scispace - formally typeset
Search or ask a question

Showing papers in "Bioinspiration & Biomimetics in 2008"


Journal ArticleDOI
TL;DR: In this paper, the underlying principles of video and stereo video analysis as well as its automation are reviewed and accompanied by a fully functional and freely available software implementation, which can be used to automate the analysis.
Abstract: Researchers studying aspects of locomotion or movement in biological and biomimetic systems commonly use video or stereo video recordings to quantify the behaviour of the system in question, often with an emphasis on measures of position, velocity and acceleration. However, despite the apparent simplicity of video analysis, it can require substantial investment of time and effort, even when performed with adequate software tools. This paper reviews the underlying principles of video and stereo video analysis as well as its automation and is accompanied by fully functional and freely available software implementation.

1,049 citations


Journal ArticleDOI
TL;DR: The current numerical simulations clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate.
Abstract: A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design.

131 citations


Journal ArticleDOI
TL;DR: Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales.
Abstract: There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

131 citations


Journal ArticleDOI
TL;DR: A highly compact image capturing system with variable field of view but without any mechanically moving parts that combines an ultra-thin artificial apposition compound eye with one variable focal length liquid lens.
Abstract: We demonstrate a highly compact image capturing system with variable field of view but without any mechanically moving parts. The camera combines an ultra-thin artificial apposition compound eye with one variable focal length liquid lens. The change of optical power of the liquid lens when applying a voltage results in a change of the magnification of the microlens array imaging system. However, its effect on focusing of the individual microlenses can be neglected due to their small focal length.

128 citations


Journal ArticleDOI
TL;DR: The SEM results show that duck feathers have a multi-scale structure and that this multi- scale structure as well as the preening oil are responsible for their super hydrophobic behavior.
Abstract: Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.

124 citations


Journal ArticleDOI
TL;DR: Understanding of the mechanics of a fascicle insertion into the skin by a mosquito of the type aedes aegypti may be useful in designing painless needle insertion systems as opposed to miniaturized hypodermic needles.
Abstract: The mechanics of a fascicle insertion into the skin by a mosquito of the type aedes aegypti has been studied experimentally using high-speed video (HSV) imaging, and analytically using a mathematical model. The fascicle is a polymeric microneedle composed of a ductile material, chitin. It has been proposed that the mosquito applies a non-conservative follower force component in addition to the Euler compressive load in order to prevent buckling and penetrate the skin. In addition, the protective sheath surrounding the fascicle (labium) provides lateral support during insertion. The mechanics model presented approximates the fascicle as a slender column supported on an elastic foundation (labium) subjected to non-conservative (Beck) and conservative Euler loads simultaneously at the end. Results show that the lateral support of the fascicle provided by the labium is essential for successful penetration by increasing the critical buckling load by a factor of 5. The non-conservative follower force application increases the buckling load by an additional 20% and may or may not be necessary for successful penetration. Experimental results showing the importance of the labium have been cited to validate the model predictions, in addition to the video observations presented in this work. This understanding may be useful in designing painless needle insertion systems as opposed to miniaturized hypodermic needles.

117 citations


Journal ArticleDOI
TL;DR: The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.
Abstract: Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

109 citations


Journal ArticleDOI
TL;DR: Simulated sound sources placed inside and outside of an adult male Cuvier's beaked whale (Ziphius cavirostris) reveal likely sound propagation pathways into and out of the head and a previously undescribed 'gular pathway' for sound reception in Ziphius.
Abstract: The finite element modeling (FEM) space reported here contains the head of a simulated whale based on CT data sets as well as physical measurements of sound-propagation characteristics of actual tissue samples. Simulated sound sources placed inside and outside of an adult male Cuvier's beaked whale (Ziphius cavirostris) reveal likely sound propagation pathways into and out of the head. Two separate virtual sound sources that were located at the left and right phonic lips produced beams that converged just outside the head. This result supports the notion that dual sound sources can interfere constructively to form a biologically useful and, in fact, excellent sonar beam in front of the animal. The most intriguing FEM results concern pathways by which sounds reach the ears. The simulations reveal a previously undescribed 'gular pathway' for sound reception in Ziphius. Propagated sound pressure waves enter the head from below and between the lower jaws, pass through an opening created by the absence of the medial bony wall of the posterior mandibles, and continue toward the bony ear complexes through the internal mandibular fat bodies. This new pathway has implications for understanding the evolution of underwater hearing in odontocetes. Our model also provides evidence for receive beam directionality, off-axis acoustic shadowing and a plausible mechanism for the long-standing orthodox sound reception pathway in odontocetes. The techniques developed for this study can be used to study acoustic perturbation in a wide variety of marine organisms.

99 citations


Journal ArticleDOI
TL;DR: Contact angle measurements of leaves and their replicas show that this technique can be used to develop biomimetic surfaces with similar wettability as in the plant surfaces, and is applicable for fragile surface structures.
Abstract: Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cost replication technique with high resolution. The technique is applicable for fragile surface structures, as demonstrated for three-dimensional wax crystals, and is fast to prevent shrinking of the biological material by water loss during the molding process. Thermal evaporation of octacosan-1-ol has been used to create microstructured surfaces with small platelets as templates for molding. Epoxy resin as filling material provided the smallest deviations from the original surface structures and can be used for replication of nanostructures as small as 4.5 nm. Contact angle measurements of leaves and their replicas show that this technique can be used to develop biomimetic surfaces with similar wettability as in the plant surfaces.

95 citations


Journal ArticleDOI
TL;DR: An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented, and the biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superHydrophilic by annealing.
Abstract: An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 degrees water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 degrees C and 500 degrees C.

73 citations


Journal ArticleDOI
TL;DR: A linear mathematical model with well-defined inputs is used for exploring how the directionality varies with the binaural directional cues and the amplitude and phase gain of the sound pathway to the inner surface of the eardrum.
Abstract: Directional sound receivers are useful for locating sound sources, and they can also partly compensate for the signal degradations caused by noise and reverberations. Ears may become inherently directional if sound can reach both surfaces of the eardrum. Attempts to understand the physics of such pressure difference receiving ears have been hampered by lack of suitable experimental methods. In this review, we review the methods for collecting reliable data on the binaural directional cues at the eardrums, on how the eardrum vibrations depend on the direction of sound incidence, and on how sound waves behave in the air spaces leading to the interior surfaces of eardrums. A linear mathematical model with well-defined inputs is used for exploring how the directionality varies with the binaural directional cues and the amplitude and phase gain of the sound pathway to the inner surface of the eardrum. The mere existence of sound transmission to the inner surface does not ensure a useful directional hearing, since a proper amplitude and phase relationship must exist between the sounds acting on the two surfaces of the eardrum. The gain of the sound pathway must match the amplitude and phase of the sounds at the outer surfaces of the eardrums, which are determined by diffraction and by the arrival time of the sound, that is by the size and shape of the animal and by the frequency of sound. Many users of hearing aids do not obtain a satisfactory improvement of their ability to localize sound sources. We suggest that some of the mechanisms of directional hearing evolved in Nature may serve as inspiration for technical improvements.

Journal ArticleDOI
TL;DR: The temperature of the finger is shown to have a direct relation to some of the features and subsequent data in PCA, and numerical features work well for highly constrained data but cannot classify multiple textural elements.
Abstract: This paper describes an experiment to quantify texture using an artificial finger equipped with a microphone to detect frictional sound. Using a microphone to record tribological data is a biologically inspired approach that emulates the Pacinian corpuscle. Artificial surfaces were created to constrain the subsequent analysis to specific textures. Recordings of the artificial surfaces were made to create a library of frictional sounds for data analysis. These recordings were mapped to the frequency domain using fast Fourier transforms for direct comparison, manipulation and quantifiable analysis. Numerical features such as modal frequency and average value were calculated to analyze the data and compared with attributes generated from principal component analysis (PCA). It was found that numerical features work well for highly constrained data but cannot classify multiple textural elements. PCA groups textures according to a natural similarity. Classification of the recordings using k nearest neighbors shows a high accuracy for PCA data. Clustering of the PCA data shows that similar discs are grouped together with few classification errors. In contrast, clustering of numerical features produces erroneous classification by splitting discs between clusters. The temperature of the finger is shown to have a direct relation to some of the features and subsequent data in PCA.

Journal ArticleDOI
TL;DR: It is shown how the adaptive controller can adapt to a time varying plant and elaborate how this biologically inspired control architecture can be employed in general engineering applications where sensory feedback is very noisy and/or delayed.
Abstract: The vestibulo-ocular reflex stabilizes vision in many vertebrates. It integrates inertial and visual information to drive the eyes in the opposite direction to head movement and thereby stabilizes the image on the retina. Its adaptive nature guarantees stable vision even when the biological system undergoes dynamic changes (due to disease, growth or fatigue etc), a characteristic especially desirable in autonomous robotic systems. Based on novel, biologically plausible neurological models, we have developed a robotic testbed to qualitatively evaluate the performance of these algorithms. We show how the adaptive controller can adapt to a time varying plant and elaborate how this biologically inspired control architecture can be employed in general engineering applications where sensory feedback is very noisy and/or delayed.

Journal ArticleDOI
TL;DR: Simple approaches based on a single step, performed at room temperature (and pressure), were implemented to obtain superhydrophobic poly(L-lactic acid) (PLLA) surfaces via phase inversion-based methods, without addition of low-surface-energy compounds.
Abstract: The water repellency and self-cleaning ability of many biological surfaces has inspired many fundamental and practical studies related to the development of synthetic superhydrophobic surfaces. However, the investigation of such substrates made of biodegradable polymers has been scarce. Simple approaches based on a single step, performed at room temperature (and pressure), were implemented to obtain superhydrophobic poly(L-lactic acid) (PLLA) surfaces via phase inversion-based methods, without addition of low-surface-energy compounds. Water contact angles above 150 degrees were obtained using some processing conditions. In such cases scanning electronic microscopy micrographs of such surfaces revealed a clear rough texture composed by leafy clusters with micro-nano binary structures. Such materials could be used in specific environmental and biomedical applications, namely in implantable materials or in antibacterial or antithrombogenic surfaces.

Journal ArticleDOI
TL;DR: The introduction of life sciences terminology in the context of architecture delivers new perspectives towards innovation in architecture and design and an interpretation of the so-called 'signs of life', which characterize living systems, in architecture is presented.
Abstract: Engineers, designers and architects often look to nature for inspiration. The research on 'natural constructions' is aiming at innovation and the improvement of architectural quality. The introduction of life sciences terminology in the context of architecture delivers new perspectives towards innovation in architecture and design. The investigation is focused on the analogies between nature and architecture. Apart from other principles that are found in living nature, an interpretation of the so-called 'signs of life', which characterize living systems, in architecture is presented. Selected architectural projects that have applied specific characteristics of life, whether on purpose or not, will show the state of development in this field and open up future challenges. The survey will include famous built architecture as well as students' design programs, which were carried out under supervision of the author at the Department of Design and Building Construction at the Vienna University of Technology.

Journal ArticleDOI
TL;DR: A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed and its ability to locate a line stimulus in a two-dimensional space is demonstrated.
Abstract: A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its demonstrated hyperacuity or precision of visual localization beyond the conventional resolution limit. The fly's anatomy supporting the design is reviewed, followed by the design of a one-dimensional, cartridge-based sensor. The sensor's ability to locate a line stimulus in a two-dimensional space is demonstrated. Discussion is provided to extend this work in scale, cartridge dimension, information and array processing.

Journal ArticleDOI
TL;DR: A pattern is found wherein an optimum combination of tail frequency and amplitude maximizes equilibrium velocity, and differences between the theoretical and experimental results are attributed to mechanical limitations in the drive train.
Abstract: The mathematical models for the performance of aquatic animals developed by M Lighthill are compared with the experimental performance of a biomimetic fish. The equations developed by Lighthill are evaluated at steady-state conditions. Equilibrium velocity and mechanical efficiency are calculated using Lighthill's mathematical model and compared with experimental results. In both cases, a pattern is found wherein an optimum combination of tail frequency and amplitude maximizes equilibrium velocity. Differences between the theoretical and experimental results are attributed to mechanical limitations in the drive train.

Journal ArticleDOI
TL;DR: The SEP/PCL web, which demonstrated the feasibility of producing a scaffold with adequate hydrophilicity, suitable pore size and good mechanical properties compared to a pure PCL micro/nanofiber web, exhibits the ability to mimic a natural biomaterial.
Abstract: Eggshell membrane (ESM) has potential as a natural scaffold because of its highly porous structure and good biocompatibility. To mimic its structure and surface properties, soluble eggshell membrane protein (SEP) was extracted from ESM and electrospun with a biodegradable polymer, poly(epsilon-caprolactone) (PCL). SEP/PCL micro/nanofibers were fabricated using a coaxial electrospinning process with a dual nozzle and an auxiliary cylindrical electrode. The fiber web was characterized using the water contact angle, pore-size distribution, mechanical properties and cellular behavior. The SEP/PCL web, which demonstrated the feasibility of producing a scaffold with adequate hydrophilicity, suitable pore size and good mechanical properties compared to a pure PCL micro/nanofiber web, exhibits the ability to mimic a natural biomaterial.

Journal ArticleDOI
TL;DR: In this paper, it was determined that vortical flows develop around the carapace keels of boxfish, producing self-correcting forces that facilitate swimming in smooth trajectories.
Abstract: The marine boxfishes have rigid keeled exteriors (carapaces) unlike most fishes, yet exhibit high stability, high maneuverability and relatively low drag given their large cross-sectional area. These characteristics lend themselves well to bioinspired design. Based on previous stereolithographic boxfish model experiments, it was determined that vortical flows develop around the carapace keels, producing self-correcting forces that facilitate swimming in smooth trajectories. To determine if similar self-correcting flows occur in live, actively swimming boxfishes, two species of boxfishes (Ostracion meleagris and Lactophrys triqueter) were induced to swim against currents in a water tunnel, while flows around the fishes were quantified using digital particle image velocimetry. Significant pitch events were rare and short lived in the fishes examined. When these events were observed, spiral flows around the keels qualitatively similar to those observed around models were always present, with greater vortex circulation occurring as pitch angles deviated from 0°. Vortex circulation was higher in live fishes than models presumably because of pectoral fin interaction with the keel-induced flows. The ability of boxfishes to modify their underlying self-correcting system with powered fin control is important for achieving high levels of both stability and maneuverability. Although the challenges of performing stability and maneuverability research on fishes are significant, the results of this study together with future studies employing innovative new approaches promise to provide valuable inspiration for the designers of bioinspired aquatic vehicles.

Journal ArticleDOI
TL;DR: It is shown that provided the clay is not fully exfoliated, the tactoids retain sufficient rigidity for alignment and this paves the way for exploration of the high mineral filler end of polymer-clay nanocomposites which can approach the high aragonite volume fraction of nacre.
Abstract: We demonstrate five methods of arranging smectite clay tactoids into layered arrangements as a part of the quest for the biomimetic simulation of nacre. Provided the clay is not fully exfoliated, the tactoids retain sufficient rigidity for alignment and we present micrographs which demonstrate these ordered structures. This paves the way for exploration of the high mineral filler end of polymer-clay nanocomposites which can approach the high aragonite volume fraction of nacre. The clay was dispersed in water without additives by ultrasonic agitation, cleaned by partial sedimentation and the resulting suspension was subjected to controlled phase separation by sedimentation, centrifugation, controlled rate slip casting, filtration and electrophoresis. Well-aligned parallel layers of platelets were obtained from all the five methods, the best stacking being associated with slip cast layers. Polyethylene oxide was incorporated into these well-aligned tactoids.

Journal ArticleDOI
TL;DR: Inspired by the matching of sharkskin riblet topology in echeneid fish suckers, it was found that biorobotic sealed contact over rough surfaces is also feasible when the suction cup makes a negative copy of the rough host surface.
Abstract: Echeneid fish, limpets and octopi use suction cups for underwater adhesion. When echeneid fish use suckers to 'hitch a ride' on sharks (which have riblet-patterned skins), the apparent absence of any pump or plumbing may be an advantage over biorobotic suction cups. An intriguing question is: How do they achieve seemingly persistent leak-free contact at low energy cost over rough surfaces? The design features of their suckers are explored in a biorobotic context of adhesion in water over rough surfaces. We have carried out experiments to compare the release force and tenacity of man-made suction cups with those reported for limpets and echeneid fish. Applied tensile and shear release forces were monotonically increased until release. The effects of cup size and type, host surface roughness, curvature and liquid surface tension have been examined. The flow of water in the sharkskin-like host surface roughness has been characterized. The average tenacity is 5.28 N cm(-2) (sigma = 0.53 N cm(-2), N = 37) in the sub-ambient pressure range of 14.6-49.0 kPa, in man-made cups for monotonically increasing applied release force. The tenacity is lower for harmonically oscillating release forces. The dynamic structural interactions between the suction cup and the oscillating applied forcing are discussed. Inspired by the matching of sharkskin riblet topology in echeneid fish suckers, it was found that biorobotic sealed contact over rough surfaces is also feasible when the suction cup makes a negative copy of the rough host surface. However, for protracted, persistent contact, the negative topology would have to be maintained by active means. Energy has to be spent to maintain the negative host roughness topology to minute detail, and protracted hitch-riding on sharks for feeding may not be free for echeneid fish. Further work is needed on the mechanism and efficiency of the densely populated tiny actuators in the fish suckers that maintain leak-proof contact with minimal energy cost and the feasibility of their biorobotic replication.

Journal ArticleDOI
TL;DR: Electrochemical reactions induce conformational movements of the chains, generation or destruction of free volume and interchange of ions and solvent with the electrolyte giving a gel that reacts, swells or shrinks.
Abstract: Films of conducting polymers when used as electrodes in an electrolytic solution oxidize and reduce under the flow of anodic and cathodic currents, respectively. The electrochemical reactions induce conformational movements of the chains, generation or destruction of free volume and interchange of ions and solvent with the electrolyte giving a gel that reacts, swells or shrinks. Electric pulses acting on reactive gels constituted by polymers, solvent and ions are the closest artificial materials to those that constitute actuating biological organs. The electrochemical reaction under the flow of a constant current promotes a progressive change of color, volume, porosity, stored charge and storage or release of ions. The reaction is kinetically controlled by the conformational movements or by the diffusion of counterions through the gel; it works under electrochemical equilibrium and defines, at any intermediate oxidation state, equilibrium potentials. Any variable (mechanical, chemical, optical, magnetic, etc) acting on the equilibrium will induce a change in the working potential of any device, driven by a constant current, based on this reaction; actuating–sensing devices based on the electrochemical properties are expected. Artificial muscles able to sense pushed weights, electrolyte concentration or ambient temperature during actuation are described. The activation energy of the reaction includes structural information and allows the obtention of the conformational energy, the heart of both actuating and sensing properties.

Journal ArticleDOI
TL;DR: Artificial muscles based on an electrochemomechanical strain (ECMS) in conducting polymers, namely polypyrrole (PPy) film, have been studied from viewpoints of training, fatigue and aging by repeat cycles under tensile loads.
Abstract: Artificial muscles based on an electrochemomechanical strain (ECMS) in conducting polymers, namely polypyrrole (PPy) film, have been studied from viewpoints of training, fatigue and aging by repeat cycles under tensile loads. ECMS was approximately 2% in a saline solution, resulting from both insertion and exclusion of Na+ with solvated water molecules as well in the film. Transient responses of ECMS and current induced by voltage stimuli were measured under tensile stresses up to 5 MPa to see the training effect, fatigue and aging of the film. At higher stresses the film showed larger creeping, which resulted from realignment or conformation change, slipping and breaking of polymer chains. After the experience of large stresses, the training effect in ECMS was appreciably observed as an increase of the strain. Without stress the conductivity of the film was stable (no fatigue) upon an electrochemical cycle; however, under high tensile stresses the conductivity decreased remarkably (fatigue and aging). It is to be noted that straightened polymer chains can be easily oxidized and degraded due to lower ?-electron energy. The conversion efficiency from electrical to mechanical energy in this system was found to be less than 0.03%.

Journal ArticleDOI
TL;DR: Biological olfactory sense organs, insect antennae, have been exploited in a hybrid-device biosensor, demonstrating the ability to identify individual strands of odor in a plume passing over the sensor on a sub-second time scale.
Abstract: Current trends in artificial nose research are strongly influenced by knowledge of biological olfactory systems. Insects have evolved over millions of years to detect and maneuver toward a food source or mate, or away from predators. The insect olfactory system is able to identify volatiles on a time scale that matches their ability to maneuver. Here, biological olfactory sense organs, insect antennae, have been exploited in a hybrid-device biosensor, demonstrating the ability to identify individual strands of odor in a plume passing over the sensor on a sub-second time scale. A portable system was designed to utilize the electrophysiological responses recorded from a sensor array composed of male or female antennae from four or eight different species of insects (a multi-channel electroantennogram, EAG). A computational analysis strategy that allows discrimination between odors in real time is described in detail. Following a training period, both semi-parametric and k-nearest neighbor (k-NN) classifiers with the ability to discard ambiguous responses are applied toward the classification of up to eight odors. EAG responses to individual strands in an odor plume are classified or discarded as ambiguous with a delay (sensor response to classification report) on the order of 1 s. The dependence of classification error rate on several parameters is described. Finally, the performance of the approach is compared to that of a minimal conditional risk classifier.

Journal ArticleDOI
TL;DR: The findings provide the first evidence that an artificial neural oscillator will drive a hybrid dynamic system at partial resonance, and demonstrate that hopping dynamics were largely determined by the intrinsic properties of the mechanical system, not the specific choice of neural oscillators.
Abstract: The bouncing gaits of terrestrial animals (hopping, running, trotting) can be modeled as a hybrid dynamic system, with spring-mass dynamics during stance and ballistic motion during the aerial phase. We used a simple hopping robot controlled by an artificial neural oscillator to test the ability of the neural oscillator to adaptively drive this hybrid dynamic system. The robot had a single joint, actuated by an artificial pneumatic muscle in series with a tendon spring. We examined how the oscillator-robot system responded to variation in two neural control parameters: descending neural drive and neuromuscular gain. We also tested the ability of the oscillator-robot system to adapt to variations in mechanical properties by changing the series and parallel spring stiffnesses. Across a 100-fold variation in both supraspinal gain and muscle gain, hopping frequency changed by less than 10%. The neural oscillator consistently drove the system at the resonant half-period for the stance phase, and adapted to a new resonant half-period when the muscle series and parallel stiffnesses were altered. Passive cycling of elastic energy in the tendon accounted for 70?79% of the mechanical work done during each hop cycle. Our results demonstrate that hopping dynamics were largely determined by the intrinsic properties of the mechanical system, not the specific choice of neural oscillator parameters. The findings provide the first evidence that an artificial neural oscillator will drive a hybrid dynamic system at partial resonance.

Journal ArticleDOI
TL;DR: It is shown through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.
Abstract: Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the mechanical stability of the organism changes, but the degree to which this alters the demands on neural feedback control for postural stability is unknown. We developed a robotic system that mimics the neuromechanical postural control system of a cat in response to lateral perturbations. This simple robotic system allows us to study the interactions between various parameters that contribute to postural stability and cannot be independently varied in biological systems. The robot is a 'planar', two-legged device that maintains compliant balance control in a variety of stance widths when subject to perturbations of the support surface, and in this sense reveals principles of lateral balance control that are also applicable to bipeds. Here we demonstrate that independent variations in either stance width or delayed neural feedback gains can have profound and often surprisingly detrimental effects on the postural stability of the system. Moreover, we show through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.

Journal ArticleDOI
TL;DR: The classification capabilities of an artificial model inspired by the mammalian cortex, a cortical-based artificial neural network (CANN), are compared with several artificial neural networks present in the e-nose and e-tongue literature and showed that the CANN model is able to strongly enhance the performances of both systems.
Abstract: The increasing complexity of the artificial implementations of biological systems, such as the so-called electronic noses (e-noses) and tongues (e-tongues), poses issues in sensory feature extraction and fusion, drift compensation and pattern recognition, especially when high reliability is required. In particular, in order to achieve effective results, the pattern recognition system must be carefully designed. In order to investigate a novel biomimetic approach for the pattern recognition module of such systems, the classification capabilities of an artificial model inspired by the mammalian cortex, a cortical-based artificial neural network (CANN), are compared with several artificial neural networks present in the e-nose and e-tongue literature, a multilayer perceptron (MLP), a Kohonen self-organizing map (KSOM) and a fuzzy Kohonen self-organizing map (FKSOM). Each network was tested with large datasets coming from a conducting polymer-sensor-based e-nose and a composite array-based e-tongue. The comparison of results showed that the CANN model is able to strongly enhance the performances of both systems.

Journal ArticleDOI
TL;DR: This paper covers advances made in connection with ionic polymeric conductor nanocomposites (IPCNCs) as distributed biomimetic nanosensors, nanoactuators, nanorobots and artificial muscles.
Abstract: This paper covers advances made in connection with ionic polymeric conductor nanocomposites (IPCNCs) as distributed biomimetic nanosensors, nanoactuators, nanorobots and artificial muscles. A review of the fundamental properties and characteristics of IPCNCs will be presented first. This summary will include descriptions of the basic materials' molecular structure and subsequent procedure to manufacture the basic material for chemical plating and electroactivation. Further described are chemical molecular plating technologies to make IPCNCs; nanotechnologies of manufacturing and trapping of nanoparticles; SEM, TEM, SPM and AFM characterization of IPMNCs; biomimetic sensing and actuation characterization techniques; electrical characterization; and equivalent circuit modeling of IPCNCs as electronic materials. A phenomenological model of the underlying sensing and actuation mechanisms is also presented based on linear irreversible thermodynamics with two driving forces, an electric field and a solvent pressure gradient and two fluxes, electric current density and the ionic+solvent flux.

Journal ArticleDOI
TL;DR: A micrometer-thick platinum-coated nanoporous membrane is used for the separation of differently charged proteins and the experimental fluxes agreed closely with calculated fluxes derived from a simple electrophoresis-potential shielding model at favourable transmembrane potentials.
Abstract: We report the use of a micrometer-thick platinum-coated nanoporous membrane for the separation of differently charged proteins. A high field strength of about 25 kV m(-1) was applied, using very low transmembrane potentials of +/-1.5 V between the platinum-coated membranes. The system mimics the cell membrane function of facilitated transport for specific solutes. The selectivity for Lys:BSA:Mb in a mixed protein solution could be tuned readily between the flux ratios of 2:2:1 and 96:1:12 respectively, by simple variation of the transmembrane potentials from +1.5 V to -1.5 V. The experimental fluxes agreed closely with calculated fluxes derived from a simple electrophoresis-potential shielding model at favourable transmembrane potentials.

Journal ArticleDOI
TL;DR: C crustacyanin protein extracted from the lobster shell represents a formidable candidate for the fabrication of IR sensors and microbolometers for uncooled IR imaging applications and shows that the protein can be used as an electro-optic thermal sensing device as well.
Abstract: This effort is focused on the use of crustacyanin protein extracted from the lobster shell in IR detection and imaging applications. In addition to the protein's excellent reversible thermo-active response in the IR region of interest, electrical characteristics versus temperature showed that the protein can be used as an electro-optic thermal sensing device as well. The high sensitivity and fast response of the protein layer were further enhanced by the deposition process we used. The thin coatings were prepared by Langmuir-Blodgett and self-assembly techniques. Furthermore, the protein exhibited temperature variation under Ti:sapphire laser excitation at different wavelengths in ambient environment. We have also shown that the protein exhibits fluorescence properties after exposure to IR heat. Stability of the protein, which is important in this type of application, was also demonstrated using the different characterization techniques after repeated heating/cooling cycles. We can conclude that this protein represents a formidable candidate for the fabrication of IR sensors and microbolometers for uncooled IR imaging applications.