scispace - formally typeset
Search or ask a question

Showing papers in "Biology and Environment-proceedings of The Royal Irish Academy in 2016"



Journal ArticleDOI
TL;DR: In this paper, a systematic monitoring of riverine nutrient inputs to Ireland's marine environment began in 1990, and over this period there has been a large reduction in nutrient inputs with loads of total phosphorus, total ammonia and total nitrogen decreasing by 71.8% (4,716 tonnes), 77.3% (5,505 tonnes) and 39.0% (59,396 tonnes), respectively.
Abstract: Excessive nutrient loading to the marine environment from different sources and pathways, including rivers, has led to nutrient over-enrichment and the phenomenon of eutrophication in estuaries and coastal waters. The systematic monitoring of riverine nutrient inputs to Ireland’s marine environment began in 1990. Over this period there has been a large reduction in nutrient inputs with loads of total phosphorus, total ammonia and total nitrogen decreasing by 71.8% (4,716 tonnes), 77.3% (5,505 tonnes) and 39.0% (59,396 tonnes), respectively. The largest reductions, particularly in total phosphorus and total ammonia, were seen in the main rivers discharging to the Celtic and Irish Sea coasts, with smaller or no reductions in rivers discharging along the western and north-western Atlantic coast. The reductions indicate the success of measures to reduce nutrient loss but also the disproportionate reduction in phosphorus over nitrogen. The ratio between nitrogen and phosphorus loads has increased by 2.5% per year and by as much as 4.1% per year for discharges to the Celtic Sea. As a consequence, the stoichiometric N:P ratio of river inputs to the Celtic Sea has more than doubled. The potential for this disparity to create a nutrient imbalance in downstream estuarine and coastal waters is discussed.

10 citations