scispace - formally typeset
Search or ask a question

Showing papers in "Biochemical Journal in 2008"


Journal ArticleDOI
TL;DR: The present review focuses on the molecular details of TSC1-TSC2 complex regulation and function as it relates to the control of Rheb and mTORC1.
Abstract: TSC1 and TSC2 are the tumour-suppressor genes mutated in the tumour syndrome TSC (tuberous sclerosis complex). Their gene products form a complex that has become the focus of many signal transduction researchers. The TSC1–TSC2 (hamartin–tuberin) complex, through its GAP (GTPaseactivating protein) activity towards the small G-protein Rheb (Ras homologue enriched in brain), is a critical negative regulator of mTORC1 (mammalian target of rapamycin complex 1). As mTORC1 activity controls anabolic processes to promote cell growth, it is exquisitely sensitive to alterations in cell growth conditions. Through numerous phosphorylation events, the TSC1–TSC2 complex has emerged as the sensor and integrator of these growth conditions, relaying signals from diverse cellular pathways to properly modulate mTORC1 activity. In the present review we focus on the molecular details of TSC1–TSC2 complex regulation and function as it relates to the control of Rheb and mTORCl.

1,113 citations


Journal ArticleDOI
TL;DR: It is demonstrated that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the m TORC2 subunits rictor, Sin1, Sin2, or mLST8 or SEC13 protein 8.
Abstract: SGK1 (serum- and glucocorticoid-induced protein kinase 1) is a member of the AGC (protein kinase A/protein kinase G/protein kinase C) family of protein kinases and is activated by agonists including growth factors. SGK1 regulates diverse effects of extracellular agonists by phosphorylating regulatory proteins that control cellular processes such as ion transport and growth. Like other AGC family kinases, activation of SGK1 is triggered by phosphorylation of a threonine residue within the T-loop of the kinase domain and a serine residue lying within the C-terminal hydrophobic motif (Ser(422) in SGK1). PDK1 (phosphoinositide-dependent kinase 1) phosphorylates the T-loop of SGK1. The identity of the hydrophobic motif kinase is unclear. Recent work has established that mTORC1 [mTOR (mammalian target of rapamycin) complex 1] phosphorylates the hydrophobic motif of S6K (S6 kinase), whereas mTORC2 (mTOR complex 2) phosphorylates the hydrophobic motif of Akt (also known as protein kinase B). In the present study we demonstrate that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the mTORC2 subunits rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-activated-protein-kinase-interacting protein 1) or mLST8 (mammalian lethal with SEC13 protein 8). Furthermore, phosphorylation of NDRG1 (N-myc downstream regulated gene 1), a physiological substrate of SGK1, was also abolished in rictor-, Sin1- or mLST8-deficient fibroblasts. mTORC2 immunoprecipitated from wild-type, but not from mLST8- or rictor-knockout cells, phosphorylated SGK1 at Ser(422). Consistent with mTORC1 not regulating SGK1, immunoprecipitated mTORC1 failed to phosphorylate SGK1 at Ser(422), under conditions which it phosphorylated the hydrophobic motif of S6K. Moreover, rapamycin treatment of HEK (human embryonic kidney)-293, MCF-7 or HeLa cells suppressed phosphorylation of S6K, without affecting SGK1 phosphorylation or activation. The findings of the present study indicate that mTORC2, but not mTORC1, plays a vital role in controlling the hydrophobic motif phosphorylation and activity of SGK1. Our findings may explain why in previous studies phosphorylation of substrates, such as FOXO (forkhead box O), that could be regulated by SGK, are reduced in mTORC2-deficient cells. The results of the present study indicate that NDRG1 phosphorylation represents an excellent biomarker for mTORC2 activity.

875 citations


Journal ArticleDOI
TL;DR: Testing a number of clinically relevant HDACis (HDAC inhibitors) against a panel of rhHDAC (recombinant human HDAC) isoforms showed that both pan- HDAC and class-I-specific inhibitor treatment resulted in increased acetylation of histones, but only pan-HDAC inhibitor treatment resulting in increased tubulin acetylations, which is in agreement with their activity towards the HDAC6 isoform.
Abstract: The human HDAC (histone deacetylase) family, a well-validated anticancer target, plays a key role in the control of gene expression through regulation of transcription. While HDACs can be subdivided into three main classes, the class I, class II and class III HDACs (sirtuins), it is presently unclear whether inhibiting multiple HDACs using pan-HDAC inhibitors, or targeting specific isoforms that show aberrant levels in tumours, will prove more effective as an anticancer strategy in the clinic. To address the above issues, we have tested a number of clinically relevant HDACis (HDAC inhibitors) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rhHDAC3 and rhHDAC8) and class II HDAC isoforms (rhHDAC4, rhHDAC6, rhHDAC7 and rhHDAC9) was determined. MS-275 was HDAC1-selective, MGCD0103 was HDAC1- and HDAC2-selective, apicidin was HDAC2- and HDAC3-selective and valproic acid was a specific inhibitor of class I HDACs. The hydroxamic acid-derived compounds (trichostatin A, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat) were potent pan-HDAC inhibitors. The growth-inhibitory effect of the HDACis on HeLa cells showed that both pan-HDAC and class-I-specific inhibitors inhibited cell growth. The results also showed that both pan-HDAC and class-I-specific inhibitor treatment resulted in increased acetylation of histones, but only pan-HDAC inhibitor treatment resulted in increased tubulin acetylation, which is in agreement with their activity towards the HDAC6 isoform.

694 citations


Journal ArticleDOI
TL;DR: Class III PI3Ks are implicated in the regulation of both autophagy and, through the mTOR pathway, protein synthesis, and thus contribute to the integration of cellular responses to changing nutritional status.
Abstract: The Class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first described as a component of the vacuolar sorting system in Saccharomyces cerevisiae and is the sole PI3K in yeast. The homologue in mammalian cells, hVps34, has been studied extensively in the context of endocytic sorting. However, hVps34 also plays an important role in the ability of cells to respond to changes in nutrient conditions. Recent studies have shown that mammalian hVps34 is required for the activation of the mTOR (mammalian target of rapamycin)/S6K1 (S6 kinase 1) pathway, which regulates protein synthesis in response to nutrient availability. In both yeast and mammalian cells, Class III PI3Ks are also required for the induction of autophagy during nutrient deprivation. Finally, mammalian hVps34 is itself regulated by nutrients. Thus Class III PI3Ks are implicated in the regulation of both autophagy and, through the mTOR pathway, protein synthesis, and thus contribute to the integration of cellular responses to changing nutritional status.

609 citations


Journal ArticleDOI
TL;DR: In this paper, a review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understand signal-transduction networks on a global scale.
Abstract: Many changes in environmental conditions and hormones are mediated by MAPK (mitogen-activated protein kinase) cascades in all eukaryotes, including plants. Studies of MAPK pathways in genetic model organisms are especially informative in revealing the molecular mechanisms by means of which MAPK cascades are controlled and modulate cellular processes. The present review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understanding signal-transduction networks on a global scale.

600 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that NF-κB (nuclear factor κB) is a direct modulator of HIF-1α expression and that HIF1α promoter is responsive to selective NFκB subunits.
Abstract: HIF (hypoxia-inducible factor) is the main transcription factor activated by low oxygen tensions. HIF-1α (and other α subunits) is tightly controlled mostly at the protein level, through the concerted action of a class of enzymes called PHDs (prolyl hydroxylases) 1, 2 and 3. Most of the knowledge of HIF derives from studies following hypoxic stress; however, HIF-1α stabilization is also found in non-hypoxic conditions through an unknown mechanism. In the present study, we demonstrate that NF-κB (nuclear factor κB) is a direct modulator of HIF-1α expression. The HIF-1α promoter is responsive to selective NF-κB subunits. siRNA (small interfering RNA) studies for individual NF-κB members revealed differential effects on HIF-1α mRNA levels, indicating that NF-κB can regulate basal HIF-1α expression. Finally, when endogenous NF-κB is induced by TNFα (tumour necrosis factor α) treatment, HIF-1α levels also change in an NF-κB-dependent manner. In conclusion, we find that NF-κB can regulate basal TNFα and, in certain circumstances, the hypoxia-induced HIF-1α.

588 citations


Journal ArticleDOI
TL;DR: The biology of the Hsp90 molecular chaperone is reviewed, emphasizing recent progress in the understanding of structure-function relationships and the identification of new client proteins.
Abstract: The molecular chaperone Hsp90 (90 kDa heat-shock protein) is a remarkably versatile protein involved in the stress response and in normal homoeostatic control mechanisms. It interacts with 'client proteins', including protein kinases, transcription factors and others, and either facilitates their stabilization and activation or directs them for proteasomal degradation. By this means, Hsp90 displays a multifaceted ability to influence signal transduction, chromatin remodelling and epigenetic regulation, development and morphological evolution. Hsp90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis at the N-terminus. The cycle is also regulated by a group of co-chaperones and accessory proteins. Here we review the biology of the Hsp90 molecular chaperone, emphasizing recent progress in our understanding of structure-function relationships and the identification of new client proteins. In addition we describe the exciting progress that has been made in the development of Hsp90 inhibitors, which are now showing promise in the clinic for cancer treatment. We also identify the gaps in our current understanding and highlight important topics for future research.

422 citations


Journal ArticleDOI
TL;DR: The results indicate that the perturbation of the GTPase activity of FtsZ assembly is lethal to bacteria and suggest that curcumin inhibits bacterial cell proliferation by inhibiting the assembly dynamics of FTSZ in the Z-ring.
Abstract: The assembly and stability of FtsZ protofilaments have been shown to play critical roles in bacterial cytokinesis. Recent evidence suggests that FtsZ may be considered as an important antibacterial drug target. Curcumin, a dietary polyphenolic compound, has been shown to have a potent antibacterial activity against a number of pathogenic bacteria including Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus. We found that curcumin induced filamentation in the Bacillus subtilis 168, suggesting that it inhibits bacterial cytokinesis. Further, curcumin strongly inhibited the formation of the cytokinetic Z-ring in B. subtilis 168 without detectably affecting the segregation and organization of the nucleoids. Since the assembly dynamics of FtsZ protofilaments plays a major role in the formation and functioning of the Z-ring, we analysed the effects of curcumin on the assembly of FtsZ protofilaments. Curcumin inhibited the assembly of FtsZ protofilaments and also increased the GTPase activity of FtsZ. Electron microscopic analysis showed that curcumin reduced the bundling of FtsZ protofilaments in vitro. Further, curcumin was found to bind to FtsZ in vitro with a dissociation constant of 7.3+/-1.8 microM and the agent also perturbed the secondary structure of FtsZ. The results indicate that the perturbation of the GTPase activity of FtsZ assembly is lethal to bacteria and suggest that curcumin inhibits bacterial cell proliferation by inhibiting the assembly dynamics of FtsZ in the Z-ring.

415 citations


Journal ArticleDOI
TL;DR: After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.
Abstract: DGKs (diacylglycerol kinases) are members of a unique and conserved family of intracellular lipid kinases that phosphorylate DAG (diacylglycerol), catalysing its conversion into PA (phosphatidic acid). This reaction leads to attenuation of DAG levels in the cell membrane, regulating a host of intracellular signalling proteins that have evolved the ability to bind this lipid. The product of the DGK reaction, PA, is also linked to the regulation of diverse functions, including cell growth, membrane trafficking, differentiation and migration. In multicellular eukaryotes, DGKs provide a link between lipid metabolism and signalling. Genetic experiments in Caenorhabditis elegans, Drosophila melanogaster and mice have started to unveil the role of members of this protein family as modulators of receptor-dependent responses in processes such as synaptic transmission and photoreceptor transduction, as well as acquired and innate immune responses. Recent discoveries provide new insights into the complex mechanisms controlling DGK activation and their participation in receptor-regulated processes. After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.

408 citations


Journal ArticleDOI
TL;DR: Not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells.
Abstract: Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.

403 citations


Journal ArticleDOI
TL;DR: The results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.
Abstract: The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.

Journal ArticleDOI
TL;DR: The PPARgamma (peroxisome-proliferator-activated receptor gamma) agonists thiazolidinediones selectively enhance the secretion of HMW adiponectin through up-regulation of Ero1-Lalpha and highlight the role of post-translational modifications in regulating the biosynthesis of H MW adiponECTin.
Abstract: Adiponectin is an insulin-sensitizing adipokine with anti-diabetic, anti-atherogenic, anti-inflammatory and cardioprotective properties. This adipokine is secreted from adipocytes into the circulation as three oligomeric isoforms, including trimeric, hexameric and the HMW (high-molecular-mass) oligomeric complex consisting of at least 18 protomers. Each oligomeric isoform of adiponectin exerts distinct biological properties in its various target tissues. The HMW oligomer is the major active form mediating the insulin-sensitizing effects of adiponectin, whereas the central actions of this adipokine are attributed primarily to the hexameric and trimeric oligomers. In patients with Type 2 diabetes and coronary heart disease, circulating levels of HMW adiponectin are selectively decreased due to an impaired secretion of this oligomer from adipocytes. The biosynthesis of the adiponectin oligomers is a complex process involving extensive post-translational modifications. Hydroxylation and glycosylation of several conserved lysine residues in the collagenous domain of adiponectin are necessary for the intracellular assembly and stabilization of its high-order oligomeric structures. Secretion of the adiponectin oligomers is tightly controlled by a pair of molecular chaperones in the ER (endoplasmic reticulum), including ERp44 (ER protein of 44 kDa) and Ero1-Lalpha (ER oxidoreductase 1-Lalpha). ERp44 inhibits the secretion of adiponectin oligomers through a thiol-mediated retention. In contrast, Ero1-Lalpha releases HMW adiponectin trapped by ERp44. The PPARgamma (peroxisome-proliferator-activated receptor gamma) agonists thiazolidinediones selectively enhance the secretion of HMW adiponectin through up-regulation of Ero1-Lalpha. In the present review, we discuss the recent advances in our understanding of the structural and biological properties of the adiponectin oligomeric isoforms and highlight the role of post-translational modifications in regulating the biosynthesis of HMW adiponectin.

Journal ArticleDOI
TL;DR: The first cloning of the promoter of the PC gene in mammals and subsequent transcriptional studies reveal some key cognate transcription factors regulating tissue-specific expression, which offers some prospects for the study of this important enzyme.
Abstract: effector domain. In the presence of the allosteric effector, acetyl- CoA, the biotin moiety transfers the carboxy group between the biotin carboxylase domain active site on one polypeptide chain and the carboxyltransferase active site on the adjacent antiparallel polypeptide chain. In addition, thebonafiderole of PCin the non- gluconeogenic tissues has been studied using a combination of classical biochemistry and genetic approaches. The first cloning of the promoter of the PC gene in mammals and subsequent transcriptional studies reveal some key cognate transcription factors regulating tissue-specific expression. The present review summarizes these advances and also offers some prospects in terms of future directions for the study of this important enzyme.

Journal ArticleDOI
TL;DR: The PI3K/PKB pathway impinges upon a remarkable array of intracellular events that influence either directly or indirectly whether or not a cell will undergo apoptosis.
Abstract: The activation of PI3K (phosphoinositide 3-kinase) family members is a universal event in response to virtually all cytokines, growth factors and hormones. As a result of formation of PtdIns with an added phosphate at the 3 position of the inositol ring, activation of the protein kinases PDK1 (phosphoinositide-dependent kinase 1) and PKB (protein kinase B)/Akt occurs. The PI3K/PKB pathway impinges upon a remarkable array of intracellular events that influence either directly or indirectly whether or not a cell will undergo apoptosis. In this review, the many ways in which PI3K/PKB can control these processes are summarized. Not all of the events described will necessarily play a role in any one cell type, but a subset of these events is probably essential for the survival of every cell.

Journal ArticleDOI
TL;DR: The role of NRPs in the regulation of cellular function remains uncertain, and little is known concerning the molecular mechanisms through which NRPs mediate the functions of their various ligands in different cell types as mentioned in this paper.
Abstract: NRPs (neuropilins) are co-receptors for class 3 semaphorins, polypeptides with key roles in axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. They lack a defined signalling role, but are thought to mediate functional responses as a result of complex formation with other receptors, such as plexins in the case of semaphorins and VEGF receptors (e.g. VEGFR2). Mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, whereas NRP2 has a more restricted role in neuronal patterning and lymphangiogenesis, but recent findings indicate that NRPs may have additional biological roles in other physiological and disease-related settings. In particular, NRPs are highly expressed in diverse tumour cell lines and human neoplasms and have been implicated in tumour growth and vascularization in vivo. However, despite the wealth of information regarding the probable biological roles of these molecules, many aspects of the regulation of cellular function via NRPs remain uncertain, and little is known concerning the molecular mechanisms through which NRPs mediate the functions of their various ligands in different cell types.

Journal ArticleDOI
TL;DR: Defects in both the activation of glucokinase and in the dephosphorylation of glycogen phosphorylase are potential contributing factors to the dysregulation of hepatic glucose metabolism in Type 2 diabetes.
Abstract: Conversion of glucose into glycogen is a major pathway that contributes to the removal of glucose from the portal vein by the liver in the postprandial state. It is regulated in part by the increase in blood-glucose concentration in the portal vein, which activates glucokinase, the first enzyme in the pathway, causing an increase in the concentration of glucose 6-P (glucose 6-phosphate), which modulates the phosphorylation state of downstream enzymes by acting synergistically with other allosteric effectors. Glucokinase is regulated by a hierarchy of transcriptional and post-transcriptional mechanisms that are only partially understood. In the fasted state, glucokinase is in part sequestered in the nucleus in an inactive state, complexed to a specific regulatory protein, GKRP (glucokinase regulatory protein). This reserve pool is rapidly mobilized to the cytoplasm in the postprandial state in response to an elevated concentration of glucose. The translocation of glucokinase between the nucleus and cytoplasm is modulated by various metabolic and hormonal conditions. The elevated glucose 6-P concentration, consequent to glucokinase activation, has a synergistic effect with glucose in promoting dephosphorylation (inactivation) of glycogen phosphorylase and inducing dephosphorylation (activation) of glycogen synthase. The latter involves both a direct ligand-induced conformational change and depletion of the phosphorylated form of glycogen phosphorylase, which is a potent allosteric inhibitor of glycogen synthase phosphatase activity associated with the glycogen-targeting protein, GL [hepatic glycogen-targeting subunit of PP-1 (protein phosphatase-1) encoded by PPP1R3B]. Defects in both the activation of glucokinase and in the dephosphorylation of glycogen phosphorylase are potential contributing factors to the dysregulation of hepatic glucose metabolism in Type 2 diabetes.

Journal ArticleDOI
TL;DR: Molecular, biochemical and functional data provide an important framework to further address the physiological functions and mechanisms of the action of this family of secreted glycoproteins in normal and disease states.
Abstract: The insulin-sensitizing hormone, adiponectin, belongs to the expanding C1q/TNF (tumour necrosis factor) family of proteins. We recently identified a family of adiponectin paralogues designated as CTRP (C1q/TNF-related protein) 1-7, and in the present study describe CTRP10. In the present study, we show that CTRP1, CTRP2, CTRP3, CTRP5 and CTRP7 transcripts are expressed predominantly by adipose tissue. In contrast, placenta and eye expressed the highest levels of CTRP6 and CTRP10 transcripts respectively. Expression levels of CTRP1, CTRP2, CTRP3, CTRP6 and CTRP7 transcripts are up-regulated in 8-week-old obese (ob/ob) mice relative to lean controls. Treatment of mice with a PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) agonist, rosiglitazone, increased the expression of CTRP1 and decreased CTRP6 transcript levels. All CTRPs are secreted glycoproteins when expressed in mammalian cells. CTRP1, CTRP2, CTRP3, CTRP5 and CTRP6 circulate in the blood and are potential endocrine hormones; their serum levels vary according to the sex and genetic background of mice. Importantly, serum levels of CTRP1 and CTRP6 are increased in adiponectin-null mice. Like adiponectin, all secreted CTRP proteins form trimers as their basic structural units. CTRP3, CTRP5, CTRP6 and CTRP10 trimers are further assembled into higher-order oligomeric complexes via disulfide bonding mediated by their N-terminal cysteine residues. Besides forming homo-oligomers, CTRP1/CTRP6, CTRP2/CTRP7 and adiponectin/CTRP2 are secreted as heterotrimers, thus providing a mechanism to potentially generate functionally distinct ligands. Functional characterization of one such family member, CTRP1, showed that it specifically activates Akt and p44/42-MAPK (mitogen-activated protein kinase) signalling pathways in differentiated mouse myotubes. Moreover, injection of recombinant CTRP1 into mice significantly reduced their serum glucose levels. Thus at least CTRP1 may be considered a novel adipokine. In summary, these molecular, biochemical and functional data provide an important framework to further address the physiological functions and mechanisms of the action of this family of secreted glycoproteins in normal and disease states.

Journal ArticleDOI
TL;DR: The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160, TBC1D1,tre-2/USP6, BUB2, cdc16 domain family member 1 and their target Rab proteins.
Abstract: Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.

Journal ArticleDOI
TL;DR: Two models of the role for mitochondria in oxygen sensing will be discussed and recent evidence will be presented which raises the possibility that these two models which implicate ROS (reactive oxygen species) and oxygen redistribution respectively may complement each other and facilitate rapid and dynamic activation of the HIF pathway in hypoxia.
Abstract: Mitochondrial respiration is responsible for more than 90% of oxygen consumption in humans. Cells utilize oxygen as the final electron acceptor in the aerobic metabolism of glucose to generate ATP which fuels most active cellular processes. Consequently, a drop in tissue oxygen levels to the point where oxygen demand exceeds supply (termed hypoxia) leads rapidly to metabolic crisis and represents a severe threat to ongoing physiological function and ultimately, viability. Because of the central role of oxygen in metabolism, it is perhaps not surprising that we have evolved an efficient and rapid molecular response system which senses hypoxia in cells, leading to the induction of an array of adaptive genes which facilitate increased oxygen supply and support anaerobic ATP generation. This response is governed by HIF (hypoxia-inducible factor). The oxygen sensitivity of this pathway is conferred by a family of hydroxylases which repress HIF activity in normoxia allowing its rapid activation in hypoxia. Because of its importance in a diverse range of disease states, the mechanism by which cells sense hypoxia and transduce a signal to the HIF pathway is an area of intense investigation. Inhibition of mitochondrial function reverses hypoxia-induced HIF leading to speculation of a role for mitochondria in cellular oxygen sensing. However, the nature of the signal between mitochondria and oxygen-sensing hydroxylase enzymes has remained controversial. In the present review, two models of the role for mitochondria in oxygen sensing will be discussed and recent evidence will be presented which raises the possibility that these two models which implicate ROS (reactive oxygen species) and oxygen redistribution respectively may complement each other and facilitate rapid and dynamic activation of the HIF pathway in hypoxia.

Journal ArticleDOI
TL;DR: There is considerable diversity and complexity in thechemokine network, both at the chemokine/receptor level and in the downstream signalling pathways they couple into, which may be key to a better understanding of how and why particular chemokines contribute to cancer growth and metastasis.
Abstract: Inappropriate chemokine/receptor expression or regulation is linked to many diseases, especially those characterized by an excessive cellular infiltrate, such as rheumatoid arthritis and other inflammatory disorders. There is now overwhelming evidence that chemokines are also involved in the progression of cancer, where they function in several capacities. First, specific chemokine-receptor pairs are involved in tumour metastasis. This is not surprising, in view of their role as chemoattractants in cell migration. Secondly, chemokines help to shape the tumour microenvironment, often in favour of tumour growth and metastasis, by recruitment of leucocytes and activation of pro-inflammatory mediators. Emerging evidence suggests that chemokine receptor signalling also contributes to survival and proliferation, which may be particularly important for metastasized cells to adapt to foreign environments. However, there is considerable diversity and complexity in the chemokine network, both at the chemokine/receptor level and in the downstream signalling pathways they couple into, which may be key to a better understanding of how and why particular chemokines contribute to cancer growth and metastasis. Further investigation into these areas may identify targets that, if inhibited, could render cancer cells more susceptible to chemotherapy.

Journal ArticleDOI
TL;DR: Analysis of transcripts encoding human Fe(II)- and 2-oxoglutarate-dependent oxygenases shows that many of these genes are regulated by hypoxia and defines two groups of histone demethylases as new classes of Hypoxia-regulated genes.
Abstract: The transcription factor HIF (hypoxia-inducible factor) mediates a highly pleiotrophic response to hypoxia. Many recent studies have focused on defining the extent of this transcriptional response. In the present study we have analysed regulation by hypoxia among transcripts encoding human Fe(II)- and 2-oxoglutarate-dependent oxygenases. Our results show that many of these genes are regulated by hypoxia and define two groups of histone demethylases as new classes of hypoxia-regulated genes. Patterns of induction were consistent across a range of cell lines with JMJD1A (where JMJD is Jumonji-domain containing) and JMJD2B demonstrating robust, and JMJD2C more modest, up-regulation by hypoxia. Functional genetic and chromatin immunoprecipitation studies demonstrated the importance of HIF-1alpha in mediating these responses. Given the importance of histone methylation status in defining patterns of gene expression under different physiological and pathophysiological conditions, these findings predict a role for the HIF system in epigenetic regulation.

Journal ArticleDOI
TL;DR: The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.
Abstract: ALK (anaplastic lymphoma kinase) is oncogenic in several tumours and has recently been identified as a predisposition gene for familial NB (neuroblastoma) harbouring mutations in the TKD (tyrosine kinase domain). We have analysed a large set of sporadic human NB primary tumours of all clinical stages for chromosomal re-arrangements using a CGH (comparative genomic hybridization) array (n=108) and mutations of the ALK gene (n=90), and expression of ALK and related genes (n=19). ALK amplification or in-gene re-arrangements were found in 5% of NB tumours and mutations were found in 11%, including two novel not previously published mutations in the TKD, c.3733T>A and c.3735C>A. DNA mutations in the TKD and gene amplifications were only found in advanced large primary tumours or metastatic tumours, and correlated with the expression levels of ALK and downstream genes as well as other unfavourable features, and poor outcome. The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.

Journal ArticleDOI
TL;DR: The results strongly suggest that plasma membrane aquaporin pores determine the efficiency of H(2)O( 2) signalling between cells.
Abstract: H(2)O(2) is a relatively long-lived reactive oxygen species that signals between cells and organisms. H(2)O(2) signalling in plants is essential for response to stress, defence against pathogens and the regulation of programmed cell death. Although H(2)O(2) diffusion across membranes is often considered as a passive property of lipid bilayers, native membranes represent significant barriers for H(2)O(2). In the present study we addressed the question of whether channels might facilitate H(2)O(2) conduction across plasma membranes. The expression of several plant plasma membrane aquaporins in yeast, including PIP2;1 from Arabidopsis (where PIP is plasma membrane intrinsic protein), enhanced the toxicity of H(2)O(2) and increased the fluorescence of dye-loaded yeast when exposed to H(2)O(2). The sensitivity of aquaporin-expressing yeast to H(2)O(2) was altered by mutations that alter gating and the selectivity of the aquaporins. The conduction of water, H(2)O(2) and urea was compared, using molecular dynamics simulations based on the crystal structure of SoPIP2;1 from spinach. The calculations identify differences in the conduction between the substrates and reveal channel residues critically involved in H(2)O(2) conduction. The results of the calculations on tetramers and monomers are in agreement with the biochemical data. Taken together, the results strongly suggest that plasma membrane aquaporin pores determine the efficiency of H(2)O(2) signalling between cells. Aquaporins are present in most species and their capacity to facilitate the diffusion of H(2)O(2) may be of physiological significance in many organisms and particularly in communication between different species.

Journal ArticleDOI
TL;DR: Current knowledge is summarized of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.
Abstract: Hypoxia induces profound changes in the cellular gene expression profile. The discovery of a major transcription factor family activated by hypoxia, HIF (hypoxia-inducible factor), and the factors that contribute to HIF regulation have greatly enhanced our knowledge of the molecular aspects of the hypoxic response. However, in addition to HIF, other transcription factors and cellular pathways are activated by exposure to reduced oxygen. In the present review, we summarize the current knowledge of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.

Journal ArticleDOI
TL;DR: The results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.
Abstract: Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.

Journal ArticleDOI
TL;DR: DMAT and its parent compound TBI are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus), and TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3.
Abstract: CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis.

Journal ArticleDOI
TL;DR: The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains.
Abstract: AMPK (AMP-activated protein kinase)-related kinases regulate cell polarity as well as proliferation and are activated by the LKB1-tumour suppressor kinase. In the present study we demonstrate that the AMPK-related kinases, NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4), are polyubiquitinated in vivo and interact with the deubiquitinating enzyme USP9X (ubiquitin specific protease-9). Knockdown of USP9X increased polyubiquitination of NUAK1 and MARK4, whereas overexpression of USP9X inhibited ubiquitination. USP9X, catalysed the removal of polyubiquitin chains from wild-type NUAK1, but not from a non-USP9X-binding mutant. Topological analysis revealed that ubiquitin monomers attached to NUAK1 and MARK4 are linked by Lys(29) and/or Lys(33) rather than the more common Lys(48)/Lys(63). We find that AMPK and other AMPK-related kinases are also polyubiquitinated in cells. We identified non-USP9X-binding mutants of NUAK1 and MARK4 and find that these are hyper-ubiquitinated and not phosphorylated at their T-loop residue targeted by LKB1 when expressed in cells, suggesting that polyubiquitination may inhibit these enzymes. The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains.

Journal ArticleDOI
TL;DR: Findings suggest that TBC1D1 and AS160 may have complementary roles in regulating vesicle trafficking in response to insulin and AMPK-activating stimuli in skeletal muscle.
Abstract: AS160 (Akt substrate of 160 kDa) and TBC1D1 are related RabGAPs (Rab GTPase-activating proteins) implicated in regulating the trafficking of GLUT4 (glucose transporter 4) storage vesicles to the cell surface. All animal species examined contain TBC1D1, whereas AS160 evolved with the vertebrates. TBC1D1 has two clusters of phosphorylated residues, either side of the second PTB (phosphotyrosine-binding domain). Each cluster contains a 14-3-3-binding site. When AMPK (AMP-activated protein kinase) is activated in HEK (human embryonic kidney)-293 cells, 14-3-3s bind primarily to pSer 237 (where pSer is phosphorylated serine) in TBC1D1, whereas 14-3-3 binding depends primarily on pThr 596 (where pThr is phosphorylated threonine) in cells stimulated with IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor) and PMA; and both pSer 237 and pThr 596 contribute to 14-3-3 binding in cells stimulated with forskolin. In HEK-293 cells, LY294002 inhibits phosphorylation of Thr 596 of TBC1D1, and promotes phosphorylation of AMPK and Ser 237 of TBC1D1. In vitro phosphorylation experiments indicated regulatory interactions among phosphorylated sites, for example phosphorylation of Ser 235 prevents subsequent phosphorylation of Ser 237 . In rat L6 myotubes, endogenous TBC1D1 is strongly phosphorylated on Ser 237 and binds to 14-3-3s in response to the AMPK activators AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside), phenformin and A-769662, whereas insulin promotes phosphorylation of Thr 596 but not 14-3-3 binding. In contrast, AS160 is phosphorylated on its 14-3-3-binding sites (Ser 341 and Thr 642 ) and binds to 14-3-3s in response to insulin, but not A-769662, in L6 cells. These findings suggest that TBC1D1 and AS160 may have complementary roles in regulating vesicle trafficking in response to insulin and AMPK-activating stimuli in skeletal muscle.

Journal ArticleDOI
TL;DR: It is revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases, a fundamental function of TOR conserved throughout evolution.
Abstract: The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.

Journal ArticleDOI
TL;DR: The distribution of SPAK and OSR1 in the animal kingdom and tissue expression within a single organism is examined and the main molecular features of these two kinases are described with emphasis on the interacting domain located at their extreme C-terminus.
Abstract: Since the discovery of an interaction between membrane transport proteins and the mammalian STE20 (sterile 20)-like kinases SPAK (STE20/SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase-1), a significant body of work has been performed probing the molecular physiology of these two kinases. To date, the function of SPAK and OSR1 is probably the best known of all mammalian kinases of the STE20 family. As they regulate by direct phosphorylation key ion transport mechanisms involved in fluid and ion homoeostasis, SPAK and OSR1 constitute key end-of-pathway effectors. Their significance in such fundamental functions as ion homoeostasis and cell volume control is evidenced by the evolutionary pressure that resulted in the duplication of the OSR1 gene in higher vertebrates. This review examines the distribution of these two kinases in the animal kingdom and tissue expression within a single organism. It also describes the main molecular features of these two kinases with emphasis on the interacting domain located at their extreme C-terminus. A large portion of the present review is devoted to the extensive biochemical and physiological studies that have resulted in our current understanding of SPAK/OSR1 function. Finally, as our understanding is a work in progress, we also identify unresolved questions and controversies that warrant further investigation.