scispace - formally typeset
Search or ask a question

Showing papers in "Autophagy in 2010"


Journal ArticleDOI
TL;DR: Hierarchical analyses suggest that ULK1, Atg14 and VMP1 localize to the ER-associated autophagosome formation sites in a PI3-kinase activity-independent manner.
Abstract: Autophagy is an intracellular degradation process, through which cytosolic materials are delivered to the lysosome. Despite recent identification of many autophagy-related genes, how autophagosomes are generated remains unclear. Here, we examined the hierarchical relationships among mammalian Atg proteins. Under starvation conditions, ULK1, Atg14, WIPI-1, LC3 and Atg16L1 target to the same compartment, whereas DFCP1 localizes adjacently to these Atg proteins. In terms of puncta formation, the protein complex including ULK1 and FIP200 is the most upstream unit and is required for puncta formation of the Atg14-containing PI3-kinase complex. Puncta formation of both DFCP1 and WIPI-1 requires FIP200 and Atg14. The Atg12-Atg5-Atg16L1 complex and LC3 are downstream units among these factors. The punctate structures containing upstream Atg proteins such as ULK1 and Atg14 tightly associate with the ER, where the ER protein vacuole membrane protein 1 (VMP1) also transiently localizes. These structures are formed even when cells are treated with wortmannin to suppress autophagosome formation. These hierarchical analyses suggest that ULK1, Atg14 and VMP1 localize to the ER-associated autophagosome formation sites in a PI3-kinase activity-independent manner.

746 citations


Journal ArticleDOI
TL;DR: It is demonstrated that mitochondria are aggregated by p62, following its recruitment by Parkin in a VDAC1-independent manner, and it is suggested that proteins other than p62 are likely required for mitophagy downstream of Parkin substrates other than VD AC1.
Abstract: Mitochondria sustain damage with aging, and the resulting mitochondrial dysfunction has been implicated in a number of diseases including Parkinson disease. We recently demonstrated that the E3 ubiquitin ligase Parkin, which is linked to recessive forms of parkinsonism, causes a dramatic increase in mitophagy and a change in mitochondrial distribution, following its translocation from the cytosol to mitochondria. Investigating how Parkin induces these changes may offer insight into the mechanisms that lead to the sequestration and elimination of damaged mitochondria. We report that following Parkin’s translocation from the cytosol to mitochondria, Parkin (but not a pathogenic mutant) promotes the K63-linked polyubiquitination of mitochondrial substrate(s) and recruits the ubiquitin- and LC3-binding protein, p62/SQSTM1, to mitochondria. After its recruitment, p62/SQSTM1 mediates the aggregation of dysfunctional mitochondria through polymerization via its PB1 domain, in a manner analogous to its aggregation of polyubiquitinated proteins. Surprisingly and in contrast to what has been recently reported for ubiquitin-induced pexophagy and xenophagy, p62 appears to be dispensable for mitophagy. Similarly, mitochondrial-anchored ubiquitin is sufficient to recruit p62 and promote mitochondrial clustering, but does not promote mitophagy. Although VDAC1 (but not VDAC2) is ubiquitinated following mitochondrial depolarization, we find VDAC1 cannot fully account for the mitochondrial K63-linked ubiquitin immunoreactivity observed following depolarization, as it is also observed in VDAC1/3-/- mouse embryonic fibroblasts. Additionally, we find VDAC1 and VDAC3 are dispensable for the recruitment of p62, mitochondrial clustering and mitophagy. These results demonstrate that mitochondria are aggregated by p62, following its recruitment by Parkin in a VDAC1-independent manner. They also suggest that proteins other than p62 are likely required for mitophagy downstream of Parkin substrates other than VDAC1.

697 citations


Journal ArticleDOI
TL;DR: A role for WIPI2 in the progression of omegasomes into autophagosomes is proposed, which is thought to act as platforms forAutophagosome formation.
Abstract: Autophagosome formation is a complex process that begins with the nucleation of a pre-autophagosomal structure (PAS) that expands into a phagophore or isolation membrane, the precursor of the autophagosome. A key event in the formation of the phagophore is the production of PtdIns3P by the phosphatidylinsitol kinase Vps34. In yeast the two closely related proteins, Atg18 and Atg21, are the only known effectors of PtdIns3P that act in the autophagy pathway. The recruitment of Atg18 or Atg21 to the PAS is an essential step in the formation of the phagophore. Our bioinformatic analysis of the Atg18 and Atg21 orthologues in all eukaryotes shows that WIPI1 and WIPI2 are both mammalian orthologues of Atg18. We show that WIPI2 is a mammalian effector of PtdIns3P and is ubiquitously expressed in a variety of cell lines. WIPI2 is recruited to early autophagosomal structures along with Atg16L and ULK1 and is required for the formation of LC3-positive autophagosomes. Furthermore, when WIPI2 is depleted, we observe a...

603 citations


Journal ArticleDOI
TL;DR: The data suggest that, depending on the cellular features, either the induction or the inhibition of autophagy can provide therapeutic benefits to patients and that the design and synthesis of the first-generation modulators of Autophagy may provide the tools for proof of concept experiments and the impetus for translational studies that may ultimately lead to new therapeutic strategies in cancer.
Abstract: Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles. While autophagy has become one of the most attractive topics in cancer research, the current autophagy literature is often viewed as confusing, because of its association with apparently contradictory roles, such as survival and cell death. Autophagy can serve as a tumor suppressor, as a partial reduction in autophagic capacity or defective autophagy (e.g., heterozygous knockdown BECN1 (+/-) in mice) provides an oncogenic stimulus, causing malignant transformation and spontaneous tumors. In addition, autophagy seems to function as a protective cell survival mechanism against environmental and cellular stress (e.g., nutrient deprivation, hypoxia and therapeutic stress) and causes resistance to antineoplastic therapies. Recent studies have demonstrated that the inhibition of autophagy in cancer cells may be therapeutically beneficial in some circumstances, as it can sensitize cancer cells to different therapies, including DNA-damaging agents, antihormone therapies (e.g., tamoxifen), and radiation therapy. This supports the hypothesis that inhibiting autophagy can negatively influence cancer cell survival and increase cell death when combined with anticancer agents, providing a therapeutic advantage against cancer. On the other hand, the induction of autophagy by the inhibition of anti-autophagic proteins, such as Bcl-2, PKCdelta, and tissue transglutaminase 2 (TG2), may lead to autophagic cell death in some apoptosis-resistant cancers (i.e., breast and pancreatic cancers), indicating that the induction of autophagy alone may also be used as a potential therapy. Overall, the data suggest that, depending on the cellular features, either the induction or the inhibition of autophagy can provide therapeutic benefits to patients and that the design and synthesis of the first-generation modulators of autophagy may provide the tools for proof of concept experiments and the impetus for translational studies that may ultimately lead to new therapeutic strategies in cancer.

411 citations


Journal ArticleDOI
TL;DR: It is concluded that VCP is essential for maturation of ubiquitin-containing autophagosomes and that defect in this function may contribute to IBMPFD pathogenesis.
Abstract: VCP (VCP/p97) is a ubiquitously expressed member of the AAA(+)-ATPase family of chaperone-like proteins that regulates numerous cellular processes including chromatin decondensation, homotypic membrane fusion and ubiquitin-dependent protein degradation by the proteasome. Mutations in VCP cause a multisystem degenerative disease consisting of inclusion body myopathy, Paget disease of bone, and frontotemporal dementia (IBMPFD). Here we show that VCP is essential for autophagosome maturation. We generated cells stably expressing dual-tagged LC3 (mCherry-EGFP-LC3) which permit monitoring of autophagosome maturation. We determined that VCP deficiency by RNAi-mediated knockdown or overexpression of dominant-negative VCP results in significant accumulation of immature autophagic vesicles, some of which are abnormally large, acidified and exhibit cathepsin B activity. Furthermore, expression of disease-associated VCP mutants (R155H and A232E) also causes this autophagy defect. VCP was found to be essential to autophagosome maturation under basal conditions and in cells challenged by proteasome inhibition, but not in cells challenged by starvation, suggesting that VCP might be selectively required for autophagic degradation of ubiquitinated substrates. Indeed, a high percentage of the accumulated autophagic vesicles contain ubiquitin-positive contents, a feature that is not observed in autophagic vesicles that accumulate following starvation or treatment with Bafilomycin A. Finally, we show accumulation of numerous, large LAMP-1 and LAMP-2-positive vacuoles and accumulation of LC3-II in myoblasts derived from patients with IBMPFD. We conclude that VCP is essential for maturation of ubiquitin-containing autophagosomes and that defect in this function may contribute to IBMPFD pathogenesis.

410 citations


Journal ArticleDOI
TL;DR: It is demonstrated that ER stress-induced cell death was mediated by autophagy which was partly attributed to the inactivation of the mammalian target of rapamycin (mTOR) and the downregulation of AKT/TSC/mTOR pathway.
Abstract: Disturbance to endoplasmic reticulum (ER) homeostasis that cannot be rescued by the unfolded protein response (UPR) results in autophagy and cell death, but the precise mechanism was largely unknown. Here we demonstrated that ER stress-induced cell death was mediated by autophagy which was partly attributed to the inactivation of the mammalian target of rapamycin (mTOR). Three widely used ER stress inducers including tunicamycin, DTT and MG132 led to the conversion of LC3-I to LC3-II , a commonly used marker of autophagy, as well as the downregulation of mTOR concurrently. TSC -deficient cells with constitutive activation of mTOR exhibited more resistance to ER stress-induced autophagy, compared with their wild-type counterparts. Furthermore, our studies showed that ER stress-induced deactivation of mTOR was attributed to the downregulation of AKT/TSC /mTOR pathway. Phosphatase and tensin homolog (PTEN) and AMP-activated protein kinase (AMPK) as two regulators in this pathway seemed to be absent in this regulation. As a chemical chaperone helping the correct folding of proteins, 4-phenylbutyric acid (4-PBA) partly rescued the AKT/TSC/mTOR pathway in drug-induced acute ER stress. Moreover, constitutively-activated mTOR-induced long-term ER stress attenuated the RTK/PI3K/AKT signaling pathway in response to the stimulation by various growth factors, which could also be partly restored by 4-PBA.

406 citations


Journal ArticleDOI
TL;DR: The results suggest that continuous constitutive autophagy has a crucial role in maintaining cardiac structure and function and the Atg5-deficient mice began to die after the age of 6 months.
Abstract: Constitutive autophagy is important for control of the quality of proteins and organelles to maintain cell function. Damaged proteins and organelles accumulate in aged organs. We have previously reported that cardiac-specific Atg5 (autophagy-related gene 5)-deficient mice, in which the gene was floxed out early in embryogenesis, were born normally, and showed normal cardiac function and structure up to 10 weeks old. In the present study, to determine the longer-term consequences of Atg5-deficiency in the heart, we monitored cardiac-specific Atg5-deficient mice for further 12 months. First, we examined the age-associated changes of autophagy in the wild-type mouse heart. The level of autophagy, as indicated by decreased LC3-II (microtubule-associated protein 1 light chain 3-II) levels, in the hearts of 6-, 14- or 26-month-old mice was lower than that of 10-week-old mice. Next, we investigated the cardiac function and life-span in cardiac-specific Atg5-deficient mice. The Atg5-deficient mice began to die after the age of 6 months. Atg5-deficient mice exhibited a significant increase in left ventricular dimension and decrease in fractional shortening of the left ventricle at the age of 10 months, compared to control mice, while they showed similar chamber size and contractile function at the age of 3 months. Ultrastructural analysis revealed a disorganized sarcomere structure and collapsed mitochondria in 3- and 10-month-old Atg5-deficient mice, with decreased mitochondrial respiratory functions. These results suggest that continuous constitutive autophagy has a crucial role in maintaining cardiac structure and function.

389 citations


Journal ArticleDOI
TL;DR: The current findings are the first to provide evidence for regulation of caspase activity by autophagy and thus broaden the molecular basis for the observed polarization between autophagic and apoptosis.
Abstract: Apoptotic defects endow tumor cells with survival advantages. Such defects allow the cellular stress response to take the path of cytoprotective autophagy, which either precedes or effectively blocks an apoptotic cascade. Inhibition of the cytoprotective autophagic response shifts the cells toward apoptosis, by interfering with an underlying molecular mechanism of cytoprotection. The current study has identified such a mechanism that is centered on the regulation of caspase-8 activity. The study took advantage of Bax(-/-) Hct116 cells that are TRAIL-resistant despite significant DISC processing of caspase-8, and of the availability of a caspase-8-specific antibody that exclusively detects the caspase-8 large subunit or its processed precursor. Utilizing these biological tools, we investigated the expression pattern and subcellular localization of active caspase-8 in TRAIL-mediated autophagy and in the autophagy-to-apoptosis shift upon autophagy inhibition. Our results suggest that the TRAIL-mediated autophagic response counter-balances the TRAIL-mediated apoptotic response by the continuous sequestration of the large caspase-8 subunit in autophagosomes and its subsequent elimination in lysosomes. The current findings are the first to provide evidence for regulation of caspase activity by autophagy and thus broaden the molecular basis for the observed polarization between autophagy and apoptosis.

324 citations


Journal ArticleDOI
TL;DR: It is shown that whole mitochondria are turned over via macroautophagy, and PD-associated PINK1 mutations abrogate autophagy of impaired mitochondria upstream of Parkin, which may contribute to disease pathogenesis.
Abstract: Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin recruitment to impaired mitochondria. PD-associated Parkin mutations interfere with the process of mitophagy at distinct steps. Here we show that whole mitochondria are turned over via macroautophagy. Moreover, disease-associated PINK1 mutations also compromise the selective degradation of depolarized mitochondria. This may be due to the decreased physical binding activity of PD-linked PINK1 mutations to Parkin. Thus, PINK1 mutations abrogate autophagy of impaired mitochondria upstream of Parkin. In addition to compromised PINK1 kinase activity, reduced binding of PINK1 to Parkin leads to failure in Parkin mitochondrial translocation, resulting in the accumulation of damaged mitochondria, wh...

281 citations


Journal ArticleDOI
TL;DR: It is shown here that p62 is required to recruit the large phosphoinositide-binding protein ALFY to cytoplasmic p62 bodies generated upon amino acid starvation or puromycin-treatment, demonstrating that ALFY is required for autophagic degradation of p62-associated ubiquitinated proteins in vivo.
Abstract: Accumulation of ubiquitinated proteins in cytoplasmic and/or nuclear inclusions is a hallmark of several diseases associated with premature cell death. SQSTM1/p62 is known to bind ubiquitinated substrates and aid their aggregation and degradation by macroautophagy. We show here that p62 is required to recruit the large phosphoinositide-binding protein ALFY to cytoplasmic p62 bodies generated upon amino acid starvation or puromycin-treatment. ALFY, as well as p62, is required for formation and autophagic degradation of cytoplasmic ubiquitin-positive inclusions. Moreover, both p62 and ALFY localize to nuclear promyleocytic leukemia (PML) bodies. The Drosophila p62 homologue Ref(2) P accumulates in ubiquitinated inclusions in the brain of flies carrying mutations in the ALFY homologue Blue cheese, demonstrating that ALFY is required for autophagic degradation of p62-associated ubiquitinated proteins in vivo. We conclude that p62 and ALFY interact to organize misfolded, ubiquitinated proteins into protein bodies that become degraded by autophagy.

272 citations


Journal ArticleDOI
TL;DR: The role of autophagy in cancer cells responding to ROS-producing agents, which are utilized as a therapeutic modality to kill cancer cells are focused on.
Abstract: Mounting evidence suggests that reactive oxygen species (ROS) are multifaceted signalling molecules implicated in a variety of cellular programs during physiological as well as pathological conditions. Recently, ROS produced endogenously, by deranged metabolism of cancer cells, or exogenously, by ROS-generating drugs, have been shown to promote macroautophagy, a lysosomal pathway of self-degradation with essential prosurvival functions. Several molecular aspects of the modulation of autophagy pathways by ROS have been revealed in the past years and it is now clear that these processes are mutually linked and play a crucial role in cancer progression and in response to cancer therapeutics. In this review we address the molecular mechanisms underlying the activation of autophagy pathways by ROS and focus on the role of autophagy in cancer cells responding to ROS-producing agents, which are utilized as a therapeutic modality to kill cancer cells.

Journal ArticleDOI
TL;DR: A comprehensive glossary of autophagy-related terms is developed to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors or chemical agents that induce or inhibit Autophagy.
Abstract: Autophagy is a rapidly expanding field in the sense that our knowledge about the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. Similarly, the vocabulary associated with autophagy has grown concomitantly. This fact makes it difficult for readers, even those who work in the field, to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors or chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, or the role of accessory machinery or structures that are associated with autophagy.

Journal ArticleDOI
TL;DR: Data indicate that in neonatal HI autophagy can be part of an integrated pro-survival signalling which includes the PI3K-Akt-mammalian target of rapamycin (mTOR) axis.
Abstract: We have previously shown that in neonatal rats subjected to hypoxia-ischemia (HI) rapamycin administration increases autophagy, decreases apoptosis and significantly reduces brain damage. After HI, when autophagy is blocked neuronal cells rapidly progress toward necrotic cell death. The present study was undertaken to assess the potential role of activation of autophagic and phosphatidylinositol 3-kinase (PI3K)/Akt kinase pathways in the neuroprotective effect of rapamycin. Rapamycin administration caused a significant reduction of 70 kDa S6 kinase (p70S6K) phosphorylation and a significant increase of the autophagic proteins Beclin 1 and microtubule-associated protein 1 light chain 3 (LC3), as of monodansylcadaverine (MDC) labeling in the lesioned side. The phosphorylation of Akt and cAMP response element binding protein (CREB) was increased in neuronal cells, and both p-Akt and p-CREB colocalized with Beclin 1. Wortmannin (WM) administration significantly reduced Akt and CREB phosphorylation as well as the neuroprotective effect of rapamycin but did not affect the phosphorylation of p70S6K, the expression of Beclin 1 and LC3, and MDC labeling. In contrast, 3-methyladenine (3MA) reduced the increased Beclin 1 expression, the MDC labeling and the neuroprotective effect of rapamycin without affecting Akt phosphorylation. However, both compounds significantly increased necrotic cell death. Taken together, these data indicate that in neonatal HI autophagy can be part of an integrated prosurvival signaling which includes the PI3K-Akt-mammalian target of rapamycin (mTOR) axis. When the autophagic or the PI3K-Akt-mTOR pathways are interrupted cells undergo necrotic cell death.

Journal ArticleDOI
TL;DR: The method is used to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and it is shown that short-term fasting leads to a dramatic up-regulation in neuronal autophagy, which is speculated to represent a simple, safe and inexpensive means to promote this potentially-therapeutic neuronal response.
Abstract: Disruption of autophagy—a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes—can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response.

Journal ArticleDOI
TL;DR: Keap1 is assigned a novel positive role in upregulating p62-mediated autophagic clearance of ubiquitin aggregates, and p62 serves as a bridge between Keap1 and ubiquit in aggregates and autophagosomes.
Abstract: The accumulation of ubiquitin-positive protein aggregates has been implicated in the pathogenesis of neurodegenerative diseases, heart disease and diabetes. Emerging evidence indicates that the aut...

Journal ArticleDOI
TL;DR: Autophagy can occur independent of apoptosis in PDT protocols, and appears to play a pro-survival role in apoptosis competent cells, and aPro-death role in euthanasia incompetent cells.
Abstract: Photodynamic therapy (PDT) is a procedure that has applications in the selective eradication of neoplasia where sites of malignant lesions are clearly delineated. It is a two-step process whereby cells are first sensitized to light and then photoirradiated. This results in the formation of singlet molecular oxygen and other reactive oxygen species that can cause photodamage at sites where the photosensitizing agent has localized. Photosensitizers found to be clinically useful show affinity for the endoplasmic reticulum (ER), mitochondria, lysosomes, or combinations of these sites. The induction of apoptosis and/or autophagy in photosensitized cells is a common outcome of PDT. This report explores the following issues: (1) Does the induction of autophagy in PDT protocols occur independent of, or in association with, apoptosis? (2) Does the resulting autophagy play a prosurvival or prodeath role? (3) Do photosensitizers damage/inactivate specific proteins that are components of, or that modulate the autophagic process? (4) Can an autophagic response be mounted in cells in which lysosomes are specifically photodamaged? In brief, autophagy can occur independently of apoptosis in PDT protocols, and appears to play a prosurvival role in apoptosis competent cells, and a prodeath role in apoptosis incompetent cells. Mitochondrial and ER-localized sensitizers cause selective photodamage to some (i.e., Bcl-2, Bcl-x(L), mTOR) proteins involved in the apoptotic/autophagic process. Finally, an aborted autophagic response occurs in cells with photodamaged lysosomes. Whereas autophagosomes form, digestion of their cargo is compromised because of the absence of functional lysosomes.

Journal ArticleDOI
TL;DR: It is demonstrated that autophagy activation during IPC offers a remarkable tolerance to a subsequent fatal ischemic insult, and IPC's neuroprotective effects can be mimicked by autophile inducers.
Abstract: Several recent studies have showed that autophagy is involved in ischemic brain damage, but it may also play a pro-survival role in ischemic preconditioning. This study was taken to determine the role of autophagy in an animal model of cerebral ischemic preconditioning (IPC). Focal cerebral IPC was produced in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The rats were pretreated with intracerebral ventricle infusion of the autophagy inhibitors 3-methyladenine (3-MA) and bafliomycin A1 (Baf A1) or the autophagy inducer rapamycin to evaluate the contribution of autophagy to IPC-induced neuroprotection. The results from electron microscopic examinations and immunofluorescence showed that both IPC and PFI induced autophagy activation, but the extent and persistence of autophagy activation were varied. IPC treatment significantly reduced infarct volume, brain edema and motor deficits after subsequent PFI, whereas 3-MA and Baf A1 suppressed the neuroprotection induced by IPC. 3-MA pretreatment also significantly attenuated upregulation of LC3-II, beclin 1 and HSP70 and downregulation of p62. To further determine if autophagy induction is responsible for IPC-induced neuroprotection, rats were treated with rapamycin 24 h before the onset of PFI. The results showed that rapamycin reduced infarct volume, brain edema and motor deficits induced by PFI. Rapamycin pretreatment also increased the protein levels of LC3-II and beclin 1. These results demonstrate that autophagy activation during IPC offers a remarkable tolerance to a subsequent fatal ischemic insult, and IPC's neuroprotective effects can be mimicked by autophagy inducers.

Journal ArticleDOI
TL;DR: The studies highlight the feasibility of performing an "in vivo autophagometer" study using colchicine in skeletal muscle and evaluated the autophagic response in skeletal Muscle upon denervation induced atrophy.
Abstract: Reliable and quantitative assays to measure in vivo autophagy are essential. Currently, there are varied methods for monitoring autophagy; however, it is a challenge to measure "autophagic flux" in an in vivo model system. Conversion and subsequent degradation of the microtubule-associated protein light chain 3 (MAP1-LC3/LC3) to the autophagosome associated LC3II isoform can be evaluated by immunoblot. However, static levels of endogenous LC3II protein may render possible misinterpretations since LC3II levels can increase, decrease or remain unchanged in the setting of autophagic induction. Therefore, it is necessary to measure LC3II protein levels in the presence and absence of lysomotropic agents that block the degradation of LC3II, a technique aptly named the "autophagometer". In order to measure autophagic flux in mouse skeletal muscle, we treated animals with the microtubule depolarizing agent colchicine. Two days of 0.4 mg/kg/day intraperitoneal colchicine blocked autophagosome maturation to autolys...

Journal ArticleDOI
TL;DR: The results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that BnIP3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.
Abstract: Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca(2+) have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca(2+) chelator BAPT A-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca(2+), ROS generation, and mPTP opening.

Journal ArticleDOI
TL;DR: It is shown that the majority of human Atg proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death, and that p62 is a target for caspase-6 and -8 cleavage.
Abstract: It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.

Journal ArticleDOI
TL;DR: Morphological, biochemical, and molecular analyses of conditional and inducible knockout mice for the critical gene Atg7, to block autophagy specifically in skeletal muscle reveal an unexpected phenotype which is characterized by muscle atrophy, weakness and features of myofiber degeneration.
Abstract: Autophagy is required for cellular survival and for the clearance of damaged proteins and altered organelles. Excessive autophagy activation contributes to muscle loss in different catabolic conditions. However, the function of basal autophagy for homeostasis of skeletal muscle was unknown. To clarify this issue we have generated conditional and inducible knockout mice for the critical gene Atg7, to block autophagy specifically in skeletal muscle. Atg7 null muscles reveal an unexpected phenotype which is characterized by muscle atrophy, weakness and features of myofiber degeneration. Morphological, biochemical and molecular analyses of our autophagy knockout mice show the presence of protein aggregates, abnormal mitochondria, accumulation of membrane bodies, sarcoplasmic reticulum distension, vacuolization, oxidative stress and apoptosis. Moreover, autophagy inhibition does not protect skeletal muscles from atrophy during denervation and fasting, but instead promotes greater muscle loss. In conclusion, autophagy plays a critical role for myofiber maintenance and its activation is crucial to avoid accumulation of toxic proteins and dysfunctional organelles that, in the end, would lead to atrophy and weakness.

Journal ArticleDOI
TL;DR: The results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of Autophagy provides promise for the management of cancer therapy.
Abstract: Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.

Journal ArticleDOI
TL;DR: It is suggested that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.
Abstract: The present study evaluated autophagy activation in astrocytes and its contribution to astrocyte injury induced by cerebral ischemia and hypoxia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. In vitro hypoxia in cultured primary astrocytes was induced by the oxygen-glucose deprivation (OGD). Alterations of astrocytes were evaluated with astroglia markers glial fibrillary acidic protein (GFAP). The formation of autophagosomes in astrocytes was examined with transmission electron microscopy (TEM). The expression of autophagy-related proteins were examined with immunoblotting. The role of autophagy in OGD or focal cerebral ischemia-induced death of astrocytes was assessed by pharmacological inhibition of autophagy with 3-methyladenine (3-MA) or bafilomycin A(1) (Baf). The results showed that GFAP staining was reduced in the infarct brain areas 3-12 h following pMCAO. Cerebral ischemia or OGD induced activation of autophagy in astrocytes as evidenced by the increased formation of autophagosomes and autolysosomes and monodansylcadaverine (MDC)-labeled vesicles; the increased production of microtubule-associated protein 1 light chain 3 (LC3-II ); the upregulation of Beclin 1, lysosome-associated membrane protein 2 (LAMP2) and lysosomal cathepsin B expression; and the decreased levels of cytoprotective Bcl-2 protein in primary astrocytes. 3-MA inhibited OGD-induced the increase in LC3-II and the decline in Bcl-2. Furthermore, 3-MA and Baf slightly but significantly attenuated OGD-induced death of astrocytes. 3-MA also significantly increased the number of GFAP-positive cells and the protein levels of GFAP in the ischemic cortex core 12 h following pMCAO. These results suggest that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.

Journal ArticleDOI
TL;DR: High mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy, indicating that endogenous HMGB1 functions as an Autophagy effector by regulation of autophagosome formation.
Abstract: The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essentialautophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken t...

Journal ArticleDOI
TL;DR: It is concluded that calpain1 plays an important role in controlling the levels of autophagy in normal living cells by regulating the Levels of a key signaling molecule, ATG12-ATG5 conjugate.
Abstract: Autophagy functions as an important catabolic mechanism by mediating the turnover of intracellular organelles and protein complexes. Although the induction of autophagy by starvation has been extensively studied, we still understand very little about how autophagy is regulated under normal nutritional conditions. Here we describe a study using a small molecule autophagy inducer, fluspirilene, as a tool to explore the mechanism of autophagy induction in normal living cells. We confirm the activity of fluspirilene in inhibiting Ca2+ flux. Furthermore, we show that reducing intracellular Ca2+ prevents the cleavage of ATG5, which in turn increases the levels of full length ATG5 and ATG12-ATG5 conjugate. Using siRNA mediated gene silencing, we demonstrate that inhibiting calpain1 is sufficient to induce autophagy in living cells. We conclude that calpain1 plays an important role in controlling the levels of autophagy in normal living cells by regulating the levels of a key signaling molecule, ATG12-ATG5 conjugate.

Journal ArticleDOI
TL;DR: A hypothetical model is provided to explain the possible functional role of thiols in the occurrence of autophagy and outline a network of redox reactions likely concurring to allow the correct initiation and completion of Autophagosomes.
Abstract: Low molecular weight and protein sulphydryls undergo reactive oxygen species (ROS)-mediated oxidation. However, in contrast to the irreversible damages that oxidative conditions yield on biomolecules, the oxidation of reactive cysteines frequently results in reversible modifications, which represent the prototype of the molecular mechanisms underlying redox signaling. Many proteins involved in a wide range of cellular processes have been classified as “redoxsensitive,” thereby modulating their function/activity dependent on the redox state of their critical thiols. Growing evidence from the past few years supports the idea that ROS production also correlates with the occurrence of autophagy. Nonetheless, the cysteine protease Atg4 remains the sole example of a protein whose redox regulation has been completely characterized and demonstrated to be necessary for the progression of autophagy. The principal aim of this commentary is to draw attention to the remarkable number of proteins that can fit the double role of: (i) being involved in autophagy, especially in autophagosome formation and (ii) sensing alterations of the cellular redox state by means of reactive cysteine residues. We will also attempt to provide a hypothetical model to explain the possible functional role of thiols in the occurrence of autophagy and outline a network of redox reactions likely concurring to allow the correct initiation and completion of autophagosomes.

Journal ArticleDOI
TL;DR: Exogenous supply of spermidine prolongs the life span of several model organisms including yeast, nematodes and flies and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug.
Abstract: Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.

Journal ArticleDOI
TL;DR: The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbedAutophagy.
Abstract: Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.

Journal ArticleDOI
TL;DR: A straightforward assay for autophagy is presented which combines the sensitivity of the EGFP-LC3 reporter protein with the throughput capacity and quantitative power of flow cytometry and is extended to the detection of autophagosome formation in non-transfected cells.
Abstract: Autophagy is a cellular degradation process with an increasingly recognised importance in many biological pathways such as nutrient sensing, stress responses and development. We present a straightforward assay for autophagy which combines the sensitivity of the EGFP-LC3 reporter protein with the throughput capacity and quantitative power of flow cytometry. Because saponin extraction is specific for the non-autophagosome associated EGFP-LC3-I form of the protein, flow cytometry can be used to measure total fluorescence of saponin extracted HOS-EGFP-LC3 cells as a measure of the levels of autophagosome associated EGFP-LC3-II. Combined with inhibitors of degradation, we have adapted this assay to differentiate between constitutive and induced autophagy and to quantify the changes in flux of the system. Moreover, using direct antibody staining for the endogenous LC3 protein, we have extended this assay to the detection of autophagosome formation in non-transfected cells.

Journal ArticleDOI
TL;DR: The inducible GFP-p62 cell system allows quantification by several approaches and will be useful in screening for compounds or conditions that affect the rate of autophagy.
Abstract: Macroautophagy (hereafter referred to as autophagy) is a catabolic pathway to isolate and transport cytosolic components to the lysosome for degradation. Recently, autophagy receptors, like p62/SQSTM1 and NBR1, which physically link autophagic cargo to ATG8/MAP1-LC3/GABARAP family members located on the forming autophagic membranes, have been identified. To identify conditions or compounds that affect autophagy, cell systems that efficiently report on autophagic flux are required. Here we describe reporter cell systems based on induced expression of GFPp62, GFP-NBR1 or GFP-LC3B. The degradation of the fusion proteins was followed after promoter shut-off by flow cytometry of live cells. All three fusion proteins were degraded at a basal rate by autophagy. Surprisingly, the basal degradation rate varied for the three reporter fusion proteins. GFP-LC3B was the most stable protein. GFP-NBR1 was most efficiently degraded under basal conditions while degradation of GFP-p62 displayed the strongest response to amino acid starvation. GFP-p62 was found to perform the best of the tested reporters. Single cell analysis of autophagic flux by flow cytometry allows estimates of heterogeneous cell populations. The feasibility of this approach was demonstrated using transient overexpression of a dominant negative ULK1 kinase and siRNA-mediated knockdown of LC3B to inhibit autophagic degradation of GFP-p62. The inducible GFP-p62 cell system allows quantification by several approaches and will be useful in screening for compounds or conditions that affect the rate of autophagy. Inducers of autophagy can be identified using rich medium whereas inhibitors are identified under starvation conditions.