scispace - formally typeset
Search or ask a question

Showing papers in "Biochemical Journal in 2018"


Journal ArticleDOI
TL;DR: Topoisomerases remain as important therapeutic targets of anticancer agents and a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs is suggested.
Abstract: Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.

268 citations


Journal ArticleDOI
TL;DR: The potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs is described, together with the possibility to ‘force’ C SCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities.
Abstract: Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to ‘force’ CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.

173 citations


Journal ArticleDOI
TL;DR: Recent advances in precise gene editing using different platforms as well as their potential applications in basic biology and biotechnology are discussed.
Abstract: The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 adaptive immunity system has been harnessed for genome editing applications across eukaryotic species, but major drawbacks, such as the inefficiency of precise base editing and off-target activities, remain. A catalytically inactive Cas9 variant (dead Cas9, dCas9) has been fused to diverse functional domains for targeting genetic and epigenetic modifications, including base editing, to specific DNA sequences. As base editing does not require the generation of double-strand breaks, dCas9 and Cas9 nickase have been used to target deaminase domains to edit specific loci. Adenine and cytidine deaminases convert their respective nucleotides into other DNA bases, thereby offering many possibilities for DNA editing. Such base-editing enzymes hold great promise for applications in basic biology, trait development in crops, and treatment of genetic diseases. Here, we discuss recent advances in precise gene editing using different platforms as well as their potential applications in basic biology and biotechnology.

168 citations


Journal ArticleDOI
TL;DR: It is revealed that the VPS35[D620N] knock-in mutation strikingly elevates LRRK2-mediated phosphorylation of Rab8A, Rab10, and Rab12 in mouse embryonic fibroblasts and suggests that it may be possible to elaborate compounds that target the retromer complex to suppress L RRK2 activity.
Abstract: Missense mutations in the LRRK2 (Leucine-rich repeat protein kinase-2) and VPS35 genes result in autosomal dominant Parkinson's disease. The VPS35 gene encodes for the cargo-binding component of the retromer complex, while LRRK2 modulates vesicular trafficking by phosphorylating a subgroup of Rab proteins. Pathogenic mutations in LRRK2 increase its kinase activity. It is not known how the only thus far described pathogenic VPS35 mutation, [p.D620N] exerts its effects. We reveal that the VPS35[D620N] knock-in mutation strikingly elevates LRRK2-mediated phosphorylation of Rab8A, Rab10, and Rab12 in mouse embryonic fibroblasts. The VPS35[D620N] mutation also increases Rab10 phosphorylation in mouse tissues (the lung, kidney, spleen, and brain). Furthermore, LRRK2-mediated Rab10 phosphorylation is increased in neutrophils as well as monocytes isolated from three Parkinson's patients with a heterozygous VPS35[D620N] mutation compared with healthy donors and idiopathic Parkinson's patients. LRRK2-mediated Rab10 phosphorylation is significantly suppressed by knock-out or knock-down of VPS35 in wild-type, LRRK2[R1441C], or VPS35[D620N] cells. Finally, VPS35[D620N] mutation promotes Rab10 phosphorylation more potently than LRRK2 pathogenic mutations. Available data suggest that Parkinson's patients with VPS35[D620N] develop the disease at a younger age than those with LRRK2 mutations. Our observations indicate that VPS35 controls LRRK2 activity and that the VPS35[D620N] mutation results in a gain of function, potentially causing PD through hyperactivation of the LRRK2 kinase. Our findings suggest that it may be possible to elaborate compounds that target the retromer complex to suppress LRRK2 activity. Moreover, patients with VPS35[D620N] associated Parkinson's might benefit from LRRK2 inhibitor treatment that have entered clinical trials in humans.

147 citations


Journal ArticleDOI
TL;DR: Recent advances on how actin and septin cytoskeletons are not major components of the axoneme affect cilium function, structure, and organization are discussed.
Abstract: The cilium, once considered a vestigial structure, is a conserved, microtubule-based organelle critical for transducing extracellular chemical and mechanical signals that control cell polarity, differentiation, and proliferation. The cilium undergoes cycles of assembly and disassembly that are controlled by complex inter-relationships with the cytoskeleton. Microtubules form the core of the cilium, the axoneme, and are regulated by post-translational modifications, associated proteins, and microtubule dynamics. Although actin and septin cytoskeletons are not major components of the axoneme, they also regulate cilium organization and assembly state. Here, we discuss recent advances on how these different cytoskeletal systems­ affect cilium function, structure, and organization.

138 citations


Journal ArticleDOI
TL;DR: It is suggested that peripheral blood neutrophils are a valuable resource for LRRK2 research and should be considered for inclusion in Parkinson's bio-repository collections as they are abundant, homogenous and express relatively high levels of L RRK2 as well as Rab10.
Abstract: There is compelling evidence for the role of the leucine-rich repeat kinase 2 (LRRK2) and in particular its kinase function in Parkinson9s disease. Orally bioavailable, brain penetrant and potent LRRK2 kinase inhibitors are in the later stages of clinical development. Here, we describe a facile and robust assay to quantify LRRK2 kinase pathway activity by measuring LRRK2-mediated phosphorylation of Rab10 in human peripheral blood neutrophils. We use the selective MJFF-pRab10 monoclonal antibody recognising the Rab10 Thr73 phospho-epitope that is phosphorylated by LRRK2. We highlight the feasibility and practicability of using our assay in the clinical setting by studying a few patients with G2019S LRRK2 associated and sporadic Parkinson9s as well as healthy controls. We suggest that peripheral blood neutrophils are a valuable resource for LRRK2 research and should be considered for inclusion in Parkinson9s bio-repository collections as they are abundant, homogenous and express relatively high levels of LRRK2 as well as Rab10. In contrast, the widely used peripheral blood mononuclear cells are heterogeneous and only a minority of cells (monocytes and contaminating neutrophils) express LRRK2. While our LRRK2 kinase pathway assay could assist in patient stratification based on LRRK2 kinase activity, we envision that it may find greater utility in pharmacodynamic and target engagement studies in future LRRK2 inhibitor trials.

134 citations


Journal ArticleDOI
TL;DR: The MJFF-pRAB10 antibodies can be deployed to assess enhanced Rab10 phosphorylation resulting from pathogenic (R1441C/G or G2019S) LRRK2 knock-in mutations as well as the impact of L RRK2 inhibitor treatment.
Abstract: Mutations that activate the LRRK2 protein kinase, predispose to Parkinson9s disease, suggesting that LRRK2 inhibitors might have therapeutic benefit. Recent work has revealed that LRRK2 phosphorylates a subgroup of 14 Rab proteins, including Rab10, at a specific residue located at the centre of its effector binding Switch-II motif. In this study, we analyse the selectivity and sensitivity of polyclonal and monoclonal phospho-specific antibodies raised against 9 different LRRK2 phosphorylated Rab proteins (Rab3A/3B/3C/3D, Rab5A/5B/5C, Rab8A/8B, Rab10, Rab12, Rab29[T71], Rab29[S72], Rab35 and Rab43). We identify rabbit monoclonal phospho-specific antibodies (MJFF-pRAB10) that are exquisitely selective for LRRK2 phosphorylated Rab10, detecting endogenous phosphorylated Rab10 in all analysed cell lines and tissues, including human brain cingulate cortex. We demonstrate that the MJFF-pRAB10 antibodies can be deployed to assess enhanced Rab10 phosphorylation resulting from pathogenic (R1441C/G or G2019S) LRRK2 knock-in mutations as well as the impact of LRRK2 inhibitor treatment. We also identify rabbit monoclonal antibodies displaying broad specificity (MJFF-pRAB8) that can be utilised to assess LRRK2 controlled phosphorylation of a range of endogenous Rab proteins including Rab8A, Rab10 and Rab35. The antibodies described in this study will help with assessment of LRRK2 activity and examination of which Rab proteins are phosphorylated in vivo. These antibodies could also be used to assess impact of LRRK2 inhibitors in future clinical trials.

116 citations


Journal ArticleDOI
TL;DR: In vivo investigation indicated that exosomal KLF3-AS1 promoted cartilage repair and chondrocyte proliferation in a rat model of OA, which might be an underlying therapeutic target for OA.
Abstract: The present study was designed to explore whether exosomal lncRNA-KLF3-AS1 derived from human mesenchymal stem cells (hMSCs) can serve as a positive treatment for osteoarthritis (OA). hMSCs and MSC-derived exosomes (MSC-exo) were prepared for morphological observation and identification by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and collagenase-induced rat model of OA were established for the further experiments. Lentivirus-mediated siRNA targeting KLF3-AS1 was transfected into MSCs for silencing KLF3-AS1. The real-time quantitative PCR and western blotting analysis were performed to examine the mRNA and protein levels of type II collagen alpha 1 (Col2a1), aggrecan, matrix metalloproteinase 13 and runt-related transcription factor 2. Cell proliferation, apoptosis and migration were evaluated by CCK-8 assay, flow cytometry and transwell assay. HE (hematoxylin and eosin) staining and immunohistochemistry were used for histopathological studies. MSC-exo ameliorated IL-1β-induced cartilage injury. Furthermore, lncRNA KLF3-AS1 was markedly enriched in MSC-exo, and exosomal KLF3-AS1 suppressed IL-1β-induced apoptosis of chondrocytes. Further in vivo investigation indicated that exosomal KLF3-AS1 promoted cartilage repair in a rat model of OA. Exosomal KLF3-AS1 promoted cartilage repair and chondrocyte proliferation in a rat model of OA, which might be an underlying therapeutic target for OA.

116 citations


Journal ArticleDOI
TL;DR: The role of mtDNA in cardiac inflammation is focused on and the mechanism and pathological significance of mt DNA-induced inflammatory responses in cardiac diseases are reviewed.
Abstract: Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases.

96 citations


Journal ArticleDOI
TL;DR: This work reviews the current understanding of the biochemical interactions between the epidermal patterning factor ligands and the ERECTA family of leucine-rich repeat receptor kinases and discusses how this leads to activation of a kinase cascade, regulation of the bHLH transcription factor SPEECHLESS and its relatives, and ultimately alters stomatal production.
Abstract: Plants have evolved developmental plasticity which allows the up- or down-regulation of photosynthetic and water loss capacities as new leaves emerge This developmental plasticity enables plants to maximise fitness and to survive under differing environments Stomata play a pivotal role in this adaptive process These microscopic pores in the epidermis of leaves control gas exchange between the plant and its surrounding environment Stomatal development involves regulated cell fate decisions that ensure optimal stomatal density and spacing, enabling efficient gas exchange The cellular patterning process is regulated by a complex signalling pathway involving extracellular ligand-receptor interactions, which, in turn, modulate the activity of three master transcription factors essential for the formation of stomata Here, we review the current understanding of the biochemical interactions between the epidermal patterning factor ligands and the ERECTA family of leucine-rich repeat receptor kinases We discuss how this leads to activation of a kinase cascade, regulation of the bHLH transcription factor SPEECHLESS and its relatives, and ultimately alters stomatal production

84 citations


Journal ArticleDOI
TL;DR: Through a series of unique domains, Sin3 is able to assemble HDAC1/2, chromatin adaptors and transcription factors in a seriesof functionally and compositionally distinct complexes to modify chromatin at both gene-specific and global levels.
Abstract: At face value, the Sin3 histone deacetylase (HDAC) complex appears to be a prototypical co-repressor complex, that is, a multi-protein complex recruited to chromatin by DNA bound repressor proteins to facilitate local histone deacetylation and transcriptional repression. While this is almost certainly part of its role, Sin3 stubbornly refuses to be pigeon-holed in quite this way. Genome-wide mapping studies have found that Sin3 localises predominantly to the promoters of actively transcribed genes. While Sin3 knockout studies in various species result in a combination of both up- and down-regulated genes. Furthermore, genes such as the stem cell factor, Nanog, are dependent on the direct association of Sin3 for active transcription to occur. Sin3 appears to have properties of a co-repressor, co-activator and general transcription factor, and has thus been termed a co-regulator complex. Through a series of unique domains, Sin3 is able to assemble HDAC1/2, chromatin adaptors and transcription factors in a series of functionally and compositionally distinct complexes to modify chromatin at both gene-specific and global levels. Unsurprisingly, therefore, Sin3/HDAC1 have been implicated in the regulation of numerous cellular processes, including mammalian development, maintenance of pluripotency, cell cycle regulation and diseases such as cancer.

Journal ArticleDOI
TL;DR: This review gives a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs.
Abstract: Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.

Journal ArticleDOI
TL;DR: It is discussed that, on the basis of non-enzymatic metabolism-like networks, one can elaborate stepwise scenarios for the origin of metabolic pathways, a situation that increasingly renders the origins of metabolism a tangible problem.
Abstract: Until recently, prebiotic precursors to metabolic pathways were not known In parallel, chemistry achieved the synthesis of amino acids and nucleotides only in reaction sequences that do not resemble metabolic pathways, and by using condition step changes, incompatible with enzyme evolution As a consequence, it was frequently assumed that the topological organisation of the metabolic pathway has formed in a Darwinian process The situation changed with the discovery of a non-enzymatic glycolysis and pentose phosphate pathway The suite of metabolism-like reactions is promoted by a metal cation, (Fe(II)), abundant in Archean sediment, and requires no condition step changes Knowledge about metabolism-like reaction topologies has accumulated since, and supports non-enzymatic origins of gluconeogenesis, the S-adenosylmethionine pathway, the Krebs cycle, as well as CO2 fixation It now feels that it is only a question of time until essential parts of metabolism can be replicated non-enzymatically Here, I review the ‘accidents’ that led to the discovery of the non-enzymatic glycolysis, and on the example of a chemical network based on hydrogen cyanide, I provide reasoning why metabolism-like non-enzymatic reaction topologies may have been missed for a long time Finally, I discuss that, on the basis of non-enzymatic metabolism-like networks, one can elaborate stepwise scenarios for the origin of metabolic pathways, a situation that increasingly renders the origins of metabolism a tangible problem

Journal ArticleDOI
TL;DR: In this paper, the authors identify metabolic differences in visceral adipose tissue (VAT) collected from obese (body mass index 43-48) human subjects who were diagnosed with metabolic syndrome, obese individuals who were metabolically healthy and nonobese healthy controls.
Abstract: Obesity represents one of the most complex public health challenges and has recently reached epidemic proportions Obesity is also considered to be primarily responsible for the rising prevalence of metabolic syndrome, defined as the coexistence in the same individual of several risk factors for atherosclerosis, including dyslipidemia, hypertension and hyperglycemia, as well as for cancer Additionally, the presence of three of the five risk factors (abdominal obesity, low high-density lipoprotein cholesterol, high triglycerides, high fasting glucose and high blood pressure) characterizes metabolic syndrome, which has serious clinical consequences The current study was conducted in order to identify metabolic differences in visceral adipose tissue (VAT) collected from obese (body mass index 43-48) human subjects who were diagnosed with metabolic syndrome, obese individuals who were metabolically healthy and nonobese healthy controls Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analyses were used to obtain the untargeted VAT metabolomic profiles of 481 metabolites belonging to all biochemical pathways Our results indicated consistent increases in oxidative stress markers from the pathologically obese samples in addition to subtle markers of elevated glucose levels that may be consistent with metabolic syndrome In the tissue derived from the pathologically obese subjects, there were significantly elevated levels of plasmalogens, which may be increased in response to oxidative changes in addition to changes in glycerolphosphorylcholine, glycerolphosphorylethanolamine glycerolphosphorylserine, ceramides and sphingolipids These data could be potentially helpful for recognizing new pathways that underlie the metabolic-vascular complications of obesity and may lead to the development of innovative targeted therapies

Journal ArticleDOI
TL;DR: The potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation, as well as intracellular calcium homeostasis.
Abstract: Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins — 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.

Journal ArticleDOI
TL;DR: These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.
Abstract: In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of Staphylococcus aureus gene products were shown to be CoAlated in response to diamide-induced stress. In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide. These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.

Journal ArticleDOI
TL;DR: This review will explore the connections between autophagy and cancer, which are tumor- and context-dependent and include the tumor microenvironment, and highlight the importance of tumor compartment-specific autophagic in both cancer aggressiveness and treatment.
Abstract: Macroautophagy is the process by which cells package and degrade cytosolic components, and recycle the breakdown products for future use. Since its initial description by Christian de Duve in the 1960s, significant progress has been made in understanding the mechanisms that underlie this vital cellular process and its specificity. Furthermore, macroautophagy is linked to pathologic conditions such as cancer and is being studied as a therapeutic target. In this review, we will explore the connections between autophagy and cancer, which are tumor- and context-dependent and include the tumor microenvironment. We will highlight the importance of tumor compartment-specific autophagy in both cancer aggressiveness and treatment.

Journal ArticleDOI
TL;DR: NLRP3, but not the inflammasome adaptor ASC or caspase-1, promoted the polarization of M2 macrophages through up-regulating the expression of IL-4, thereby contributing to its regulation of asthma.
Abstract: Activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome received substantial attention recently in inflammatory diseases. Macrophages contribute to allergic inflammation in asthma. The present study was aimed to investigate the effect of NLRP3 inflammasome on the polarization of macrophages. We utilized human primary monocytes and monocyte-derived macrophages to study the expression of NLRP3 inflammasome components (NLRP3, apoptosis-associated specklike protein, and caspase-1) and its downstream cytokine interleukin-1β (IL-1β). By gain- or loss-of-function assays, we next explored the effects of NLRP3 inflammasome on M1/M2 polarization and secretion of IL-4, interferon-γ, tumor necrosis factor-α, and IL-1β. The results showed increased numbers of M2 cells in asthma. And NLRP3 inflammasome was activated and involved in the inflammation of asthma. Furthermore, silence of NLRP3 down-regulated IL-4 secretion and up-regulated M1/M2. In contrast, overexpression of NLRP3 increased IL-4 and decreased M1/M2. As expected, IL-4 was involved in NLRP3-mediated down-regulation of Ml/M2 ratio. Moreover, NLRP3 interacted with IRF4 and was required for optimal IRF4-dependent IL-4 transcription. Subsequently, deficiency of NLRP3 in ovalbumin-induced allergic asthmatic mice impaired lung inflammation and up-regulated M1/M2, and diminished IL-4 in bronchoalveolar lavage fluid. Collectively, we demonstrated here that activation of NLRP3 was engaged in the promotion of asthma. NLRP3, but not the inflammasome adaptor ASC or caspase-1, promoted the polarization of M2 macrophages through up-regulating the expression of IL-4, thereby contributing to its regulation of asthma.

Journal ArticleDOI
TL;DR: DHA and DKG yield different oxidation products when attacked by different ROS, enabling organisms to respond appropriately to diverse stresses.
Abstract: l-Ascorbate, dehydro-l-ascorbic acid (DHA), and 2,3-diketo-l-gulonate (DKG) can all quench reactive oxygen species (ROS) in plants and animals. The vitamin C oxidation products thereby formed are investigated here. DHA and DKG were incubated aerobically at pH 4.7 with peroxide (H2O2), 'superoxide' (a ∼50 : 50 mixture of [Formula: see text] and [Formula: see text]), hydroxyl radicals (•OH, formed in Fenton mixtures), and illuminated riboflavin (generating singlet oxygen, 1O2). Products were monitored electrophoretically. DHA quenched H2O2 far more effectively than superoxide, but the main products in both cases were 4-O-oxalyl-l-threonate (4-OxT) and smaller amounts of 3-OxT and OxA + threonate. H2O2, but not superoxide, also yielded cyclic-OxT. Dilute Fenton mixture almost completely oxidised a 50-fold excess of DHA, indicating that it generated oxidant(s) greatly exceeding the theoretical •OH yield; it yielded oxalate, threonate, and OxT. 1O2 had no effect on DHA. DKG was oxidatively decarboxylated by H2O2, Fenton mixture, and 1O2, forming a newly characterised product, 2-oxo-l-threo-pentonate (OTP; '2-keto-l-xylonate'). Superoxide yielded negligible OTP. Prolonged H2O2 treatment oxidatively decarboxylated OTP to threonate. Oxidation of DKG by H2O2, Fenton mixture, or 1O2 also gave traces of 4-OxT but no detectable 3-OxT or cyclic-OxT. In conclusion, DHA and DKG yield different oxidation products when attacked by different ROS. DHA is more readily oxidised by H2O2 and superoxide; DKG more readily by 1O2 The diverse products are potential signals, enabling organisms to respond appropriately to diverse stresses. Also, the reaction-product 'fingerprints' are analytically useful, indicating which ROS are acting in vivo.

Journal ArticleDOI
TL;DR: The data suggest that α-syn species (monomeric, oligomeric and fibrillar) induce astrocyte activation that can lead to neuronal death and their potential impact on the pathogenesis of Parkinson's disease and related α- synucleinopathies.
Abstract: Synucleinopathies are a group of neurodegenerative disorders characterized by the presence of aggregated and fibrillar forms of alpha-synuclein (α-syn) Here, we analyze the effect of different species of α-syn, including monomeric, oligomeric and fibrillar forms of the protein, on rat astrocytes Astrocytes treated with these distinct forms of α-syn showed an increase in long and thin processes and glial fibrillary acidic protein expression, indicating cell activation, high levels of intracellular oxidants and increased expression of cytokines Moreover, astrocytes incubated with the different species induced hippocampal neuronal death in co-culture, and cytotoxicity was particularly enhanced by exposure to fibrillar α-syn Further exploration of the mechanisms behind astrocyte activation and cytotoxicity revealed differences between the assessed α-syn species Only oligomers induced mitochondrial dysfunction in astrocytes and significantly increased extracellular hydrogen peroxide production by these cells Besides, TNF-α and IL-1β (interleukin 1β) expression presented different kinetics and levels depending on which species induced the response Our data suggest that α-syn species (monomeric, oligomeric and fibrillar) induce astrocyte activation that can lead to neuronal death Nevertheless, the tested α-syn species act through different preferential mechanisms and potency All together these results help to understand the effect of α-syn species on astrocyte function and their potential impact on the pathogenesis of Parkinson's disease and related α-synucleinopathies

Journal ArticleDOI
TL;DR: Early and modern observations on G protein subunit phosphorylation and its functional consequences in mammals, budding yeast, and plants are described, and future research directions are suggested.
Abstract: Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994–1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676–1694; Nature Reviews Drug Discovery (2017) 16, 829–842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.

Journal ArticleDOI
TL;DR: These findings indicate that while TSPO is not critical for achieving baseline testicular and adrenal steroidogenesis, either indirect effects of T SPO on steroidogenic processes, or compensatory mechanisms and functional redundancy, lead to subtle steroidogenic abnormalities which become exacerbated with aging.
Abstract: The translocator protein (TSPO) has been proposed to act as a key component in a complex important for mitochondrial cholesterol importation, which is the rate-limiting step in steroid hormone synthesis. However, TSPO function in steroidogenesis has recently been challenged by the development of TSPO knockout (TSPO-KO) mice, as they exhibit normal baseline gonadal testosterone and adrenal corticosteroid production. Here, we demonstrate that despite normal androgen levels in young male TSPO-KO mice, TSPO deficiency alters steroidogenic flux and results in reduced total steroidogenic output. Specific reductions in the levels of progesterone and corticosterone as well as age-dependent androgen deficiency were observed in both young and aged male TSPO-KO mice. Collectively, these findings indicate that while TSPO is not critical for achieving baseline testicular and adrenal steroidogenesis, either indirect effects of TSPO on steroidogenic processes, or compensatory mechanisms and functional redundancy, lead to subtle steroidogenic abnormalities which become exacerbated with aging.

Journal ArticleDOI
TL;DR: Testing the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase shows that phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators.
Abstract: We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that, within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation Kd is estimated to be ∼0.9 µM with a slow dissociation rate (t1/2 ∼ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate.

Journal ArticleDOI
TL;DR: The biodiversity of CS PGs and their sulphation motif sequences are reviewed and the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair is reviewed.
Abstract: Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.

Journal ArticleDOI
TL;DR: The regulatory properties of two sensor classes: the Ca2+-dependent protein kinases (CPKs/CDPKs) and the calcineurin B-like (CBL) proteins that control the activity of CBL-interacting protein kinase (CIPK) are discussed and emerging topics and some foundational points that are not well established experimentally are identified.
Abstract: Calcium (Ca2+) serves as a universal second messenger in eukaryotic signal transduction. Understanding the Ca2+ activation kinetics of Ca2+ sensors is critical to understanding the cellular signaling mechanisms involved. In this review, we discuss the regulatory properties of two sensor classes: the Ca2+-dependent protein kinases (CPKs/CDPKs) and the calcineurin B-like (CBL) proteins that control the activity of CBL-interacting protein kinases (CIPKs) and identify emerging topics and some foundational points that are not well established experimentally. Most plant CPKs are activated by physiologically relevant Ca2+ concentrations except for those with degenerate EF hands, and new results suggest that the Ca2+-dependence of kinase activation may be modulated by both protein-protein interactions and CPK autophosphorylation. Early results indicated that activation of plant CPKs by Ca2+ occurred by relief of autoinhibition. However, recent studies of protist CDPKs suggest that intramolecular interactions between CDPK domains contribute allosteric control to CDPK activation. Further studies are required to elucidate the mechanisms regulating plant CPKs. With CBL-CIPKs, the two major activation mechanisms are thought to be (i) binding of Ca2+-bound CBL to the CIPK and (ii) phosphorylation of residues in the CIPK activation loop. However, the relative importance of these two mechanisms in regulating CIPK activity is unclear. Furthermore, information detailing activation by physiologically relevant [Ca2+] is lacking, such that the paradigm of CBLs as Ca2+ sensors still requires critical, experimental validation. Developing models of CPK and CIPK regulation is essential to understand how these kinases mediate Ca2+ signaling and to the design of experiments to test function in vivo.

Journal ArticleDOI
TL;DR: The biochemical characterization of the mono-ADP-ribosyltransferase 2,3,7,8-tetrachlorodibenzo-p-dioxin poly-ADp-ribose polymerase (TIPARP), which is known to repress aryl hydrocarbon receptor (AHR)-dependent transcription, found that the nuclear localization of TIPARP was dependent on a short N-terminal sequence and its zinc finger domain.
Abstract: Here, we report the biochemical characterization of the mono-ADP-ribosyltransferase 2,3,7,8-tetrachlorodibenzo-p-dioxin poly-ADP-ribose polymerase (TIPARP/ARTD14/PARP7), which is known to repress aryl hydrocarbon receptor (AHR)-dependent transcription. We found that the nuclear localization of TIPARP was dependent on a short N-terminal sequence and its zinc finger domain. Deletion and in vitro ADP-ribosylation studies identified amino acids 400-657 as the minimum catalytically active region, which retained its ability to mono-ADP-ribosylate AHR. However, the ability of TIPARP to ADP-ribosylate and repress AHR in cells was dependent on both its catalytic activity and zinc finger domain. The catalytic activity of TIPARP was resistant to meta-iodobenzylguanidine but sensitive to iodoacetamide and hydroxylamine, implicating cysteines and acidic side chains as ADP-ribosylated target residues. Mass spectrometry identified multiple ADP-ribosylated peptides in TIPARP and AHR. Electron transfer dissociation analysis of the TIPARP peptide 33ITPLKTCFK41 revealed cysteine 39 as a site for mono-ADP-ribosylation. Mutation of cysteine 39 to alanine resulted in a small, but significant, reduction in TIPARP autoribosylation activity, suggesting that additional amino acid residues are modified, but loss of cysteine 39 did not prevent its ability to repress AHR. Our findings characterize the subcellular localization and mono-ADP-ribosyltransferase activity of TIPARP, identify cysteine as a mono-ADP-ribosylated residue targeted by this enzyme, and confirm the TIPARP-dependent mono-ADP-ribosylation of other protein targets, such as AHR.

Journal ArticleDOI
TL;DR: The signaling adapter protein p62/SQSTM1 is identified as a novel endogenous interacting partner and a substrate of LRRK2 that regulates its toxic biology, reveals novel signaling nodes and can be used as a pharmacodynamic marker for L RRK2 kinase activity.
Abstract: Autosomal-dominant, missense mutations in the leucine-rich repeat protein kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD). LRRK2 kinase activity is increased in several pathogenic mutations (N1437H, R1441C/G/H, Y1699C, G2019S), implicating hyperphosphorylation of a substrate in the pathogenesis of the disease. Identification of the downstream targets of LRRK2 is a crucial endeavor in the field to understand LRRK2 pathway dysfunction in the disease. We have identified the signaling adapter protein p62/SQSTM1 as a novel endogenous interacting partner and a substrate of LRRK2. Using mass spectrometry and phospho-specific antibodies, we found that LRRK2 phosphorylates p62 on Thr138 in vitro and in cells. We found that the pathogenic LRRK2 PD-associated mutations (N1437H, R1441C/G/H, Y1699C, G2019S) increase phosphorylation of p62 similar to previously reported substrate Rab proteins. Notably, we found that the pathogenic I2020T mutation and the risk factor mutation G2385R displayed decreased phosphorylation of p62. p62 phosphorylation by LRRK2 is blocked by treatment with selective LRRK2 inhibitors in cells. We also found that the amino-terminus of LRRK2 is crucial for optimal phosphorylation of Rab7L1 and p62 in cells. LRRK2 phosphorylation of Thr138 is dependent on a p62 functional ubiquitin-binding domain at its carboxy-terminus. Co-expression of p62 with LRRK2 G2019S increases the neurotoxicity of this mutation in a manner dependent on Thr138. p62 is an additional novel substrate of LRRK2 that regulates its toxic biology, reveals novel signaling nodes and can be used as a pharmacodynamic marker for LRRK2 kinase activity.

Journal ArticleDOI
TL;DR: Advances in understanding of AurA function are reviewed, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop.
Abstract: The protein kinase Aurora A (AurA) is essential for the formation of bipolar mitotic spindles in all eukaryotic organisms. During spindle assembly, AurA is activated through two different pathways operating at centrosomes and on spindle microtubules. Recent studies have revealed that these pathways operate quite differently at the molecular level, activating AurA through multifaceted changes to the structure and dynamics of the kinase domain. These advances provide an intimate atomic-level view of the finely tuned regulatory control operating in protein kinases, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop. Here, I review these advances in our understanding of AurA function, and discuss their implications for the use of allosteric small molecule inhibitors to address recently discovered roles of AurA in neuroblastoma, prostate cancer and melanoma.

Journal ArticleDOI
TL;DR: A novel 24-residue peptide belonging to the cathelicidin family was identified from the skin of the plateau frog Nanorana ventripunctata and showed strong wound healing-promoting activity in a murine model with a full-thickness dermal wound.
Abstract: Although cathelicidins in mammals have been well characterized, little is known about the function of cathelicidin in amphibians In the present study, a novel 24-residue peptide (cathelicidin-NV, ARGKKECKDDRCRLLMKRGSFSYV) belonging to the cathelicidin family was identified from the skin of the plateau frog Nanorana ventripunctata Cathelicidin-NV showed strong wound healing-promoting activity in a murine model with a full-thickness dermal wound It directly enhanced the proliferation of keratinocyte cells, resulting in accelerated re-epithelialization of the wound site Cathelicidin-NV also promoted the proliferation of fibroblasts, the differentiation of fibroblasts to myofibroblasts and collagen production in fibroblasts, which are implicated in wound contraction and repair processes Furthermore, cathelicidin-NV promoted the release of monocyte chemoattractant protein-1, tumor necrosis factor-α, vascular endothelial growth factor and transforming growth factor-β1 in vivo and in vitro, which are essential in the wound-healing processes such as migration, proliferation and differentiation The MAPK (ERK, JNK and p38) signaling pathways were involved in the wound healing-promoting effect Additionally, unlike other cathelicidins, cathelicidin-NV did not have any direct effect on microbes and showed no cytotoxicity and hemolytic activity toward mammalian cells at concentrations up to 200 µg/ml This current study may facilitate the understanding of the cellular and molecular events that underlie quick wound healing in N ventripunctata In addition, the combination of these properties makes cathelicidin-NV an excellent candidate for skin wound therapeutics

Journal ArticleDOI
TL;DR: This review focusses on the use of chemical biology approaches and sugar analogue probes to study the structure and function of glucose transporters of the mammalian GLUT family of proteins.
Abstract: The structure and function of glucose transporters of the mammalian GLUT family of proteins has been studied over many decades, and the proteins have fascinated numerous research groups over this time. This interest is related to the importance of the GLUTs as archetypical membrane transport facilitators, as key limiters of the supply of glucose to cell metabolism, as targets of cell insulin and exercise signalling and of regulated membrane traffic, and as potential drug targets to combat cancer and metabolic diseases such as type 2 diabetes and obesity. This review focusses on the use of chemical biology approaches and sugar analogue probes to study these important proteins.