scispace - formally typeset
Search or ask a question

Showing papers in "Biochemical Journal in 1979"


Journal ArticleDOI
TL;DR: The iron chelator desferrioxamine inhibits peroxidation at all concentrations tested, and it also inhibits the iron-catalysed formation of hydroxyl radicals from superoxide (O2-.).
Abstract: The peroxidation of membrane phospholipids induced in vitro by ascorbic acid or by dialuric acid (hydroxybarbituric acid) does not occur in the absence of traces of metal ions. Peroxidation induced by adding iron salts to phospholipids can either be promoted or inhibited by the chelators EDTA, diethylenetriaminepenta-acetic acid and bathophenanthrolinesulphonate, depending on the ratio [chelator]/[iron salt]. The iron chelator desferrioxamine inhibits peroxidation at all concentrations tested, and it also inhibits the iron-catalysed formation of hydroxyl radicals (OH.) from superoxide (O2-.). Since desferrioxamine is approved for clinical use, it might prove a valuable tool in the treatment of inflammation, poisoning by autoxidizable molecules and radiation damage.

620 citations


Journal ArticleDOI
TL;DR: It is proposed that the method would be useful in preparation of fibronectin for studies on its biological activities, where it is important that the protein is obtained in a native state.
Abstract: Fibronectin was purified from human plasma by affinity chromatography under nondenaturing conditions. The method was based on the previously known binding of fibronectin to gelatin. The novel features of our method are the use of arginine in the elution of fibronectin from immobilized gelatin [Vuento & Vaheri (1978) Biochem. J. 175, 333-336] and the use of arginine-agarose as second affinity step. The purified protein was homogeneous as judged by polyacrylamide-gel electrophoresis, analytical ultracentrifugation and two-dimensional immunoelectrophoresis. The yield was 60%. We propose that the method would be useful in preparation of fibronectin for studies on its biological activities, where it is important that the protein is obtained in a native state.

545 citations


Journal ArticleDOI
TL;DR: Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers.
Abstract: alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not show the proteinase-binding activity characteristic of the intact alpha 2M. F-alpha 2M was less easily dissociated than was S-alpha 2M. S-alpha 2M was readily dissociated to the quarter-subunits by mild reduction, with the formation of 3-4 new thiol groups per subunit. Inact reactive alpha 2M could then be regenerated in high yield by reoxidation of the subunits. F-alpha 2M formed by reaction with a proteinase or ammonium salts was not dissociated under the same conditions, although the interchain disulphide bonds were reduced. If the thiol groups of the quarter-subunits of S-alpha 2M were blocked by carboxymethylation, oxidative reassociation did not occur. Nevertheless treatment of these subunits with methylammonium salts or a proteinase caused the reassembly of half-molecules and intact (F-) tetramers. It is emphasized that F-alpha 2M does not have the properties of a denatured form of the protein...

496 citations


Journal ArticleDOI
TL;DR: Intracellular pH and ATP and phosphocreatine concentrations decline more slowly under these conditions and metabolic recovery is observed on reperfusion after 30min of ischaemia at 37 degrees C.
Abstract: 1. Phosphorus-nuclear-magnetic-resonance measurements were made on perfused rat hearts at 37 degrees C. 2. With the improved sensitivity obtained by using a wide-bore 4.3 T superconducting magnet, spectra could be recorded in 1 min. 3. The concentrations of ATP, phosphocreatine and Pi and, from the position of the Pi resonance, the intracellular pH (pHi) were measured under a variety of conditions. 4. In a normal perfused heart pHi = 7.05 +/- 0.02 (mean +/- S.E.M. for seven hearts). 5. During global ischaemia pHi drops to 6.2 +/- 0.06 (mean +/- S.E.M.) in 13 min in a pseudoexponential decay with a rate constant of 0.25 min-1. 6. The relation between glycogen content and acidosis in ischaemia is studied in glycogen-depleted hearts. 7. Perfusion of hearts with a buffer containing 100 mM-Hepes before ischaemia gives a significant protective effect on the ischaemic myocardium. Intracellular pH and ATP and phosphocreatine concentrations decline more slowly under these conditions and metabolic recovery is observed on reperfusion after 30min of ischaemia at 37 degrees C. 8. The relation between acidosis and the export of protons is discussed and the significance of glycogenolysis in ischaemic acid production is evaluated.

467 citations


Journal ArticleDOI
TL;DR: The effects of Ca2+ (mainly by using EGTA buffers), pH, ATP and ADP on the activity of the 2-oxoglutarate dehydrogenase complex from pig heart were explored and the mechanisms controlling this enzyme's activity are discussed.
Abstract: 1. The effects of Ca2+ (mainly by using EGTA buffers), pH, ATP and ADP on the activity of the 2-oxoglutarate dehydrogenase complex from pig heart were explored. 2. Ca2+ (about 30 micrometer) resulted in a decrease in the apparent Km for 2-oxoglutarate from 2.1 to 0.16 mM (at pH 7) without altering the maximal velocity. At 0.1 mM-oxoglutarate there was a 4--5-fold activation by Ca2+, with an apparent Km for Ca2+ of 1.2 micrometer. A similar activation was also observed with Sr2+ (Km 15.1 micrometer), but not wised markedly from pH 7.4 TO 6.6. The effects of Ca2+ remained evident over this pH range. 4. In the presence of Mg2+, ATP resulted in a marked increase in the apparent Km for oxoglutarate, whereas ADP greatly decreased thisp arameter. The concentrations of adenine nucleotide required for half-maximal effects were about 10 micrometer in each case. 5. The effects of the adenine nucleotides and Ca2+ on the apparent Km for oxoglutarate appeared to be essentially independent of each other, reversible, and demonstrable in the presence of end product inhibition by NADH and obtained. 6. Effects similar to those described above were also observed on the activity of 2-oxoglutarate dehydrogenase from rat heart and brown adipose tissue. 7. We discuss the mechanisms controlling this enzyme's activity and compare these regulatory features with those of NAD-isocitrate dehydrogenase and the pyruvate dehydrogenase system, which are also sensitive to Ca2+ and adenine nucleotides.

399 citations


Journal ArticleDOI
TL;DR: Experiments indicate that evolutionary changes in intracellular solute compositions as well as in protein amino acid sequences can have important roles in intrACEllular protein function.
Abstract: Intracellular fluids of marine elasmobranchs (sharks, skates and rays), holocephalans and the coelacanth contain urea at concentrations averaging 0.4m, high enough to significantly affect the structural and functional properties of many proteins. Also present in the cells of these fishes are a family of methylamine compounds, largely trimethylamine N-oxide with some betaine and sarcosine, and certain free amino acids, mainly β-alanine and taurine, whose total concentration is approx. 0.2m. These methylamine compounds and amino acids have been found to be effective stabilizers of protein structure, and, at a 1:2 molar concentration ratio of these compounds to urea, perturbations of protein structure by urea are largely or fully offset. These counteracting effects of solutes on proteins are seen for: (1) thermal stability of protein secondary and tertiary structure (bovine ribonuclease); (2) the rate and extent of enzyme renaturation after acid denaturation (rabbit and shark lactate dehydrogenases); and (3) the reactivity of thiol groups of an enzyme (bovine glutamate dehydrogenase). Attaining osmotic equilibrium with seawater by these fishes has thus involved the selective accumulation of certain nitrogenous metabolites that individually have significant effects on protein structure, but that have virtually no net effects on proteins when these solutes are present at elasmobranch physiological concentrations. These experiments indicate that evolutionary changes in intracellular solute compositions as well as in protein amino acid sequences can have important roles in intracellular protein function.

382 citations


Journal ArticleDOI
TL;DR: An attempt has been made to over come problems of precursor specific radioactivity and problems arising from the breakdown of labelled protein that are encountered when tracer amounts of amino acids are used by injecting a massive amount of [14C]leucine.
Abstract: 1. A method is described that allows for measurement of protein synthesis in liver and intestine in the rat. By injecting a massive amount of [14C]leucine (100 mumol/100 g body wt.) an attempt has been made to over come problems of precursor specific radioactivity and problems arising from the breakdown of labelled protein that are encountered when tracer amounts of amino acids are used. 2. Starvation for 2 days resulted in decline in the rate of total liver protein synthesis from 87%/day to 62%/day. 3. In jejunal mucosa the rate of protein synthesis was 136%/day. This declined to 105%/day after 2 days of starvation.

357 citations


Journal ArticleDOI
TL;DR: A multiple assay capable of reliably determining vitamins D(2) and D(3) (ergocalciferol and cholecalciferols and choelcalcifierol) and 25(OH)D( 2) (25-hydroxyvitamin D) and 24,25(OH)(2)D (24,25-dihydroxyv vitamin D), 25,26(OH).
Abstract: A multiple assay capable of reliably determining vitamins D2 and D3 (ergocalciferol and cholecalciferol), 25(OH)D2 (25-hydroxyvitamin D2) and 25(OH)D3 (25-hydroxyvitamin D3), 24,25(OH)2D (24,25-dihydroxyvitamin D), 25,26(OH)2D (25,26-dihydroxyvitamin D) and 1,25(OH)2D (1,25-dihydroxyvitamin D) in a single 3–5ml sample of human plasma was developed. The procedure involves methanol/methylene chloride extraction of plasma lipids followed by separation of the metabolites and purification from interfering contaminants by batch elution chromatography on Sephadex LH-20 and Lipidex 5000 and by h.p.l.c. (high-pressure liquid chromatography). Vitamins D2 and D3 and 25(OH)D2 and 25(OH)D3 are quantified by h.p.l.c. by using u.v. detection, comparing their peak heights with those of standards. 24,25(OH)2D and 25,26(OH)2D are measured by competitive protein-binding assay with diluted plasma from vitamin D-deficient rats. 1,25(OH)2D is measured by competitive protein-binding assay with diluted cytosol from vitamin D-deficient chick intestine. Values in normal human plasma samples taken in February are: vitamin D 3.5±2.5ng/ml; 25(OH)D 31.6±9.3ng/ml; 24,25(OH)2D 3.5±1.4ng/ml; 25,26(OH)2D 0.7±0.5ng/ml; 1,25(OH)2D 31±9pg/ml (means±s.d.). Values in two normal human plasma samples taken in February after 1 week of high sun exposure are: vitamin D 27.1±7.9ng/ml; 25(OH)D 56.8±4.2ng/ml; 24,25(OH)2D 4.3±1.6ng/ml; 25,26(OH)2D 0.5±0.2ng/ml. Values in anephric-human plasma are: vitamin D 2.7±0.8ng/ml; 25(OH)D 36.4±16.5ng/ml; 24,25(OH)2D 1.9±1.3ng/ml; 25,26(OH)2D 0.6±0.3ng/ml; 1,25(OH)2D was undetectable.

352 citations


Journal ArticleDOI
TL;DR: The results showed that link-protein greatly strengthened the binding of proteoglycans to hyaluronate and suggest that under physiological conditions it 'locks' proteoglyCans on to the hyAluronate chain.
Abstract: Proteoglycan fractions were prepared from pig laryngeal cartilage. The effect of link-protein on the properties of proteoglycan-hyaluronate aggregates was examined by viscometry and analytical ultracentrifugation. Aggregates containing link-protein were more stable than link-free aggregates at neutral pH, at temperatures up to 50 degrees C and in urea (up to 4.0M). Oligosaccharides of hyaluronate were able to displace proteoglycans from link-free aggregates, but not from the link-stabilized aggregates. Both types of aggregate were observed in the ultracentrifuge, but at the concentration investigated (less than 2 mg/ml) the link-free form was partially dissociated and the proportion aggregated varied with the pH and temperature and required more hyaluronate for saturation than did link-stabilized aggregate. The results showed that link-protein greatly strengthened the binding of proteoglycans to hyaluronate and suggest that under physiological conditions it 'locks' proteoglycans on to the hyaluronate chain.

342 citations


Journal ArticleDOI
TL;DR: It is concluded that N-acetylaspartate may be synthesized and exported from both neonatal and adult rat brain mitochondria and may be an additional mechanism for mitochondrial/cytosolic carbon transport to that of citrate.
Abstract: 1. The synthesis and efflux of N-acetyl-l-aspartate from brain mitochondria of rats of different ages has been studied. 2. Brain mitochondrial State 3 (+ADP) respiration rate, using 10mm-glutamate and 2.5mm-malate as substrates, increases during the suckling period and reaches approx. 50% of the adult value at 17 days after birth [adult State 3 respiration rate=160+/-7ng-atoms of O/min per mg of mitochondrial protein(mean+/-s.d.; n=3)]. 3. The influence of 5mm-pyruvate or 10mm-dl-3-hydroxybutyrate on aspartate efflux from brain mitochondira from rats of different ages oxidizing glutamate and malate was studied. In all cases the aspartate efflux in State 3 was greater than in State 4, but, whereas the aspartate efflux in State 3 increased as the animals developed, that of State 4 showed only a small increase. However, the rate of aspartate efflux in the presence of pyruvate or 3-hydroxybutyrate as well as glutamate and malate was approx. 60-65% of that in the presence of glutamate and malate alone. 4. An inverse relationship between aspartate efflux and N-acetylaspartate efflux was observed with adult rat brain mitochondria oxidizing 10mm-glutamate and 2.5mm-malate in the presence of various pyruvate concentrations (0-5mm). 5. N-Acetylaspartate efflux by brain mitochondria of rats of different ages was studied in States 3 and 4, utilizing 5mm-pyruvate or 10mm-dl-3-hydroxybutyrate as acetyl-CoA sources. A similar pattern of increase during development was seen in State 3 for N-acetylaspartate efflux as for aspartate efflux (see point 3 above). Also only very small increases in N-acetylaspartate efflux occurred during development in State 4.6. Rat brain mitochondria in the presence of iso-osmotic N-acetylaspartate showed some swelling which was markedly increased in the presence of malate. 7. It is concluded that N-acetylaspartate may be synthesized and exported from both neonatal and adult rat brain mitochondria. It is proposed that the N-acetylaspartate is transported by the dicarboxylic acid translocase and may be an additional mechanism for mitochondrial/cytosolic carbon transport to that of citrate.

303 citations


Journal ArticleDOI
TL;DR: Findings suggest that a region between a mercurialsensitive site and the rotenone-sensitive site of the respiratory-chain NADH dehydrogenase is largely responsible for the NADH- and NADPH-dependent O(2) (-) production by the mitochondrial inner membranes.
Abstract: 1. Both NADH and NADPH supported the oxidation of adrenaline to adrenochrome in bovine heart submitochondrial particles. The reaction was completely inhibited in the presence of superoxide dismutase, suggesting that superoxide anions (O2−) are responsible for the oxidation. The optimal pH of the reaction with NADPH was at pH7.5, whereas that with NADH was at pH9.0. The reaction was inhibited by treatment of the preparation with p-hydroxymercuribenzoate and stimulated by treatment with rotenone. Antimycin A and cyanide stimulated the reaction to the same extent as rotenone. The NADPH-dependent reaction was inhibited by inorganic salts at high concentrations, whereas the NADH-dependent reaction was stimulated. 2. Production of O2− by NADH–ubiquinone reductase preparation (Complex I) with NADH or NADPH as an electron donor was assayed by measuring the formation of adrenochrome or the reduction of acetylated cytochrome c which does not react with the respiratory-chain components. p-Hydroxymercuribenzoate inhibited the reaction and rotenone stimulated the reaction. The effects of pH and inorganic salts at high concentrations on the NADH- and NADPH-dependent reactions of Complex I were essentially similar to those on the reactions of submitochondrial particles. 3. These findings suggest that a region between a mercurialsensitive site and the rotenone-sensitive site of the respiratory-chain NADH dehydrogenase is largely responsible for the NADH- and NADPH-dependent O2− production by the mitochondrial inner membranes.

Journal ArticleDOI
TL;DR: Plasma concentrations of glucocorticoids within the normal range do not regulate the rate of muscle protein breakdown, whereas excessive plasma concentrations of corticosteroids, equivalent to those observed in severe stress, can accelerate muscleprotein breakdown.
Abstract: The role of glucocorticoids in regulating the rate of muscle protein breakdown was evaluated by measuring excretion of N(tau)-methylhistidine during administration of various doses of corticosterone to adrenalectomized rats. Groups of rats received daily subcutaneous injections of 0, 0.2, 0.5, 1.0, 5.0 or 10.0mg of corticosterone/day per 100g body wt. for 7 days, followed by 3 days without hormone treatment, after which they were killed. A group with intact adrenal glands served as an additional control. All animals were pair-fed with the untreated adrenalectomized group. No significant differences were noted in growth rate or N(tau)-methylhistidine excretion between the intact or adrenalectomized control groups, or those given 0.2, 0.5 and 1.0mg of corticosterone, whereas growth ceased and N(tau)-methylhistidine excretion rose markedly in the groups receiving 5 and 10mg of corticosterone. After these two high doses of corticosterone, but not after lower doses, there was a loss of weight of the gastrocnemius muscle per 100g of final body wt., but not of the soleus and extensor digitorum longus muscles. The two highest doses of corticosterone also resulted in an increase in liver weight per 100g of final body wt. Lower doses of corticosterone did not cause these changes. Plasma corticosterone concentrations, measured on the final day of injection and again at the time of killing, were decreased to near zero by adrenalectomy and were little raised by doses of 0.2 and 0.5mg daily, but were increased to within the normal range by the 1mg dose. At 5 and 10mg doses, plasma corticosterone concentrations were sustained at 2-3 times those of intact rats, and thus in the range reported for rats exposed to severe stress. Rats given 5 and 10mg doses of corticosterone had glycosuria, and showed considerably elevated concentrations of insulin in the plasma. It is concluded that plasma concentrations of glucocorticoids within the normal range do not regulate the rate of muscle protein breakdown, whereas excessive plasma concentrations of corticosteroids, equivalent to those observed in severe stress, can accelerate muscle protein breakdown.

Journal ArticleDOI
TL;DR: Iron--EDTA was shown to catalyse OH production from H2O2 and ascorbate by a mechanism largely independent of superoxide, and would appear to be more significant biologically.
Abstract: Iron--EDTA was shown to catalyse OH. production from H2O2 and ascorbate by a mechanism largely independent of superoxide. When ascorbate and superoxide were both present, the ascorbate mechanism was more important than superoxide as a source of OH., and would appear to be more significantly biologically.

Journal ArticleDOI
TL;DR: Evidence is presented that the catabolic factor is a protein, and a quantitative assay for the factor, for which the cartilage of bovine nasal septum is used, is described.
Abstract: Porcine synovium in organ culture produces a factor that causes chondrocytes to degrade their matrix. A quantitative assay for the factor, for which the cartilage of bovine nasal septum is used, is described. Evidence is presented that the catabolic factor is a protein.

Journal ArticleDOI
TL;DR: The results suggest that the heart and red muscles of the teleosts should be able to utilize the fat fuels triacylglycerol, fatty acids or acetoacetate, but not hydroxybutyrate, while the suggestion that ketone bodies are the most important fat fuels in elasmobranchs is supported.
Abstract: 1. Activities of 3-oxo acid CoA-transferase and carnitine palmitoyltransferase together with tri- and di-acylglycerol lipase were present in red and heart muscles of the teleost fish. However, d-3-hydroxybutyrate dehydrogenase activity was not detectable. These results suggest that the heart and red muscles of the teleosts should be able to utilize the fat fuels triacylglycerol, fatty acids or acetoacetate, but not hydroxybutyrate. The muscles from the elasmobranchs differed in that d-3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities were present, but carnitine palmitoyltransferase activity was not detectable. This suggests that ketone bodies are the most important fat fuels in elasmobranchs. 2. The concentrations of acetoacetate, 3-hydroxybutyrate, glycerol, non-esterified fatty acids and triacylglycerols were measured in blood or plasma of several species of fish (teleosts and elasmobranchs) in the fed state. Teleosts have a 10-fold higher concentration of plasma non-esterified fatty acids, but a lower blood concentration of ketone bodies; both acetoacetate and 3-hydroxybutyrate are present in blood of elasmobranchs, whereas 3-hydroxybutyrate is absent from that of the teleosts. 3. The effects of starvation (up to 150 days) on the concentrations of blood metabolites were studied in a teleost (bass) and an elasmobranch (dogfish). In the bass there was a 60% decrease in blood glucose after 100 and 150 days starvation. In dogfish there was a large increase in the concentration of ketone bodies, whereas in bass the concentration of acetoacetate (the only ketone body present) remained low (<0.04mm) throughout the period of starvation. The concentration of plasma non-esterified fatty acids increased in bass, but decreased in dogfish. These changes are consistent with the predictions based on the enzyme-activity data. 4. Starvation did not change the activities of ketone-body-utilizing enzymes or that of phosphoenolpyruvate carboxykinase in heart and red skeletal muscles of both fish, but it decreased markedly the activity of phosphoenolpyruvate carboxykinase in white skeletal muscle of both fish. However, in the liver of the dogfish, starvation resulted in a twofold increase in the activities of 3-hydroxybutyrate dehydrogenase and acetoacetyl-CoA thiolase, whereas in bass liver it decreased the activity of acetoacetyl-CoA thiolase and increased that of 3-oxo acid CoA-transferase. The activity of phosphoenolpyruvate carboxykinase was increased twofold in the liver of bass, but was unchanged in that of the dogfish. 5. The difference in changes in concentrations of blood metabolites and enzyme activities in the two fish support the suggestion that, in starvation, ketone bodies, but not non-esterified fatty acids, are an important fuel for muscle in elasmobranchs, whereas non-esterified fatty acids, but not ketone bodies, are an important fuel in teleosts. The results are discussed in relation to the evolution of a discrete lipid-storing adipose tissue in teleosts and higher vertebrates.

Journal ArticleDOI
TL;DR: The extent of intermolecular cross-linking among collagen fibrils may provide a mechanism for regulating the rate of collagen catabolism relative to synthesis in normal and pathological conditions and suggest that increased resistance to collagenase may be one of the earliest effects of cross-link in vivo.
Abstract: A model system consisting of highly purified lysyl oxidase and reconstituted lathyritic chick bone collagen fibrils was used to study the effect of collagen cross-linking on collagen degradation by mammalian collagenase. The results indicate that synthesis of approx. 0.1 Schiff-base cross-link per collagen molecule results in a 2--3-fold resistance to human synovial collagenase when compared with un-cross-linked controls or samples incubated in the presence of beta-aminopropionitrile to inhibit cross-linking. These results confirm previous studies utilizing artificially cross-linked collagens, or collagens isolated as insoluble material after cross-linking in vivo, and suggest that increased resistance to collagenase may be one of the earliest effects of cross-linking in vivo. The extent of intermolecular cross-linking among collagen fibrils may provide a mechanism for regulating the rate of collagen catabolism relative to synthesis in normal and pathological conditions.

Journal ArticleDOI
TL;DR: The rates of O2 uptake in the presence of glutamine or glutamate are sufficient to account for the formation of the carbon skeleton of alanine from the amino acid substrate, i.e. the ratio of O 2 used/alanine formed is greater than 1.5.
Abstract: 1. The recent recognition of the metabolic, as opposed to absorptive, functions of the small intestine prompted efforts the improve the preparation of metabolically competent columnar absorptive cells ('enterocytes') and to study their metabolic properties. 2. With this preparation, linear rates of O2 consumption are obtained for 40 min at 37 degrees C that are more than 50% higher than rates reported by other authors. 3. Among added substrates, glucose, glutamine and glutamate are the preferred fuels of respiration. The main nitrogenous products of glutamine metabolism are NH3, alanine and glutamate. Glutamine carbon was not detectable in citrulline or proline, in contrast with the findings of Windmueller & Spaeth [(1974) J. Biol. Chem. 249, 5070-5079] in the vascularly perfused small intestine. 4. The rates of O2 uptake in the presence of glutamine or glutamate are sufficient to account for the formation of the carbon skeleton of alanine from the amino acid substrate, i.e. the ratio of O2 used/alanine formed is greater than 1.5. 5. Added ADP and ATP are rapidly degraded to AMP and IMP to a large extent by release of hydrolytic enzymes from the enterocytes into the medium. 6. Chicken enterocytes isolated by the same method are more stable; linear rates of O2 uptake are maintained for 60-70 min.

Journal ArticleDOI
TL;DR: It is concluded that, in beetroot, most of the sucrose and much of the acid invertase are in the vacuoles, demonstrating an inverse relationship between sucrose content and acid invertsase activity.
Abstract: Vacuoles were isolated from freshly cut slices of the storage roots of beetroot (Beta vulgaris), and from slices that had been washed in aerated water for 1-3 days. The unique vacuolar location of betanin permitted the use of a correlative method to determine whether sucrose and acid invertase were located in the vacuoles. The specific content (the activity of the enzyme or amount of substrate per mg of protein) and the percentage recoveries for betanin, sucrose and acid invertase were determined for the different fractions obtained during the isolation of the vacuoles. For each fraction the specific content of betanin was plotted against those of sucrose and acid invertase. Similar correlative plots were drawn for the percentage recoveries. For both specific contents and percentage recoveries for correlation coefficients for sucrose and for acid invertase versus betanin were close to unity, and the lines passed near the origins. It is concluded that, in beetroot, most of the sucrose and much of the acid invertase are in the vacuoles. Measurements of vacuolar sucrose and acid invertase in beetroot slices washed for 1-3 days demonstrated an inverse relationship between sucrose content and acid invertase activity.

Journal ArticleDOI
TL;DR: Only the basal-lateral-plasma-membrane vesicles exhibit an ATP-dependent pump activity which can be distinguished from the activity in mitochondrial and endoplasmic reticulum by virtue of the different distribution during free-flow electrophoresis and its lack of sensitivity to oligomycin.
Abstract: Basal-lateral-plasma-membrane vesicles and brush-border-membrane vesicles were isolated from rat kidney cortex by differential centrifugation followed by free-flow-electrophoresis. Ca2+ uptake into these vesicles was investigated by a rapid filtration method. Both membranes show a considerable binding of Ca2+ to the vesicle interior, making the analysis of passive fluxes in uptake experiments difficult. Only the basal-lateral-plasma-membrane vesicles exhibit an ATP-dependent pump activity which can be distinguished from the activity in mitochondrial and endoplasmic reticulum by virtue of the different distribution during free-flow electrophoresis and its lack of sensitivity to oligomycin. The basal-lateral plasma membranes contain in addition a Na+/Ca2+-exchange system which mediates a probably rheogenic counter-transport of Ca2+ and Na+ across the basal cell border. The latter system is probably involved in the secondary active Na+-dependent and ouabain-inhibitable Ca2+ reabsorption in the proximal tubule, the ATP-driven system is probably more important for the maintenance of a low concentration of intracellular Ca2+.

Journal ArticleDOI
TL;DR: The most significant observation is that rabbit and guinea-pig biles are dramatically less lytic towards sheep erythrocytes, indicating that some factor(s) in membrane composition and structure may partly explain the resistance of membranes of the biliary tract to the presence of high concentrations of potentially membrane-damaging bile salts.
Abstract: The total content and profile of bile salts and phospholipids are reported for several mammalian biles. Rabbit and guinea-pig biles are characterized by high proportions of conjugated dihydroxy bile salts with respect to trihydroxy bile salts, but contain relatively little phospholipid. Both rabbit and guinea-pig biles exhibit little evidence of hepatic cell damage, even though they are able to cause membrane damage (as evidenced by lysis of human erythrocytes) at low (2--3 mM) concentrations of bile salts; this lytic behaviour is also a property of their predominant bile salts. Addition of phosphatidylcholine to the bile or bile salt is able to decrease the lytic behaviour. Perhaps the most significant observation is that these biles, and their predominant bile salts, are dramatically less lytic towards sheep erythrocytes, indicating that some factor(s) in membrane composition and structure may partly explain the resistance of membranes of the biliary tract to the presence of high concentrations of potentially membrane-damaging bile salts.

Journal ArticleDOI
TL;DR: In this paper, isolated pancreatic islets or dispersed islet cells from non-inbred ob/ob mice were performed to test the hypothesis that free radicals, notably OH, mediate the diabetogenic toxicity of alloxan.
Abstract: Experiments with isolated pancreatic islets or dispersed islet cells from non-inbred ob/ob mice were performed to test the hypothesis that free radicals, notably OH., mediate the diabetogenic toxicity of alloxan. Accumulation of 86Rb+ by whole islets and exclusion of Trypan Blue by dispersed cells were used as previously validated criteria of islet-cell viability. Alloxan alone drastically inhibited the Rb+ accumulation and significantly decreased the frequency of cells excluding Trypan Blue. Enzymic scavengers of O2.- and H2O2 or non-enzymic scavengers of OH. or singlet oxygen were added to the incubation medium and tested for their ability to protect against these effects of alloxan. Superoxide dismutase, catalase, dimethyl sulphoxide, benzoate, and mannitol counteracted the effects of alloxan in both cytotoxicity assays. Significant protection of the Rb+-accumulating capacity was also afforded by butanol, caffeine, theophylline, NADH, NADPH and, to a small extent, NAD+. Urea has a poor affinity for OH. and did not protect against alloxan. No effect was obtained with the singlet-oxygen scavenger, histidine. Except for the protection by NADH and NADPH, which may be due to a direct reaction with alloxan in the medium, the results strongly support the hypothesis. beta-Cells may be particularly vulnerable to alloxan because their metabolic specialization facilitates reduction of the drug and perhaps of other substrates for O2.--yielding redox cycles.

Journal ArticleDOI
TL;DR: Subcellular fractionation of livers from normal and nafenopin-treated animals provides evidence for its peroxisomal localization and stoicheiometry for palmitoyl-CoA-dependent O2 consumption, H2O2 generation and NAD+ reduction is 1: 1 : 1, which suggests that fatty acyl- CoA oxidase is the rate-limiting enzyme of the peroxISomal fatty acid-oxidizing system.
Abstract: It has been postulated that the peroxisomal fatty acid-oxidizing system [Lazarow & de Duve (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 2043--2046; Lazarow (1978) J. Biol. Chem. 253, 1522--1528] resembles that of mitochondria, except for the first oxidative reaction. In this step, O2 would be directly reduced to H2O2 by an oxidase. Two specific procedures developed to detect the activity of the characteristic enzyme fatty acyl-CoA oxidase are presented, namely polarographic detection of palmitoyl-CoA-dependent cyanide-insensitive O2 consumption and palmitoyl-CoA-dependent H2O2 generation coupled to the peroxidation of methanol in an antimycin A-insensitive reaction. Fatty acyl-CoA oxidase activity is stimulated by FAD, which supports the flavoprotein nature postulated for this enzyme. Its activity increases 7-fold per g wet wt. of liver in rats treated with nafenopin, a hypolipidaemic drug. Subcellular fractionation of livers from normal and nafenopin-treated animals provides evidence for its peroxisomal localization. The stoicheiometry for palmitoyl-CoA-dependent O2 consumption, H2O2 generation and NAD+ reduction is 1 : 1 : 1. This suggests that fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal fatty acid-oxidizing system.

Journal ArticleDOI
TL;DR: The addition of 5-hydroxytryptamine to the isolated blowfly salivary gland stimulates fluid secretion, transepithelial calcium transport and the breakdown of 32P- or 3H-labeled phosphatidylinositol.
Abstract: The addition of 5-hydroxytryptamine to the isolated blowfly salivary gland stimulates fluid secretion, transepithelial calcium transport and the breakdown of 32P- or 3H-labelled phosphatidylinositol The breakdown of [32P]phosphatidylcholine and [32P]-phosphatidylethanolamine was not stimulated by 5-hydroxytryptamine. In salivary glands incubated with myo-[2-3H]inositol for 1--3 h, more than 95% of the label retained by the tissue was in the form of phosphatidylinositol. The addition of 5-hydroxytryptamine resulted in an increase in the accumulation of label in intracellular inositol 1:2-cyclic phosphate, inositol 1-phosphate and free inositol along with an increase in the release of [3H]inositol to the medium and saliva. The release of [3H]inositol to the medium served as a sensitive indicator of phosphatidylinositol breakdown. The release of [3H]inositol was not increased by cyclic AMP or the bivalent-cation ionophore A23187 under conditions in which salivary secretion was accelerated. The stimulation of fluid secretion by low concentrations of 5-hydroxytryptamine was potentiated by 3-isobutyl-1-methylxanthine, which had no effect on inositol release. The stimulation of fluid secretion by 5-hydroxytryptamine was greatly reduced in calcium-free buffer, but the breakdown of phosphatidylinositol continued at the same rate in the absence of calcium. These results support the hypothesis that breakdown of phosphatidylinositol by 5-hydroxytryptamine is involved in the gating of calcium.

Journal ArticleDOI
TL;DR: Immunofluorescence and immuno-electron microscopy were used for the localization of the heparin-releasable lipase in situ in the rat liver and found that the lipase is located exclusively on the liver endothelial cells.
Abstract: Immunofluorescence and immuno-electron microscopy were used for the localization of the heparin-releasable lipase in situ in the rat liver. The lipase is located exclusively on the liver endothelial cells. No labelling could be detected on the parenchymal of Kupffer cells, or in the livers of heparin-pretreated animals. The physiological significance of the endothelial localization of the hepatic lipase is discussed.

Journal ArticleDOI
TL;DR: The hypothesis that the hydrolysis of phosphatidylinositol plays some role in either the opening or closing of calcium 'gates' is supported.
Abstract: The incorporation of [32P]Pi into all salivary-gland phospholipids except phosphatidic acid was inhibited by 5-hydroxytryptamine. The accumulation of [32P]Pi into phosphatidic acid was actually enhanced by 5-hydroxytryptamine. There was an inhibition of labelled inositol incorporation into phosphatidylinositol by 5-hydroxytryptamine, which seems to be mediated by calcium because it was mimicked by the ionophore A23187, but was prevented if glands were stimulated with 5-hydroxytryptamine in the absence of external calcium. Inhibition of synthesis together with stimulation of breakdown will decrease the concentration of phosphatidylinositol, which could account for the inactivation of calcium transport observed at high 5-hydroxytryptamine concentrations. When salivary glands were stimulated with 1 micrometer-5-hydroxytryptamine, there was a rapid increase in the transfer of 45Ca2+ from the medium into the saliva, but with time this transport declined to a low value. If the glands were washed free of 5-hydroxytryptamine and incubated in the presence of 2mM-inositol for 1 h, the increase in calcium transport caused by 5-hydroxytryptamine was restored. There was little recovery in the absence of inositol. If glands were stimulated with 5-hydroxytryptamine in the absence of external calcium, a condition which prevents the inhibition of phosphatidylinositol synthesis, calcium transport in response to 5-hydroxytryptamine was greater than in glands preincubated with 5-hydroxytryptamine in the presence of calcium. The inactivation of calcium transport may result from a decrease in phosphatidylinositol concentration. These results support the hypothesis that the hydrolysis of phosphatidylinositol plays some role in either the opening or closing of calcium ‘gates’.

Journal ArticleDOI
TL;DR: Results are consistent with a model in which the protein is anchored to the microvillar membrane by a small hydrophobic domain located within the N-terminal amino acid sequence of the polypeptide chain, and the significance of these results in relation to biosynthesis of the enzyme and assembly in the membrane is discussed.
Abstract: Dipeptidyl peptidase IV was solubilized from the microvillar membrane of pig kidney by Triton X-100. The purified enzyme was homogeneous on polyacrylamide-gel electrophoresis and ultracentrifugation, although immunoelectrophoresis indicated that amino-peptidase M was a minor contaminant. A comparison of the detergent-solubilized and proteinase (autolysis)-solubilized forms of the enzyme was undertaken to elucidate the structure and function of the hydrophobic domain that serves to anchor the protein to the membrane. No differences in catalytic properties, nor in sensitivity to inhibition by di-isopropyl phosphorofluoridate were found. On the other hand, several structural differences could be demonstrated. Both forms were about 130,000 subunit mol.wt., but the detergent form appeared to be larger by no more than about 4,000. Electron microscopy showed both forms to be dimers, and gel filtration revealed a difference in the dimeric mol.wt. of about 38 000, mainly attributable to detergent molecules bound to the hydrophobic domain. Papain converted the detergent form into a hydrophilic form that could not be distinguished in properties from the autolysis form. A hydrophobic peptide of about 3500 mol.wt. was identified as a product of papain treatment. The detergent and proteinase forms differed in primary structure. Partial N-terminal amino acid sequences were shown to be different, and the pattern of release of amino acids from the C-terminus by carboxypeptidase Y was essentially similar. The results are consistent with a model in which the protein is anchored to the microvillar membrane by a small hydrophobic domain located within the N-terminal amino acid sequence of the polypeptide chain. The significance of these results in relation to biosynthesis of the enzyme and assembly in the membrane is discussed.

Journal ArticleDOI
TL;DR: A new method for studying membrane transport using spin-echo techniques and relies on a difference in the magnetic susceptibility of the media inside and outside of cells to provide simultaneous information on the metabolic status of the cell.
Abstract: A new method for studying membrane transport is presented. High resolution n.m.r. is used to measure the distribution of small molecules between the intracellular and extracellular compartments. The method uses spin-echo techniques and relies on a difference in the magnetic susceptibility of the media inside and outside of cells. It also provides simultaneous information on the metabolic status of the cell. The method is illustrated by a study of alanine and lactate transport in the human erythrocyte.

Journal ArticleDOI
TL;DR: Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine, and phosphorylase activities increased during glycogen syntheses, while in glycogen synthesis from glucose as sole substrate there was a decline in phosphate activities with increased glucose concentration and increased rates of glycogen deposition.
Abstract: 1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.

Journal ArticleDOI
TL;DR: It is proposed that haemopexin transports haem to the liver by a specific receptor-mediated process and then returns to the circulation.
Abstract: Rat [59Fe]haem–125I-labelled haemopexin complexes (700pmol/rat) associate rapidly and exclusively with the liver after intravenous injection into anaesthetized rats. The two isotopes exhibit different patterns of accumulation. Liver 125I-labelled haemopexin is maximum 10min after injection (20±4.9pmol/g of liver) and then declines by 2h to the low values (about 3pmol/g of liver) seen after injection of the apoprotein. In contrast, [59Fe]haem accumulates in the liver for at least 2h. Haemopexin undergoes no extensive proteolysis during 2h of haem transport as shown by precipitation with acid (98%) and specific antiserum (92%) and by electrophoresis. Moreover, only 1–2% of the dose is located in extrahepatic tissues, and there is no significant urinary excretion of either 125I or 59Fe. Hepatic uptake at 10min is saturable, reaching 200pmol of haemopexin/g of liver and 350pmol of haem/g of liver at a dose of 9nmol/rat, whereas uptake of the apoprotein is 3–5% of the dose. This suggests that the interaction of haem–haemopexin with the liver is a specific receptor-mediated process. The complex probably interacts via the protein moiety, since the haem analogues mesohaem and deuterohaem do not affect association of the protein with the liver but the species of haemopexin does. Increasing amounts of protein are associated with the liver 5min after injection in the order: human>rabbit>rat, and haem uptake is consistently increased. For both rat and rabbit haemopexin saturation is reached at the same concentration of protein, i.e. 180–200pmol/g of liver, indicating that the different protein species bind to a common receptor. We propose that haemopexin transports haem to the liver by a specific receptor-mediated process and then returns to the circulation.

Journal ArticleDOI
TL;DR: It is concluded that the data provide strong support for the proposal that cytochrome c oxidase acts as a proton pump and that approx.
Abstract: We have investigated ferrocytochrome c-induced proton ejection from reconstituted cytochrome c oxidase-containing vesicles using careful control of the number of enzyme turnovers. Ferrocytochrome c caused the appearance of protons at the vesicle exterior, and this could be abolished by using a protonophore. In addition, its decay was dependent on the permeability of the vesicle membranes to protons and the number of turnovers of the oxidase. These observations indicate that the ejection of protons was the result of genuine translocation. The possibility of this translocation occurring via a Mitchellian loop as a result of the presence of a reduced hydrogen carrier contaminating the enzyme was considered and excluded. Proton-translocating activity in this reconstituted system depended critically on the ratio of enzyme to lipid used in the reconstitution process and we propose a rationale to account for this. We conclude that our data provide strong support for the proposal that cytochrome c oxidase acts as a proton pump and that approx. 0.9 H+ is excluded per ferrocytochrome c molecule oxidized.