scispace - formally typeset
Search or ask a question

Showing papers in "Biological Reviews in 2003"


Journal ArticleDOI
TL;DR: It is suggested that in contrast to this expectation, the use of multiple cues can reduce mate choice costs by decreasing the number of mates inspected more closely or the time and energy spent inspecting a set of mates.
Abstract: An increasing number of studies find females to base their mate choice on several cues. Why this occurs is debated and many different hypotheses have been proposed. Here I review the hypotheses and the evidence in favour of them. At the same time I provide a new categorisation based on the adaptiveness of the preferences and the information content of the cues. A few comparative and empirical studies suggest that most multiple cues are Fisherian attractiveness cues or uninformative cues that occur alongside a viability indicator and facilitate detection, improve signal reception, or are remnants from past selection pressures. However, much evidence exists for multiple cues providing additional information and serving as multiple messages that either indicate general mate quality or enable females that differ in mate preferences to choose the most suitable male. Less evidence exists for multiple cues serving as back-up signals. The importance of receiver psychology, multiple sensory environments and signal interaction in the evolution of multiple cues and preferences has received surprisingly little attention but may be of crucial importance. Similarly, sexual conflict has been proposed to result in maladaptive preferences for manipulative cues, and in neutral preferences for threshold cues, but no reliable evidence exists so far. An important factor in the evolution of multiple preferences is the cost of using additional cues. Most theoretical work assumes that the cost of choice increases with the number of cues used, which restricts the conditions under which preferences for multiple cues are expected to evolve. I suggest that in contrast to this expectation, the use of multiple cues can reduce mate choice costs by decreasing the number of mates inspected more closely or the time and energy spent inspecting a set of mates. This may be one explanation for why multiple cues are more common than usually expected. Finally I discuss the consequences that the use of multiple cues may have for the process of sexual selection, the maintenance of genetic variation, and speciation.

1,213 citations


Journal ArticleDOI
TL;DR: It is difficult to predict the outcome of the removal of key species, such as a top predator, given the numerous and complex population interactions among island species, and justifies careful pre‐control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe.
Abstract: The invasion of ecosystems by exotic species is currently viewed as one of the most important sources of biodiversity loss. The largest part of this loss occurs on islands, where indigenous species have often evolved in the absence of strong competition, herbivory, parasitism or predation. As a result, introduced species thrive in those optimal insular ecosystems affecting their plant food, competitors or animal prey. As islands are characterised by a high rate of endemism, the impacted populations often correspond to local subspecies or even unique species. One of the most important taxa concerning biological invasions on islands is mammals. A small number of mammal species is responsible for most of the damage to invaded insular ecosystems: rats, cats, goats, rabbits, pigs and a few others. The effect of alien invasive species may be simple or very complex, especially since a large array of invasive species, mammals and others, can be present simultaneously and interact among themselves as well as with the indigenous species. In most cases, introduced species generally have a strong impact and they often are responsible for the impoverishment of the local flora and fauna. The best response to these effects is almost always to control the alien population, either by regularly reducing their numbers, or better still, by eradicating the population as a whole from the island. Several types of methods are currently used: physical (trapping, shooting), chemical (poisoning) and biological (e.g. directed use of diseases). Each has its own set of advantages and disadvantages, depending on the mammal species targeted. The best strategy is almost always to combine several methods. Whatever the strategy used, its long-term success is critically dependent on solid support from several different areas, including financial support, staff commitment, and public support, to name only a few. In many cases, the elimination of the alien invasive species is followed by a rapid and often spectacular recovery of the impacted local populations. However, in other cases, the removal of the alien is not sufficient for the damaged ecosystem to revert to its former state, and complementary actions, such as species re-introduction, are required. A third situation may be widespread: the sudden removal of the alien species may generate a further disequilibrium, resulting in further or greater damage to the ecosystem. Given the numerous and complex population interactions among island species, it is difficult to predict the outcome of the removal of key species, such as a top predator. This justifies careful pre-control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe. In addition, long-term monitoring of the post-eradication ecosystem is crucial to assess success and prevent reinvasion.

937 citations


Journal ArticleDOI
TL;DR: An overview of the methods used to study animal colour vision is given, and how quantitative modelling can suggest how photoreceptor signals are combined and compared to allow for the discrimination of biologically relevant stimuli is discussed.
Abstract: Over a century ago workers such as J. Lubbock and K. von Frisch developed behavioural criteria for establishing that non-human animals see colour. Many animals in most phyla have since then been shown to have colour vision. Colour is used for specific behaviours, such as phototaxis and object recognition, while other behaviours such as motion detection are colour blind. Having established the existence of colour vision, research focussed on the question of how many spectral types of photoreceptors are involved. Recently, data on photoreceptor spectral sensitivities have been combined with behavioural experiments and physiological models to study systematically the next logical question: 'what neural interactions underlie colour vision?' This review gives an overview of the methods used to study animal colour vision, and discusses how quantitative modelling can suggest how photoreceptor signals are combined and compared to allow for the discrimination of biologically relevant stimuli.

778 citations


Journal ArticleDOI
TL;DR: There is a great need for experimental testing of the proposed speciation mechanisms, more molecular clock estimates of the age and pattern of the radiations, and more fossil evidence bearing on the past climates.
Abstract: The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90,000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33 'Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya) (Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene) and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a) experimental testing of the proposed speciation mechanisms, (b) more molecular clock estimates of the age and pattern of the radiations, and (c) more fossil evidence bearing on the past climates.

551 citations


Journal ArticleDOI
TL;DR: It is shown that the underlying selection pressures, which shaped the standards, are the same and it is not the content of the standards that show evidence of convergence ‐ it is the rules or how the authors construct beauty ideals that have universalities across cultures.
Abstract: Current theoretical and empirical findings suggest that mate preferences are mainly cued on visual, vocal and chemical cues that reveal health including developmental health. Beautiful and irresistible features have evolved numerous times in plants and animals due to sexual selection, and such preferences and beauty standards provide evidence for the claim that human beauty and obsession with bodily beauty are mirrored in analogous traits and tendencies throughout the plant and animal kingdoms. Human beauty standards reflect our evolutionary distant and recent past and emphasize the role of health assessment in mate choice as reflected by analyses of the attractiveness of visual characters of the face and the body, but also of vocal and olfactory signals. Although beauty standards may vary between cultures and between times, we show in this review that the underlying selection pressures, which shaped the standards, are the same. Moreover we show that it is not the content of the standards that show evidence of convergence – it is the rules or how we construct beauty ideals that have universalities across cultures. These findings have implications for medical, social and biological sciences.

501 citations


Journal ArticleDOI
TL;DR: An interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments are presented and a classification of tree‐ring formation in mediterranean environments is proposed.
Abstract: We review the literature dealing with mediterranean climate, vegetation, phenology and ecophysiology relevant to the understanding of tree-ring formation in mediterranean regions. Tree rings have been used extensively in temperate regions to reconstruct responses of forests to past environmental changes. In mediterranean regions, studies of tree rings are scarce, despite their potential for understanding and predicting the effects of global change on important ecological processes such as desertification. In mediterranean regions, due to the great spatio-temporal variability of mediterranean environmental conditions, tree rings are sometimes not formed. Often, clear seasonality is lacking, and vegetation activity is not always associated with regular dormancy periods. We present examples of tree-ring morphology of five species (Arbutus unedo, Fraxinus ornus, Quercus cerris, Q. ilex, Q. pubescens) sampled in Tuscany, Italy, focusing on the difficulties we encountered during the dating. We present an interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments. Furthermore, we propose a classification of tree-ring formation in mediterranean environments. Mediterranean tree rings can be dated and used for dendrochronological purposes, but great care should be taken in selecting sampling sites, species and sample trees.

394 citations


Journal ArticleDOI
TL;DR: This review examines evidence for individual vertical movements gathered from ‘tracers ‘, mainly gut contents, and reviews the evidence for the hypothesis that such movements are in fact driven by hunger and satiation.
Abstract: The study of vertical migrations in aquatic organisms has a long and colourful history, much of it to do with the effects of changing sampling technology on our understanding of the phenomenon. However, the overwhelming majority of such studies carried out today still depend on detecting differences in vertical distribution profiles during some course of time, or acoustic echoes of migrating bands of organisms. These can not distinguish migratory activity of individual organisms, but can only assess net results of mass transfers of populations, which may integrate many individual migrations. This is an important distinction, for without knowing the actual movements of individuals it seems unlikely that we will be able to understand their causes, nor the effects of vertical migrations on the environment or on the migrators themselves. This review examines evidence for individual vertical movements gathered from 'tracers', mainly gut contents, and reviews the evidence for the hypothesis that such movements are in fact driven by hunger and satiation. The more recently appreciated vertical migrations of phytoplankters and their similarities in form and driving forces to those of zooplankton and nekton are also discussed. Finally, the role of vertical migrators in vertical fluxes of materials is discussed, along with the consequences of satiation-driven descent for such estimates.

326 citations


Journal ArticleDOI
TL;DR: This review compares features classified homologous with the classes of features normally grouped as homoplastic, the latter being convergence, parallelism, reversals, rudiments, vestiges, atavisms, and atavism, with convergence as the only class of homoplasy.
Abstract: Homology is at the foundation of comparative studies in biology at all levels from genes to phenotypes. Homology similarity because of common descent and ancestry, homoplasy is similarity arrived at via independent evolution However, given that there is but one tree of life, all organisms, and therefore all features of organisms, share degree of relationship and similarity one to another. That sharing may be similarity or even identity of structure the sharing of a most recent common ancestor–as in the homology of the arms of humans and apes–or it reflect some (often small) degree of similarity, such as that between the wings of insects and the wings of groups whose shared ancestor lies deep within the evolutionary history of the Metazoa. It may reflect sharing entire developmental pathways, partial sharing, or divergent pathways. This review compares features classified homologous with the classes of features normally grouped as homoplastic, the latter being convergence, parallelism, reversals, rudiments, vestiges, and atavisms. On the one hand, developmental mechanisms may be conserved, when a complete structure does not form (rudiments, vestiges), or when a structure appears only in some individuals (atavisms). On the other hand, different developmental mechanisms can produce similar (homologous) features Joint examination of nearness of relationship and degree of shared development reveals a continuum within expanded category of homology, extending from homology → reversals → rudiments → vestiges → atavisms → parallelism, with convergence as the only class of homoplasy, an idea that turns out to be surprisingly old. realignment provides a glimmer of a way to bridge phylogenetic and developmental approaches to homology homoplasy, a bridge that should provide a key pillar for evolutionary developmental biology (evo-devo). It will and in a practical sense cannot, alter how homoplastic features are identified in phylogenetic analyses. But rudiments, reversals, vestiges, atavisms and parallelism as closer to homology than to homoplasy should guide toward searching for the common elements underlying the formation of the phenotype (what some have called deep homology of genetic and/or cellular mechanisms), rather than discussing features in terms of shared independent evolution.

279 citations


Journal ArticleDOI
TL;DR: A deep split of early tetrapods between lissamphibian‐ and amniote‐related taxa is detected and is indicated by the results of the original parsimony run ‐ as well as those retrieved from several other treatments of the data set.
Abstract: In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based ( total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of ai¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scutigerum collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi ; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown-group lissamphibians ; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti ; (5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run – as well as those retrieved from several other treatments of the data set ( e.g. exclusion of postcranial and lower jaw data ; character reweighting ; reverse weighting ) – indicate a deep split of early tetrapods between lissamphibian- and amniote-related taxa. Colosteids, Crassigyrinus, Whatcheeria and baphetids are progressively more crownward stem-tetrapods. Caerorhachis, embolomeres, gephyrostegids, Solenodonsaurus and seymouriamorphs are progressively more crownward stem-amniotes. Eucritta is basal to temnospondyls, with crown-lissamphibians nested within dissorophoids. Westlothiana is basal to Lepospondyli, but evidence for the monophyletic status of the latter is weak. Westlothiana and Lepospondyli form the sister group to diadectomorphs and crown-group amniotes. Tuditanomorph and microbrachomorph microsaurs are successively more closely related to a clade including proximodistally : (1) lysorophids; (2) Acherontiscus as sister taxon to adelospondyls; (3) scincosaurids plus diplocaulids ; (4) urocordylids plus ai¨stopods. A data set employing cranial characters only places microsaurs on the amniote stem, but forces remaining lepospondyls to appear as sister group to colosteids on the tetrapod stem in several trees. This arrangement is not significantly worse than the tree topology obtained from the analysis of the complete data set. The pattern of sister group relationships in the crownward part of the temnospondyl-lissamphibian tree re-emphasizes the important role of dissorophoids in the lissamphibian origin debate. However, no specific dissorophoid can be identified as the immediate sister taxon to crown-group lissamphibians. The branching sequence of various stem-group amniotes reveals a coherent set of internested character-state changes related to the acquisition of progressively more terrestrial habits in several Permo-Carboniferous forms.

256 citations


Journal ArticleDOI
TL;DR: Current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas is examined, predicting that squamates had evolved by at least the middle Triassic, and diversified into existing major lineages before the end of this period.
Abstract: Lizards, snakes and amphisbaenians together constitute the Squamata, the largest and most diverse group of living reptiles. Despite their current success, the early squamate fossil record is extremely patchy. The last major survey of squamate palaeontology and evolution was published 20 years ago. Since then, there have been major changes in systematic theory and methodology, as well as a steady trickle of new fossil finds. This review examines our current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas. Contrary to previous reports, no squamate fossils are currently documented before the Jurassic. Nonetheless, indirect evidence predicts that squamates had evolved by at least the middle Triassic, and had diversified into existing major lineages before the end of this period. There is thus a major gap in the squamate record at a time when key morphological features were evolving. With the exception of fragmentary remains from Africa and India, Jurassic squamates are known only from localities in northern continents (Laurasia). The situation improves in the Early Cretaceous, but the southern (Gondwanan) record remains extremely poor. This constrains palaeobiogeographic discussion and makes it difficult to predict centres of origin for major squamate clades on the basis of fossil evidence alone. Preliminary mapping of morphological characters onto a consensus tree demonstrates stages in the sequence of acquisition for some characters of the skull and postcranial skeleton, but many crucial stages – most notably those relating to the acquisition of squamate skull kinesis – remain unclear.

250 citations


Journal ArticleDOI
TL;DR: The aim of this review is to consider the potential mechanisms birds may use to manipulate the sex of their progeny, and the possible role played by maternal hormones, and to provide starting points for testing the hypotheses both experimentally and physiologically.
Abstract: The aim of this review is to consider the potential mechanisms birds may use to manipulate the sex of their progeny, and the possible role played by maternal hormones. Over the past few years there has been a surge of reports documenting the ability of birds to overcome the rigid process of chromosomal sex determination. However, while many of these studies leave us in little doubt that mechanisms allowing birds to achieve this feat do exist, we are only left with tantalizing suggestions as to what the precise mechanism or mechanisms may be. The quest to elucidate them is made no easier by the fact that a variety of environmental conditions have been invoked in relation to sex manipulation, and there is no reason to assume that any particular mechanism is conserved among the vast diversity of species that can achieve it. In fact, a number of intriguing proposals have been put forward. We begin by briefly reviewing some of the most recent examples of this phenomenon before highlighting some of the more plausible mechanisms, drawing on recent work from a variety of taxa. In birds, females are the heterogametic sex and so non-Mendelian segregation of the sex chromosomes could conceivably be under maternal control. Another suggestion is that follicles that ultimately give rise to males and females grow at different rates. Alternatively, the female might selectively abort embryos or 'dump lay' eggs of a particular sex, deny certain ova a chance of ovulation, fertilization or zygote formation, or selectively provision eggs so that there is sex-specific embryonic mortality. The ideas outlined in this review provide good starting points for testing the hypotheses both experimentally (behaviourally and physiologically) and theoretically.

Journal ArticleDOI
TL;DR: The climates of the two hemispheres have led to the parallel evolution of freeze tolerance for very different reasons, and this hemispheric difference is symptomatic of many wide‐scale disparities in Northern and Southern ecological processes.
Abstract: Insects may survive subzero temperatures by two general strategies: Freeze-tolerant insects withstand the formation of internal ice, while freeze-avoiding insects die upon freezing. While it is widely recognized that these represent alternative strategies to survive low temperatures, and mechanistic understanding of the physical and molecular process of cold tolerance are becoming well elucidated, the reasons why one strategy or the other is adopted remain unclear. Freeze avoidance is clearly basal within the arthropod lineages, and it seems that freeze tolerance has evolved convergently at least six times among the insects (in the Blattaria, Orthoptera, Coleoptera, Hymenoptera, Diptera and Lepidoptera). Of the pterygote insect species whose cold-tolerance strategy has been reported in the literature, 29% (69 of 241 species studied) of those in the Northern Hemisphere, whereas 85 % (11 of 13 species) in the Southern Hemisphere exhibit freeze tolerance. A randomization test indicates that this predominance of freeze tolerance in the Southern Hemisphere is too great to be due to chance, and there is no evidence of a recent publication bias in favour of new reports of freeze-tolerant species. We conclude from this that the specific nature of cold insect habitats in the Southern Hemisphere, which are characterized by oceanic influence and climate variability must lead to strong selection in favour of freeze tolerance in this hemisphere. We envisage two main scenarios where it would prove advantageous for insects to be freeze tolerant. In the first, characteristic of cold continental habitats of the Northern Hemisphere, freeze tolerance allows insects to survive very low temperatures for long periods of time, and to avoid desiccation. These responses tend to be strongly seasonal, and insects in these habitats are only freeze tolerant for the overwintering period. By contrast, in mild and unpredictable environments, characteristic of habitats influenced by the Southern Ocean, freeze tolerance allows insects which habitually have ice nucleators in their guts to survive summer cold snaps, and to take advantage of mild winter periods without the need for extensive seasonal cold hardening. Thus, we conclude that the climates of the two hemispheres have led to the parallel evolution of freeze tolerance for very different reasons, and that this hemispheric difference is symptomatic of many wide-scale disparities in Northern and Southern ecological processes.

Journal ArticleDOI
TL;DR: This review demonstrates the advantage that can be taken from developmental studies, at the tissue level, to infer evolutionary relationships within the dermal skeleton in chondrichthyans and osteichthyans.
Abstract: Osteichthyan and chondrichthyan fish present an astonishing diversity of skeletal and dental tissues that are often difficult to classify into the standard textbook categories of bone, cartilage, dentine and enamel. To address the question of how the tissues of the dermal skeleton evolved from the ancestral situation and gave rise to the diversity actually encountered, we review previous data on the development of a number of dermal skeletal elements (odontodes, teeth and dermal denticles, cranial dermal bones, postcranial dermal plates and scutes, elasmoid and ganoid scales, and fin rays). A comparison of developmental stages at the tissue level usually allows us to identify skeletogenic cell populations as either odontogenic or osteogenic on the basis of the place of formation of their dermal papillae and of the way of deposition of their tissues. Our studies support the evolutionary affinities (1) between odontodes, teeth and denticles, (2) between the ganoid scales of polypterids and the elasmoid scales of teleosts, and (3) to a lesser degree between the different bony elements. There is now ample evidence to ascertain that the tissues of the elasmoid scale are derived from dental and not from bony tissues. This review demonstrates the advantage that can be taken from developmental studies, at the tissue level, to infer evolutionary relationships within the dermal skeleton in chondrichthyans and osteichthyans.

Journal ArticleDOI
TL;DR: Research relevant to the relationship between parasitic exploitation, within species‐polymorphism, and speciation in some of the major arenas in which such exploitation has been studied is reviewed.
Abstract: Parasitic exploitation occurs within and between a wide variety of taxa in a plethora of diverse contexts. Theoretical and empirical analyses indicate that parasitic exploitation can generate substantial genetic and phenotypic polymorphism within species. Under some circumstances, parasitic exploitation may also be an important factor causing reproductive isolation and promoting speciation. Here we review research relevant to the relationship between parasitic exploitation, within species-polymorphism, and speciation in some of the major arenas in which such exploitation has been studied. This includes research on the vertebrate major histocompatibility loci, plant-pathogen interactions, the evolution of sexual reproduction, intragenomic conflict, sexual conflict, kin mimicry and social parasitism, tropical forest diversity and the evolution of language. We conclude by discussing some of the issues raised by comparing the effect of parasitic exploitation on polymorphism and speciation in different contexts.

Journal ArticleDOI
TL;DR: A minimalist quasi‐equilibrium model is proposed to explore qualitatively the STR taking into account cooperative recognition of the promoter/enhancer and synergy and it is shown that a sigmoidal response to a morphogenetic gradient can be used to generate a nested gradient of another morphogen.
Abstract: A sigmoidal transcriptional response (STR) is thought to act as a molecular switch to control gene expression. This nonlinear behaviour arises as a result of the cooperative recognition of a promoter/enhancer by transcription factors (TFs) and/or their synergy to attract the basal transcriptional machinery (BTM). Although this cooperation between TFs is additive in terms of energy, it leads to an exponential increase in affinity between the BTM and the pre-initiation complexes. This exponential increase in the strength of interactions is the principle that governs synergistic systems. Here, I propose a minimalist quasi-equilibrium model to explore qualitatively the STR taking into account cooperative recognition of the promoter/enhancer and synergy. Although the focus is on the effect of activators, a similar treatment can be applied to inhibitors. One of the main insights obtained from the model is that generation of a sigmoidal threshold is possible even in the absence of cooperative DNA binding provided the TFs synergistically interact with the BTM. On the contrary, when there is cooperative binding, the impact of synergy diminishes. It will also be shown that a sigmoidal response to a morphogenetic gradient can be used to generate a nested gradient of another morphogen. Previously, I had proposed that halving the amounts of TFs involved in sigmoidal transcriptional switches could account for the abnormal dominant phenotypes associated with some of these genes. This phenomenon, called haploinsufficiency (HI), has been recognised as the basis of many human diseases. Although a formal proof linking HI and a sigmoidal response is lacking, it is tempting to explore the model from the perspective of dosage effects.

Journal ArticleDOI
TL;DR: The phylogenetic interpretation of the nematode cuticle ultrastructure is reviewed within the framework of recent DNA‐sequence data and the cuticle appears to be unreliable regarding resolution of deep‐level relationships in the Nematoda.
Abstract: The phylogenetic interpretation of the nematode cuticle ultrastructure is reviewed within the framework of recent DNA-sequence data. In particular, the structure of the median and basal zones is discussed. Several structural elements of the cuticle seem to have arisen independently several times within the Nematoda and thus are highly homoplasious (e.g. the cortical or basal radial striae, spiral fibre layers and a fluid matrix with struts). Moreover, identifying the homology of the nematode cuticle ultrastructures is often very difficult at deep taxonomic levels. Hence, the cuticle appears to be unreliable regarding resolution of deep-level relationships in the Nematoda. However, at less inclusive taxonomic levels (e.g. families, genera, ...) the cuticle seems to be a more reliable phylogenetic marker.

Journal ArticleDOI
TL;DR: It is shown how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints.
Abstract: The merging of two independent populations of heterotrophs and autotrophs into a single population of mixotrophs has occurred frequently in evolutionary history. It is an example of a wide class of related phenomena, known as symbiogenesis. The physiological basis is almost always (reciprocal) syntrophy, where each species uses the products of the other species. Symbiogenesis can repeat itself after specialization on particular assimilatory substrates. We discuss quantitative aspects and delineate eight steps from two free-living interacting populations to a single fully integrated endosymbiotic one. The whole process of gradual interlocking of the two populations could be mimicked by incremental changes of particular parameter values. The role of products gradually changes from an ecological to a physiological one. We found conditions where the free-living, epibiotic and endobiotic populations of symbionts can co-exist, as well as conditions where the endobiotic symbionts outcompete other symbionts. Our population dynamical analyses give new insights into the evolution of cellular homeostasis. We show how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints. No additional regulation mechanisms are required for homeostasis within the context of the dynamic energy budget (DEB) theory for the uptake and use of substrates by organisms. The DEB model appears to be closed under endosymbiosis. This means that when each free-living partner follows DEB rules for substrate uptake and use, and they become engaged in an endosymbiotic relationship, a gradual transition to a single fully integrated system is possible that again follows DEB rules for substrate uptake and use.

Journal ArticleDOI
TL;DR: The concept of ‘Gaian effect’ is described, which suggests that some processes will always tend to extend the lifespan of a biosphere in which they develop while others could either increase or decrease such a lifespan.
Abstract: Ecological science is often organised as a hierarchical series of entities: genes, individuals, populations, species, communities, ecosystems and biosphere. Here, I consider an alternative process-based approach to ecology, and analyse the nature of the fundamental processes in ecology. These fundamental processes are discussed in the context of the following question: 'for any planet with carbon-based life, which persists over geological time scales, what are the minimum set of ecological processes that must be present?' I suggest that the following processes would be present on any such planet: energy flow, multiple guilds, ecological trade-offs leading to within-guild biodiversity, ecological hypercycles, merging of organismal and ecological physiology, carbon sequestration and possibly photosynthesis. Nutrient cycling is described as an emergent property of these fundamental processes. I discuss reasons why a biosphere based on a single species with no nutrient cycling is very unlikely to exist. I also describe the concept of 'Gaian effect'. This suggests that some processes will always tend to extend the lifespan of a biosphere in which they develop (positive Gaian effect) while others could either increase or decrease (negative Gaian effect) such a lifespan. These ideas are discussed in the context of astrobiology, ecosystem services, conservation biology and Gaia theory.

Journal ArticleDOI
TL;DR: Recent studies of Cl−‐stimulated ATPase activity and ATP‐dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure.
Abstract: Five widely documented mechanisms for chloride transport across biological membranes are known: anion-coupled antiport, Na + and H + -coupled symport, Cl − channels and an electrochemical coupling process. These transport processes for chloride are either secondarily active or are driven by the electrochemical gradient for chloride. Until recently, the evidence in favour of a primary active transport mechanism for chloride has been inconclusive despite numerous reports of cellular Cl − -stimulated ATPases coexisting, in the same tissue, with uphill ATP-dependent chloride transport. Cl − -stimulated ATPase activity is a ubiquitous property of practically all cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl − -stimulated ATPase pump activity. Recent studies of Cl − -stimulated ATPase activity and ATP-dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure. Contemporary evidence points to the existence of Cl − -ATPase pumps; however, these primary active transporters exist as either P-, F- or V-type ATPase pumps depending upon the tissue under study.