxygen-containing VOCs and nitrogen-containing VOCs] and their degradation products in the troposphere is discussed. There is now a good qualitative and, in a number of areas, quantitative understanding of the tropospheric chemistry of NOx and VOCs involved in the photochemical formation of ozone. During the past five years much progress has been made in elucidating the reactions of alkoxy radicals, the mechanisms of the gas-phase reactions of O3 with alkenes, and the mechanisms and products of the OH radical-initiated reactions of aromatic hydrocarbons, and further progress is expected. However, there are still areas of uncertainty which impact the ability to accurately model the formation of ozone in urban, rural and regional areas, and these include a need for: rate constants and mechanisms of the reactions of organic peroxy ( R O 2 ) radicals with NO, NO3 radicals, HO2 radicals and other R O 2 radicals; organic nitrate yields from the reactions of R O 2 radicals with NO, preferably as a function of temperature and pressure; the reaction rates of alkoxy radicals for decomposition, isomerization, and reaction with O2, especially for alkoxy radicals other than those formed from alkanes and alkenes; the detailed mechanisms of the reactions of O3 with alkenes and VOCs containing >CC
2,367 citations
[...]
TL;DR: The WRF/Chem model is statistically better skilled in forecasting O3 than MM5/Chem, with no appreciable differences between models in terms of bias with the observations, and consistently exhibits better skill at forecasting the O3 precursors CO and NOy at all of the surface sites.
Abstract: A fully coupled ‘‘online’’ Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the same grid (horizontal and vertical components), and the same physics schemes for subgrid-scale transport. The components also use the same timestep, hence no temporal interpolation is needed. The chemistry package consists of dry deposition (‘‘flux-resistance’’ method), biogenic emission as in [Simpson et al., 1995. Journal of Geophysical Research 100D, 22875–22890; Guenther et al., 1994. Atmospheric Environment 28, 1197–1210], the chemical mechanism from RADM2, a complex photolysis scheme (Madronich scheme coupled with hydrometeors), and a state of the art aerosol module (MADE/SORGAM aerosol parameterization). The WRF/Chem model is statistically evaluated and compared to MM5/Chem and to detailed photochemical data collected during the summer 2002 NEAQS field study. It is shown that the WRF/Chem model is statistically better skilled in forecasting O3 than MM5/Chem, with no appreciable differences between models in terms of bias with the observations. Furthermore, the WRF/Chem model consistently exhibits better skill at forecasting the O3 precursors CO and NOy at all of the surface sites. However, the WRF/Chem model biases of these precursors and of other gas-phase species are persistently higher than for MM5/Chem, and are most often biased high compared to observations. Finally, we show that the impact of other basic model assumptions on these same statistics can be much larger than the differences caused by model differences. An example showing the sensitivity of various statistical measures with respect to the treatment of biogenic volatile organic compounds emissions illustrates this impact. r 2005 Elsevier Ltd. All rights reserved.
2,237 citations
[...]
TL;DR: In this article, the authors proposed a method for estimating the dry deposition velocities of atmospheric gases in the U.S. and surrounding areas and incorporated it into a revised computer code module for use in numerical models of atmospheric transport and deposition of pollutants over regional scales.
Abstract: Methods for estimating the dry deposition velocities of atmospheric gases in the U.S. and surrounding areas have been improved and incorporated into a revised computer code module for use in numerical models of atmospheric transport and deposition of pollutants over regional scales. The key improvement is the computation of bulk surface resistances along three distinct pathways of mass transfer to sites of deposition at the upper portions of vegetative canopies or structures, the lower portions, and the ground (or water surface). This approach replaces the previous technique of providing simple look-up tables of bulk surface resistances. With the surface resistances divided explicitly into distinct pathways, the bulk surface resistances for a large number of gases in addition to those usually addressed in acid deposition models (SO2,O3, NOx and HNO3) can be computed, if estimates of the effective Henry's Law constants and appropriate measures of the chemical reactivity of the various substances are known. This has been accomplished successfully for H2O2, HCHO, CH3CHO (to represent other aldehydes), CH3O2H (to represent organic peroxides), CH3C(O)O2H, HCOOH (to represent organic acids), NH3, CH3C(O)O2NO2 and HNO2. Other factors considered include surface temperature, stomatal response to environmental parameters, the wetting of surfaces by dew and rain, and the covering of surfaces by snow. Surface emission of gases and variations of uptake characteristics by individual plant species within the landuse types are not considered explicitly.
2,083 citations
[...]
TL;DR: In this article, the authors demonstrate the relationship existing between the size of a village, town or city and the magnitude of the urban heat island it produces by analyzing data gathered by automobile traverses in 10 settlements on the St. Lawrence Lowland, whose populations range from 1000 to 2 million inhabitants.
Abstract: The paper demonstrates the relationship existing between the size of a village, town or city (as measured by its population), and the magnitude of the urban heat island it produces. This is accomplished by analyzing data gathered by automobile traverses in 10 settlements on the St. Lawrence Lowland, whose populations range from 1000 to 2 million inhabitants. The locations of these settlements effectively eliminate all non-urban climatic influences. The results are compared with previously published data. The analysis shows the heat island intensity under cloudless skies to be related to the inverse of the regional windspeed, and the logarithm of the population. A simple model is derived which incorporates these controls. In agreement with an extension of Summers' model the heat island appears to be approximately proportional to the fourth root of the population. With calm and clear conditions the relation is shown to hold remarkably well for North American settlements, and in a slightly modified form, for European towns and cities.
1,938 citations