scispace - formally typeset
Search or ask a question

Showing papers in "Biology of Reproduction in 2010"


Journal ArticleDOI
TL;DR: The central hypothesis on follicular fluid formation suggests that production by granulosa cells of hyaluronan and the chondroitin sulfate proteoglycan versican generates an osmotic gradient that draws in fluid derived from the thecal vasculature.
Abstract: The formation of the follicular antrum and follicular fluid has received scant attention from researchers, yet both are important processes in follicular development. The central hypothesis on follicular fluid formation suggests that production by granulosa cells of hyaluronan and the chondroitin sulfate proteoglycan versican generates an osmotic gradient. This gradient draws in fluid derived from the thecal vasculature. Inter-alpha-trypsin inhibitor is also present in follicular fluid at least in species with large follicles, and inter-alpha-trypsin inhibitor and versican could additionally bind or cross-link with hyaluronan, resulting in the retention of these molecules within the follicular antrum. Barriers to the movement of fluid across the membrana granulosa are apparently minimal, as even relatively large serum proteins are present in follicular fluid. Despite the relative permeability of the follicular wall, aquaporins are present in granulosa cells and could be actively involved in the transport of water into the follicle. The formation of an antrum also requires movement of granulosa cells relative to each other to allow the fluid to accumulate. This presumably involves remodeling of cell-cell junctions and in species with small follicles may involve death of centrally located granulosa cells. Remodeling of the stroma and thecal layers also accompanies growth and expansion of the antrum and presumably involves similar processes that accompany growth of other glands.

338 citations


Journal ArticleDOI
TL;DR: The importance of lipid metabolism for oocyte developmental competence and early embryo development was demonstrated by assessing the rate of embryo development following inhibition or upregulation of beta-oxidation with etomoxir (an inhibitor of CPT1B) or l-carnitine, respectively.
Abstract: Oocyte and embryo metabolism are closely linked with their subsequent developmental capacity. Lipids are a potent source of cellular energy, yet little is known about lipid metabolism during oocyte maturation and early embryo development. Generation of ATP from lipids occurs within mitochondria via beta-oxidation of fatty acids, with the rate-limiting step catalyzed by carnitine palmitoyl transferase I (CPT1B), a process also requiring carnitine. We sought to investigate the regulation and role of beta-oxidation during oocyte maturation and preimplantation development. Expression of Cpt1b mRNA, assessed by real-time RT-PCR in murine cumulus-oocyte complexes (COCs), increased following hormonal induction of oocyte maturation and ovulation in vivo with human chorionic gonadotropin (5 IU) and in embryos reaching the blastocyst stage. Beta-oxidation, measured by the production of (3)H(2)O from [(3)H]palmitic acid, was significantly increased over that in immature COCs following induction of maturation in vitro with epidermal growth factor (3 ng/ml) and follicle-stimulating hormone (50 mIU/ml). The importance of lipid metabolism for oocyte developmental competence and early embryo development was demonstrated by assessing the rate of embryo development following inhibition or upregulation of beta-oxidation with etomoxir (an inhibitor of CPT1B) or L-carnitine, respectively. Inhibition of beta-oxidation during oocyte maturation or zygote cleavage impaired subsequent blastocyst development. In contrast, L-carnitine supplementation during oocyte maturation significantly increased beta-oxidation, improved developmental competence, and in the absence of a carbohydrate energy supply, significantly increased 2-cell cleavage. Thus, carnitine is an important cofactor for developing oocytes, and fatty acids are an important energy source for oocyte and embryo development.

332 citations


Journal ArticleDOI
TL;DR: Observations suggest that the high mtDNA copy number in the mature oocyte is a genetic device designed to distribute mitochondria and mtDNAs to the cells of the early postimplantation embryo before mitochondrial biogenesis and mtDNA replication resumes, whereas down-regulation of mt DNA copy number is important for normal sperm function.
Abstract: Mammalian mitochondrial DNA (mtDNA) is a small, maternally inherited genome that codes for 13 essential proteins in the respiratory chain. Mature oocytes contain more than 150 000 copies of mtDNA, at least an order of magnitude greater than the number in most somatic cells, but sperm contain only approximately 100 copies. Mitochondrial oxidative phosphorylation has been suggested to be an important determinant of oocyte quality and sperm motility; however, the functional significance of the high mtDNA copy number in oocytes, and of the low copy number in sperm, remains unclear. To investigate the effects of mtDNA copy number on fertility, we genetically manipulated mtDNA copy number in the mouse by deleting one copy of Tfam, an essential component of the mitochondrial nucleoid, at different stages of germline development. We show that males can tolerate at least a threefold reduction in mtDNA copy number in their sperm without impaired fertility, and in fact, they preferentially transmit a deleted Tfam allele. Surprisingly, oocytes with as few as 4000 copies of mtDNA can be fertilized and progress normally through preimplantation development to the blastocyst stage. The mature oocyte, however, has a critical postimplantation developmental threshold of 40 000–50 000 copies of mtDNA in the mature oocyte. These observations suggest that the high mtDNA copy number in the mature oocyte is a genetic device designed to distribute mitochondria and mtDNAs to the cells of the early postimplantation embryo before mitochondrial biogenesis and mtDNA replication resumes, whereas down-regulation of mtDNA copy number is important for normal sperm function.

331 citations


Journal ArticleDOI
TL;DR: GPR125-positive spermatogonia are phenotypically putative human SSCs and retain an undifferentiated status in vitro and suggests that the MAPK1/3 pathway is involved in their proliferation.
Abstract: This study was designed to isolate, characterize, and culture human spermatogonia. Using immunohistochemistry on tubule sections, we localized GPR125 to the plasma membrane of a subset of the spermatogonia. Immunohistochemistry also showed that MAGEA4 was expressed in all spermatogonia (Adark, Apale, and type B) and possibly preleptotene spermatocytes. Notably, KIT was expressed in late spermatocytes and round spermatids, but apparently not in human spermatogonia. UCHL1 was found in the cytoplasm of spermatogonia, whereas POU5F1 was not detected in any of the human germ cells. GFRA1 and ITGA6 were localized to the plasma membrane of the spermatogonia. Next, we isolated GPR125-positive spermatogonia from adult human testes using a two-step enzymatic digestion followed by magnetic-activated cell sorting. The isolated GPR125-positive cells coexpressed GPR125, ITGA6, THY1, and GFRA1, and they could be cultured for short periods of time and exhibited a marked increase in cell numbers as shown by a proliferation assay. Immunocytochemistry of putative stem cell genes after 2 wk in culture revealed that the cells were maintained in an undifferentiated state. MAPK1/3 phosphorylation was increased after 2 wk of culture of the GPR125-positive spermatogonia compared to the freshly isolated cells. Taken together, these results indicate that human spermatogonia share some but not all phenotypes with spermatogonial stem cells (SSCs) and progenitors from other species. GPR125-positive spermatogonia are phenotypically putative human SSCs and retain an undifferentiated status in vitro. This study provides novel insights into the molecular characteristics, isolation, and culture of human SSCs and/or progenitors and suggests that the MAPK1/3 pathway is involved in their proliferation.

269 citations


Journal ArticleDOI
TL;DR: A brief review summarizes the known phenotypes of the most widely used cell lines and indicates which might be the most appropriate for individual studies.
Abstract: Implantation failure and inadequate placental development are important contributors to infertility, recurrent miscarriage, and other pregnancy-related problems in women. Better understanding of these processes is hampered by the difficulty in obtaining human tissue from which primary cells can be prepared and by the very limited access worldwide to human blastocysts for experimentation. Therefore, the use of appropriate cell lines, particularly for functional studies of implantation and placentation, is imperative. While a number of cell lines for both endometrium and trophoblast have been developed and are widely used, it is difficult for researchers to decide which of these are most appropriate for studies of particular functions. This brief review summarizes the known phenotypes of the most widely used cell lines and indicates which might be the most appropriate for individual studies.

264 citations


Journal ArticleDOI
TL;DR: A role for miRNAs is suggested in down-regulating the expression of some cell cycle genes in the secretory-phase endometrial epithelium, thereby suppressing cell proliferation.
Abstract: MicroRNAs (miRNAs), a class of small noncoding RNAs that regulate gene expression, have fundamental roles in biological processes, including cell differentiation and proliferation. These small molecules mainly direct either target messenger RNA (mRNA) degradation or translational repression, thereby functioning as gene silencers. Epithelial cells of the uterine lumen and glands undergo cyclic changes under the influence of the sex steroid hormones estradiol-17beta and progesterone. Because the expression of miRNAs in human endometrium has been established, it is important to understand whether miRNAs have a physiological role in modulating the expression of hormonally induced genes. The studies herein establish concomitant differential miRNA and mRNA expression profiles of uterine epithelial cells purified from endometrial biopsy specimens in the late proliferative and midsecretory phases. Bioinformatics analysis of differentially expressed mRNAs revealed cell cycle regulation as the most significantly enriched pathway in the late proliferative-phase endometrial epithelium (P = 5.7 × 10−15). In addition, the WNT signaling pathway was enriched in the proliferative phase. The 12 miRNAs (MIR29B, MIR29C, MIR30B, MIR30D, MIR31, MIR193A-3P, MIR203, MIR204, MIR200C, MIR210, MIR582-5P, and MIR345) whose expression was significantly up-regulated in the midsecretory-phase samples were predicted to target many cell cycle genes. Consistent with the role of miRNAs in suppressing their target mRNA expression, the transcript abundance of predicted targets, including cyclins and cyclin-dependent kinases, as well as E2F3 (a known target of MIR210), was decreased. Thus, our findings suggest a role for miRNAs in down-regulating the expression of some cell cycle genes in the secretory-phase endometrial epithelium, thereby suppressing cell proliferation.

261 citations


Journal ArticleDOI
TL;DR: Fetal growth is associated with maternal nutrition during pregnancy, placental growth and vascular development, and placental nutrient transport and this review associates fetal growth with placental homeostasis.
Abstract: Maternal nutrition during pregnancy has a pivotal role in the regulation of placental-fetal development and thereby affects the lifelong health and productivity of offspring. Suboptimal maternal nutrition yields low birth weight, with substantial effect on the short-term morbidity of the newborn. The placenta is the organ through which gases, nutrients, and wastes are exchanged between the maternal-fetal circulations. The size, morphology, and nutrient transfer capacity of the placenta determine the prenatal growth trajectory of the fetus to influence birth weight. Transplacental exchange depends on uterine, placental, and umbilical blood flow. Most important, maternal nutrition influences factors associated not only with placental homeostasis but also with optimal fetal development. This review associates fetal growth with maternal nutrition during pregnancy, placental growth and vascular development, and placental nutrient transport.

253 citations


Journal ArticleDOI
TL;DR: The results point toward local expansion of Treg cells and low occurrence of TH17 cells, which seems to be a part of normal early pregnancy, consistent with a mild inflammatory environment controlled by T Reg cells.
Abstract: In pregnancy, the decidua is infiltrated by leukocytes promoting fetal development without causing immunological rejection. Murine regulatory T (Treg) cells are known to be important immune regulators at this site. The aim of the study was to characterize the phenotype and origin of Treg cells and determine the quantitative relationship between Treg, T-helper type 1 (T H 1), T H 2, and T H 17 cells in first-trimester human decidua. Blood and decidual CD4 + T cells from 18 healthy firsttrimester pregnant women were analyzed for expression of Tregcell markers (CD25, FOXP3, CD127, CTLA4, and human leukocyte antigen-DR [HLA-DR]), chemokine receptors (CCR4, CCR6, and CXCR3), and the proliferation antigen MKI67 by sixcolor flow cytometry. Treg cells were significantly enriched in decidua and displayed a more homogenous suppressive phenotype with more frequent expression of FOXP3, HLA-DR, and CTLA4 than in blood. More decidual Treg cells expressed MKI67, possibly explaining their enrichment at the fetal-maternal interface. Using chemokine receptor expression profiles of CCR4, CCR6, and CXCR3 as markers for T H 1, T H 2, and T H 17 cells, we showed that T H 17 cells were nearly absent in decidua, whereas T H 2-cell frequencies were similar in blood and decidua. CCR6 + T H 1 cells, reported to secrete high levels of interferon gamma (IFNG), were fewer, whereas the moderately IFNGsecreting CCR6 � T H 1 cells were more frequent in decidua compared with blood. Our results point toward local expansion of Treg cells and low occurrence of T H 17 cells. Furthermore, local, moderate T H 1 activity seems to be a part of normal early pregnancy, consistent with a mild inflammatory environment controlled by Treg cells. decidua, FOXP3, immunology, implantation, pregnancy

243 citations


Journal ArticleDOI
TL;DR: This study is the first to implicate the antiapoptotic Mir21 (an oncogenic miRNA) as playing a clear physiologic role in normal tissue function and plays a role in the induction of ovarian granulosa cell apoptosis.
Abstract: MicroRNAs (miRNAs) play important roles in many developmental processes, including cell differentiation and apoptosis. Transition of proliferative ovarian granulosa cells to terminally differentiated luteal cells in response to the ovulatory surge of luteinizing hormone (LH) involves rapid and pronounced changes in cellular morphology and function. MicroRNA 21 (miR-21, official symbol Mir21) is one of three highly LH-induced miRNAs in murine granulosa cells, and here we examine the function and temporal expression of Mir21 within granulosa cells as they transition to luteal cells. Granulosa cells were transfected with blocking (2′-O-methyl) and locked nucleic acid (LNA-21) oligonucleotides, and mature Mir21 expression decreased to one ninth and one twenty-seventh of its basal expression, respectively. LNA-21 depletion of Mir21 activity in cultured granulosa cells induced apoptosis. In vivo, follicular granulosa cells exhibit a decrease in cleaved caspase 3, a hallmark of apoptosis, 6 h after the LH/human chorionic gonadotropin surge, coincident with the highest expression of mature Mir21. To examine whether Mir21 is involved in regulation of apoptosis in vivo, mice were treated with a phospho thioate-modified LNA-21 oligonucleotide, and granulosa cell apoptosis was examined. Apoptosis increased in LNA-21-treated ovaries, and ovulation rate decreased in LNA-21-treated ovaries, compared with their contralateral controls. We have examined a number of Mir21 apoptotic target transcripts identified in other systems; currently, none of these appear to play a role in the induction of ovarian granulosa cell apoptosis. This study is the first to implicate the antiapoptotic Mir21 (an oncogenic miRNA) as playing a clear physiologic role in normal tissue function.

220 citations


Journal ArticleDOI
TL;DR: Comparing side-by-side comparisons of five commercial embryo culture systems shows that embryo culture in all commercial media systems resulted in imprinted methylation loss compared to in vivo-derived embryos, although some media systems were able to maintain imprintedmethylation levels more similar to those of in vitro embryos in comparison to embryos cultured in Whitten medium.
Abstract: Assisted reproductive technologies (ARTs) are becoming increasingly prevalent and are generally considered to be safe medical procedures. However, evidence indicates that embryo culture may adversely affect the developmental potential and overall health of the embryo. One of the least studied but most important areas in this regard is the effects of embryo culture on epigenetic phenomena, and on genomic imprinting in particular, because assisted reproduction has been linked to development of the human imprinting disorders Angelman and Beckwith-Wiedemann syndromes. In this study, we performed side-by-side comparisons of five commercial embryo culture systems (KSOMaa, Global, Human Tubal Fluid, Preimplantation 1/Multiblast, and G1v5PLUS/G2v5PLUS) in relation to a best-case (in vivo-derived embryos) and a worst-case (Whitten culture) scenario. Imprinted DNA methylation and expression were examined at three well-studied loci, H19, Peg3, and Snrpn, in mouse embryos cultured from the 2-cell to the blastocyst stage. We show that embryo culture in all commercial media systems resulted in imprinted methylation loss compared to in vivo-derived embryos, although some media systems were able to maintain imprinted methylation levels more similar to those of in vivo-derived embryos in comparison to embryos cultured in Whitten medium. However, all media systems exhibited loss of imprinted H19 expression comparable to that using Whitten medium. Combined treatment of superovulation and embryo culture resulted in increased perturbation of genomic imprinting, above that from culture alone, indicating that multiple ART procedures further disrupt genomic imprinting. These results suggest that time in culture and number of ART procedures should be minimized to ensure fidelity of genomic imprinting during preimplantation development.

204 citations


Journal ArticleDOI
TL;DR: It is determined that PGK2 is not required for the completion of spermatogenesis, but is essential for sperm motility and male fertility, and alternative pathways that bypass the PGK step of glycolysis exist.
Abstract: Phosphoglycerate kinase 2 (PGK2), an isozyme that catalyzes the first ATP-generating step in the glycolytic pathway, is encoded by an autosomal retrogene that is expressed only during spermatogenesis. It replaces the ubiquitously expressed phosphoglycerate kinase 1 (PGK1) isozyme following repression of Pgk1 transcription by meiotic sex chromosome inactivation during meiotic prophase and by postmeiotic sex chromatin during spermiogenesis. The targeted disruption of Pgk2 by homologous recombination eliminates PGK activity in sperm and severely impairs male fertility, but does not block spermatogenesis. Mating behavior, reproductive organ weights (testis, excurrent ducts, and seminal vesicles), testis histology, sperm counts, and sperm ultrastructure were indistinguishable between Pgk2(-/-) and wild-type mice. However, sperm motility and ATP levels were markedly reduced in males lacking PGK2. These defects in sperm function were slightly less severe than observed in males lacking glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS), the isozyme that catalyzes the step preceding PGK2 in the sperm glycolytic pathway. Unlike Gapdhs(-/-) males, the Pgk2(-/-) males also sired occasional pups. Alternative pathways that bypass the PGK step of glycolysis exist. We determined that one of these bypass enzymes, acylphosphatase, is active in mouse sperm, perhaps contributing to phenotypic differences between mice lacking GAPDHS or PGK2. This study determined that PGK2 is not required for the completion of spermatogenesis, but is essential for sperm motility and male fertility. In addition to confirming the importance of the glycolytic pathway for sperm function, distinctive phenotypic characteristics of Pgk2(-/-) mice may provide further insights into the regulation of sperm metabolism.

Journal ArticleDOI
Min Du1, Xu Yan1, Jun F. Tong1, Junxing Zhao1, Mei J. Zhu1 
TL;DR: Maternal obesity leads to low-grade inflammation, which changes the commitment of MSCs in fetal muscle through several possible mechanisms: 1) inflammation downregulates wingless and int (WNT) signaling, which attenuates myogenesis; 2) inflammation inhibits AMP-activated protein kinase, which promotes adipogenesis; and 3) inflammation may induce epigenetic modification through polycomb group proteins.
Abstract: Maternal obesity coupled with Western-style high-energy diets represents a special problem that can result in poor fetal development, leading to harmful, persistent effects on offspring, including predisposition to obesity and type 2 diabetes. Mechanisms linking maternal obesity to the increased incidence of obesity and other metabolic diseases in offspring remain poorly defined. Because skeletal muscle is the principal site for glucose and fatty acid utilization and composes 40%–50% of total body mass, changes in the properties of offspring skeletal muscle and its mass resulting from maternal obesity may be responsible for the increase in type 2 diabetes and obesity. Fetal stage is crucial for skeletal muscle development because there is no net increase in the muscle fiber number after birth. Fetal skeletal muscle development involves myogenesis, adipogenesis, and fibrogenesis, which are all derived from mesenchymal stem cells (MSCs). Shifting commitment of MSCs from myogenesis to adipogenesis and fibrogenesis will result in increased intramuscular fat and connective tissue, as well as reduced numbers of muscle fiber and/or diameter, all of which have lasting negative effects on offspring muscle function and properties. Maternal obesity leads to low-grade inflammation, which changes the commitment of MSCs in fetal muscle through several possible mechanisms: 1) inflammation downregulates wingless and int (WNT) signaling, which attenuates myogenesis; 2) inflammation inhibits AMP-activated protein kinase, which promotes adipogenesis; and 3) inflammation may induce epigenetic modification through polycomb group proteins. More studies are needed to further explore the underlying mechanisms associated with maternal obesity, inflammation, and the commitment of MSCs.

Journal ArticleDOI
TL;DR: The results implicate Tcfap2c as an important effector of Prdm1 activity that is required for PGC maintenance, most likely mediating PrDM1-induced suppression of mesodermal differentiation.
Abstract: Formation of the germ cell lineage involves multiple processes, including repression of somatic differentiation and reacquisition of pluripotency as well as a unique epigenetic constitution. The transcriptional regulator Prdm1 has been identified as a main coordinator of this process, controlling epigenetic modification and gene expression. Here we report on the expression pattern of the transcription factor Tcfap2c, a putative downstream target of Prdm1, during normal mouse embryogenesis and the consequences of its specific loss in primordial germ cells (PGCs) and their derivatives. Tcfap2c is expressed in PGCs from Embryonic Day 7.25 (E 7.25) up to E 12.5, and targeted disruption resulted in sterile animals, both male and female. In the mutant animals, PGCs were specified but were lost around E 8.0. PGCs generated in vitro from embryonic stem cells lacking TCFAP2C displayed induction of Prdm1 and Dppa3. Upregulation of Hoxa1, Hoxb1, and T together with lack of expression of germ cell markers such Nanos3, Dazl, and Mutyh suggested that the somatic gene program is induced in TCFAP2C-deficient PGCs. Repression of TCFAP2C in TCam-2, a human PGC-resembling seminoma cell line, resulted in specific upregulation of HOXA1, HOXB1, MYOD1, and HAND1, indicative of mesodermal differentiation. Expression of genes indicative of ectodermal, endodermal, or extraembryonic differentiation, as well as the finding of no change to epigenetic modifications, suggested control by other factors. Our results implicate Tcfap2c as an important effector of Prdm1 activity that is required for PGC maintenance, most likely mediating Prdm1-induced suppression of mesodermal differentiation.

Journal ArticleDOI
TL;DR: It is demonstrated that adult Cldn11−/− mouse Sertoli cells can proliferate while maintaining expression of mature markers and exhibit a unique phenotype whereby loss of tight junction integrity results in loss of the epithelial phenotype.
Abstract: Tissue integrity relies on barriers formed between epithelial cells. In the testis, the barrier is formed at the initiation of puberty by a tight junction complex between adjacent Sertoli cells, thereby defining an adluminal compartment where meiosis and spermiogenesis occur. Claudin 11 is an obligatory protein for tight junction formation and barrier integrity in the testis. It is expressed by Sertoli cells, and spermatogenesis does not proceed beyond meiosis in its absence, resulting in male sterility. Sertoli cell maturation—arrest of proliferation and expression of proteins to support germ cell development—parallels tight junction assembly; however, the pathophysiology underlying the loss of tight junctions in the mature testis remains largely undefined. Here, using immunohistochemistry and microarrays we demonstrate that adult Cldn11−/− mouse Sertoli cells can proliferate while maintaining expression of mature markers. Sertoli cells detach from the basement membrane, acquire a fibroblast cell shape, are eliminated through the lumen together with apoptotic germ cells, and are found in epididymis. These changes are associated with tight junction regulation as well as actin-related and cell cycle gene expression. Thus, Cldn11−/− Sertoli cells exhibit a unique phenotype whereby loss of tight junction integrity results in loss of the epithelial phenotype.

Journal ArticleDOI
TL;DR: It is demonstrated that diet-induced obesity in mice caused a significant reduction in male fertility and exacerbated AA-induced reproductive toxicity and germ cell mutagenicity.
Abstract: The prevalence of human obesity and related chronic disorders such as diabetes, cardiovascular diseases, and cancer is rapidly increasing. Human studies have shown a direct relationship between obesity and infertility. The objective of the current work was to examine the effect of diet-induced obesity on male fertility and the effect of obesity on susceptibility to chemical-induced reproductive toxicity. From 5 to 30 wk of age, genetically intact male C57Bl/6J mice were fed a normal diet or one in which 60% of the kilocalories were from lard. Obese mice exhibited significant differences in the mRNA of several genes within the testes in comparison to lean males. Pparg was increased 2.2-fold, whereas Crem, Sh2b1, Dhh, Igf1, and Lepr were decreased 6.7, 1.4, 3.2, 1.6, and 7.2-fold, respectively. The fertility of male mice was compared through mating with control females. Acrylamide (AA)-induced reproductive toxicity was assessed in obese or lean males treated with water or 25 mg AA kg−1 day−1 via gavage for 5 days and then mated to control females. Percent body fat and weight were significantly increased in mice fed a high-fat vs. a normal diet. Obesity resulted in significant reduction in plugs and pregnancies of control females partnered with obese vs. lean males. Serum leptin and insulin levels were each approximately 5-fold higher in obese vs. age-matched lean mice. Sperm from obese males exhibited decreased motility and reduced hyperactivated progression vs. lean mice. Treatment with AA exacerbated male infertility of obese and lean mice; however, this effect was more pronounced in obese mice. Further, females partnered with AA-treated obese mice exhibited a further decrease in the percentage of live fetuses, whereas the percentage of resorptions increased. This work demonstrated that diet-induced obesity in mice caused a significant reduction in male fertility and exacerbated AA-induced reproductive toxicity and germ cell mutagenicity.

Journal ArticleDOI
TL;DR: It is demonstrated that Foxa2 regulates endometrial gland development and that mice with a loss of endometrian glands cannot support implantation in part due to the loss of LIF, which is a requisite for fertility in the mouse.
Abstract: During embryonic development, Foxa2 is required for the formation of the node and notochord, and ablation of this gene results in defects in gastrulation, neural tube patterning, and gut morphogenesis. Foxa2 has been shown to be expressed specifically in the glandular epithelium of the murine uterus. To study the uterine function of Foxa2, this gene was conditionally ablated in the mouse uterus by crossing mice with floxed Foxa2 alleles, Foxa2loxP/loxP, with the Pgrcre mouse model. Pgrcre/+ Foxa2loxP/loxP mice showed significantly reduced fertility. Analysis of the uterus on Day 5.5 of pregnancy showed disrupted blastocyst implantation. Pgrcre/+ Foxa2loxP/loxP mice also showed a severe impairment of the uterus to respond to the artificial induction of the decidual response. Morphological examination of the uteri of these mice showed a severe reduction in the number of endometrial glands. The loss of endometrial glands resulted in the reduction of leukemia inhibitory factor (Lif) expression. The lack of a decidual response could be partially rescued by an intrauterine injection of LIF before the initiation of the decidual response. This analysis demonstrates that Foxa2 regulates endometrial gland development and that mice with a loss of endometrial glands cannot support implantation in part due to the loss of LIF, which is a requisite for fertility in the mouse.

Journal ArticleDOI
TL;DR: The present review deals with the expression patterns and potential physiological functions of Igf1 and Igf2 in male and female gonads and balances the reasons for endocrine vs. autocrine/paracrine action of the Igfs on the gonads of fish.
Abstract: Knowledge of fish reproduction is of high relevance to basic fish biology and comparative evolution. Furthermore, fish are excellent biomedical models, and the impact of aquaculture on worldwide food production is steadily increasing. Consequently, research on fish reproduction and the potential modes of its manipulation has become more and more important. Reproduction in fish is regulated by the integration of endogenous neuroendocrine (gonadotropins), endocrine, and autocrine/paracrine signals with exogenous (environmental) factors. The main endocrine regulators of gonadal sex differentiation and function are steroid hormones. However, recent studies suggest that other hormones are also involved. Most prominent among these hormones are the insulin-like growth factors (Igfs), i.e., Igf1, Igf2, and, most recently, Igf3. Thus, the present review deals with the expression patterns and potential physiological functions of Igf1 and Igf2 in male and female gonads. It further considers the potential involvement of growth hormone (Gh) and balances the reasons for endocrine vs. autocrine/paracrine action of the Igfs on the gonads of fish. Finally, this review discusses the early and late development of gonadal Igf1 and Igf2 and whether they are targets of endocrine-disrupting compounds. Future topics for novel research investigation on Igfs and fish reproduction are presented.

Journal ArticleDOI
TL;DR: IFNT is released from the uterus into the uterine vein and acts through an endocrine mechanism to induce ISGs in the CL and delay luteolysis.
Abstract: Interferon tau (IFNT) from the ovine conceptus has paracrine actions on the endometrium that alter release of prostaglandin F(2alpha) (PGF) and protect the corpus luteum (CL). Antiviral activity in uterine vein blood and expression of interferon-stimulated genes (ISGs) in CL is greater in pregnant than in nonpregnant ewes. We hypothesized that IFNT contributes to antiviral activity in uterine vein blood and has endocrine actions on the CL. Preadsorption of IFNT with antiserum against recombinant ovine (ro) IFNT revealed that antiviral activity in uterine vein blood from pregnant ewes was mediated by IFNT. Endocrine actions of IFNT were examined after infusing either roIFNT or bovine serum albumin (BSA; 200 microg/24 h; mini-osmotic pump) into the uterine vein of nonpregnant ewes from Day 10 to Day 11 postestrus. The abundance of ISG15 mRNA and protein was greater in CL (P < 0.05) from ewes receiving 24-h roIFNT infusion compared to that from ewes receiving 24-h BSA infusion. Injection of PGF at 12 h following insertion of mini-osmotic pumps resulted in a decline in serum progesterone concentrations 6 through 12 h later in BSA-infused ewes; however, in roIFNT-infused ewes, a similar decline in progesterone concentrations at 6 h was followed by recovery to control values at 12 h. Ewes then received infusions (200 microg/day) of either roIFNT or BSA for 7 days beginning on Day 10 of the estrous cycle. All BSA-infused ewes returned to estrus by Day 19, whereas 80% of roIFNT-infused ewes maintained luteal-phase concentrations of progesterone through Day 32. In conclusion, IFNT is released from the uterus into the uterine vein and acts through an endocrine mechanism to induce ISGs in the CL and delay luteolysis.

Journal ArticleDOI
TL;DR: The role of mouse Pard6b, a homolog of par-6 gene and a component of the PAR-atypical protein kinase C (aPKC) complex, was investigated in preimplantation mouse development as mentioned in this paper.
Abstract: In preimplantation mouse development, the first cell lineages to be established are the trophectoderm (TE) and inner cell mass. TE possesses epithelial features, including apical-basal cell polarity and intercellular junctions, which are crucial to generate a fluid-filled cavity in the blastocyst. Homologs of the partitioning defective (par) genes in Caenorhabditis elegans are critical regulators of cell polarity. However, their roles in regulating TE differentiation and blastocyst formation remain unclear. Here, the role of mouse Pard6b, a homolog of par-6 gene and a component of the PAR-atypical protein kinase C (aPKC) complex, was investigated. Pard6b expression was knocked down by microinjecting RNA interference construct into zygotes. Pard6b-knockdown embryos cleaved and compacted normally but failed to form the blastocyst cavity. The cavitation failure is likely the result of defective intercellular junctions, because Pard6b knockdown caused abnormal distribution of actin filaments and TJP1 (ZO-1) tight junction (TJ) protein and interfered with cavitation in chimeras containing cells from normal embryos. Defective TJ formation may be caused by abnormal cell polarization, because the apical localization of PRKCZ (aPKCzeta) was absent in Pard6b-knockdown embryos. Pard6b knockdown also diminished the expression of CDX2, a TE-lineage transcription factor, in the outer cells. TEAD4, a transcriptional activator that is required for Cdx2 expression and cavity formation, was not essential for the transcription of Pard6b. Taken together, Pard6b is necessary for blastocyst morphogenesis, particularly the development of TE-specific features—namely, the apical-basal cell polarity, formation of TJ, paracellular permeability sealing, and up-regulated expression of Cdx2.

Journal ArticleDOI
TL;DR: The protease activity of ADAMTS1 mediates neomorphogenesis of the ovulating follicle wall and COC matrix necessary for successful ovulation and fertilization, as well as subsequent catabolism of versican required for degradation of C OC matrix after fertilization.
Abstract: Remodeling of ovarian follicle extracellular matrix is essential for ovulation and vascularization of the corpus luteum (CL). Formation of the cumulus matrix around oocytes also plays an important role in ovulation and subsequent fertilization of oocytes. ADAMTS1 is an extracellular metalloprotease induced in ovarian follicles by ovulatory hormones and is required for fertility. In this study, we identified ADAMTS1-mediated structural and morphological changes in remodeling of the follicle and cumulus oocyte complex (COC). In Adamts1(-/-) mice, the ovulation rate was 77% reduced and fertilization of ovulated oocytes was reduced a further 63%, resulting in a reduced number of litters and pups per litter. Morphological assessment of peri-ovulatory ovaries revealed abnormal morphogenesis with a lack of thecal/vascular invagination in the basal region of follicles. Cleavage of the ADAMTS1 substrate, versican, at these invaginating regions was abundant in Adamts1(+/-) but undetectable in Adamts1(-/-) ovaries, indicating that processing of versican by ADAMTS1 is involved in ovulating follicle remodeling. Versican and hyaluronan localization was abnormal during COC matrix expansion, and versican persisted beyond the expected time of fertilization in Adamts1(-/-) but was catabolized and cleared from control COC. The results demonstrate that ADAMTS1 is critical in both ovulation and fertilization processes in vivo. The protease activity of ADAMTS1 mediates neomorphogenesis of the ovulating follicle wall and COC matrix necessary for successful ovulation and fertilization, as well as subsequent catabolism of versican required for degradation of COC matrix after fertilization.

Journal ArticleDOI
TL;DR: A role for kisspeptin in the stimulation of GnRH cells before the preovulatory GnRH/LH surge in non-human primates is suggested.
Abstract: Kisspeptin, the product of the KISS1 gene, stimulates gonadotropin-releasing hormone (GnRH) secretion; gonadotropin inhibitory hormone (GnIH), encoded by the RF-amide-related peptide (RFRP) or NPVF gene, inhibits the reproductive axis. In sheep, kisspeptin neurons are found in the lateral preoptic area (POA) and the arcuate nucleus (ARC) and may be important for initiating the preovulatory GnRH/luteinizing hormone (LH) surge. GnIH cells are located in the ovine dorsomedial hypothalamic nucleus (DMN) and paraventricular nucleus (PVN), with similar distribution in the primate. KISS1 cells are found in the primate POA and ARC, but the function that kisspeptin and GnIH play in primates has not been elucidated. We examined KISS1 and NPVF mRNA throughout the menstrual cycle of a female primate, rhesus macaque (Macaca mulatta), using in situ hybridization. KISS1-expressing cells were found in the POA and ARC, and NPVF-expressing cells were located in the PVN/DMN. KISS1 expression in the caudal ARC and POA was higher in the late follicular phase of the cycle (just before the GnRH/LH surge) than in the luteal phase. NPVF expression was also higher in the late follicular phase. We ascertained whether kisspeptin and/or GnIH cells project to GnRH neurons in the primate. Close appositions of kisspeptin and GnIH fibers were found on GnRH neurons, with no change across the menstrual cycle. These data suggest a role for kisspeptin in the stimulation of GnRH cells before the preovulatory GnRH/LH surge in non-human primates. The role of GnIH is less clear, with paradoxical up-regulation of gene expression in the late follicular phase of the menstrual cycle.

Journal ArticleDOI
TL;DR: It is proposed that the cortex of growing oocytes serves as an mRNA storage compartment, which contains a novel type of RNA granule related to P-bodies, which correlates with the first wave of destabilization of maternal mRNAs during meiosis.
Abstract: In mammalian somatic cells, several pathways that converge on deadenylation, decapping, and 5'-3' degradation are found in cytoplasmic foci known as P-bodies. Because controlled mRNA stability is essential for oocyte-to-zygote transition, we examined the dynamics of P-body components in mouse oocytes. We report that oocyte growth is accompanied by loss of P-bodies and a subcortical accumulation of several RNA-binding proteins, including DDX6, CPEB, YBX2 (MSY2), and the exon junction complex. These proteins form transient RNA-containing aggregates in fully grown oocytes with a surrounded nucleolus chromatin configuration. These aggregates disperse during oocyte maturation, consistent with recruitment of maternal mRNAs that occurs during this time. In contrast, levels of DCP1A are low during oocyte growth, and DCP1A does not colocalize with DDX6 in the subcortical aggregates. The amount of DCP1A markedly increases during meiosis, which correlates with the first wave of destabilization of maternal mRNAs. We propose that the cortex of growing oocytes serves as an mRNA storage compartment, which contains a novel type of RNA granule related to P-bodies.

Journal ArticleDOI
TL;DR: Analysis of murine fetal testicular development revealed contrasting outcomes of activin actions on Sertoli cells and gonocytes, and persistence of widespread P-SMAD2/3 in Inhba−/− cells indicates other TGFB superfamily ligands are active in fetal testes.
Abstract: Activin affects many aspects of cellular development, including those essential for reproductive fitness. This study examined the contribution of activin A to murine fetal testicular development, revealing contrasting outcomes of activin actions on Sertoli cells and gonocytes. Shortly after sex determination, from Embryonic Day 12.5 (E12.5) through to birth (0 dpp), the activin A subunit transcript (Inhba) level rises in testis but not ovary, followed closely by the Inha transcript (encoding the inhibitory inhibin alpha subunit). Activin receptor transcript levels also change, with Acvr1 (encoding ALK2) and Acvr2b (ActRIIB) significantly higher and lower, respectively, at 0 dpp compared with E13.5 and E15.5. Transcripts encoding the signaling mediators Smad1, Smad3, and Smad4 were higher at 0 dpp compared with E13.5 and E15.5, whereas Smad2, Smad5, and Smad7 were lower. Detection of phosphorylated (P-)SMAD2/3 in nearly all testis cell nuclei indicated widespread transforming growth factor beta (TGFB) and/or activin ligand signaling activity. In contrast to wild-type littermates, activin betaA subunit knockout (Inhba(-/-)) mice have significantly smaller testes at birth, attributable to a 50% lower Sertoli cell number and decreased Sertoli cell proliferation from E13.5. Inhba(-/-) testes contained twice the normal gonocyte number at birth, with some appearing to bypass quiescence. Persistence of widespread P-SMAD2/3 in Inhba(-/-) cells indicates other TGFB superfamily ligands are active in fetal testes. Significant differences in Smad and cell cycle regulator transcript levels correlating to Inhba gene dosage correspond to differences in Sertoli and germ cell numbers. In Inhba(-/-) testes, Cdkn1a (encoding p21(cip1)), identified previously in fetal gonocytes, was lower at E13.5, whereas Cdkn1b (encoding p(27kip1) in somatic cells) was lower at birth, and cyclin D2 mRNA and protein were lower at E15.5 and 0 dpp. Thus, activin A dosage contributes to establishing the balance between Sertoli and germ cell number that is ultimately required for adult male fertility.

Journal ArticleDOI
TL;DR: It is shown that dysregulated wingless-related MMTV integration site/beta-catenin signaling in Sertoli cells inhibits their postnatal differentiation, resulting in increased germ cell apoptosis and infertility.
Abstract: Sertoli and germ cell interactions are essential for spermatogenesis and, thus, male fertility. Sertoli cells provide a specialized microenvironment for spermatogonial stem cells to divide, allowing both self-renewal and spermatogenesis. In the present study, we used mice with a conditional activated allele of the beta-catenin gene (Ctnnb1(tm1Mmt)(/+)) in Sertoli cells expressing Cre recombinase driven by the anti-Mullerian hormone (AMH; also known as Mullerian-inhibiting substance) type II receptor promoter (Amhr2(tm3(cre)Bhr)(/+)) to show that constitutively activated beta-catenin leads to their continuous proliferation and compromised differentiation. Compared to controls, Sertoli cells in mature mutant mice continue to express high levels of both AMH and glial cell-derived neurotrophic factor (GDNF), which normally are expressed only in immature Sertoli cells. We also show evidence that LiCl treatment, which activates endogenous nuclear beta-catenin activity, regulates both AMH and GDNF expression at the transcriptional level. The epididymides were devoid of sperm in the Amhr2(tm3(cre)Bhr)(/+);Ctnnb1(tm1Mmt)(/+) mice at all ages examined. We show that the mutant mice are infertile because of defective differentiation of germ cells and increased apoptosis, both of which are characteristic of GDNF overexpression in Sertoli cells. Constitutive activation of beta-catenin in Amhr2-null mice showed the same histology, suggesting that the phenotype was the result of persistent overexpression of GDNF. These results show that dysregulated wingless-related MMTV integration site/beta-catenin signaling in Sertoli cells inhibits their postnatal differentiation, resulting in increased germ cell apoptosis and infertility.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time, that adult and fetal fibroblasts can be cultured, expanded, and frozen without losing their ability to support the development of nuclear transfer embryos, a technology that may potentially be used to modify fibroblast genome by homologous recombination so as to generate genetically altered cloned animals.
Abstract: In this study, we demonstrate the use of somatic cell nuclear transfer to produce the first cloned camelid, a dromedary camel (Camelus dromedarius) belonging to the family Camelidae. Donor karyoplasts were obtained from adult skin fibroblasts, cumulus cells, or fetal fibroblasts, and in vivo-matured oocytes, obtained from preovulatory follicles of superstimulated female camels by transvaginal ultrasound guided ovum pick-up, were used as cytoplasts. Reconstructed embryos were cultured in vitro for 7 days up to the hatching/hatched blastocyst stage before they were transferred to synchronized recipients on Day 6 after ovulation. Pregnancies were achieved from the embryos reconstructed from all cell types, and a healthy calf, named Injaz, was born from the pregnancy by an embryo reconstructed with cumulus cells. Genotype analyses, using 25 dromedary camel microsatellite markers, confirmed that the cloned calf was derived from the donor cell line and the ovarian tissue. In conclusion, the present study reports, for the first time, establishment of pregnancies and birth of the first cloned camelid, a dromedary camel (C. dromedarius), by use of somatic cell nuclear transfer. This has opened doors for the amelioration and preservation of genetically valuable animals like high milk producers, racing champions, and males of high genetic merit in camelids. We also demonstrated, for the first time, that adult and fetal fibroblasts can be cultured, expanded, and frozen without losing their ability to support the development of nuclear transfer embryos, a technology that may potentially be used to modify fibroblast genome by homologous recombination so as to generate genetically altered cloned animals.

Journal ArticleDOI
TL;DR: This review will consider how all of these animal models might help elucidate the epigenetic basis for a wide range of phenotypes, and particular changes in DNA methylation patterns can be linked to a broad spectrum of heritable pathologies in the mice.
Abstract: Epigenetics provides a means of understanding how environmental factors might alter heritable changes in gene expression without changing DNA sequence, and hence the origin, of some diseases that are not explained by conventional genetic mechanisms. Various animal models have been described, most notably the agouti viable yellow (A(vy)) and axin 1 fused (Axin1(Fu)) mice, which lend themselves particularly well to studying this link between epigenetics and development abnormalities, because particular changes in DNA methylation patterns can be linked to a broad spectrum of heritable pathologies in the mice. In addition, there are specific examples, both in mice and other animal species, where nonmutagenic, environmental insults to either parent, such as those caused by consumption of endocrine-disrupting chemicals, can cause unexpected transgenerational phenotypic changes in offspring. Animals derived by somatic cell nuclear transfer also frequently exhibit pathologies that can be linked to inappropriate nuclear reprogramming during early embryo development and provide another means to study a link between epigenetics and disease. This review will consider how all of these animal models might help elucidate the epigenetic basis for a wide range of phenotypes.

Journal ArticleDOI
TL;DR: The endometrial receptivity under the GnRH antagonist protocol was more similar to the natural cycle receptivity than that under thegnRH agonist protocol, which has been associated with gene expression alterations of endometrian receptivity.
Abstract: The impact of gonadotropin-releasing hormone (GnRH) agonist long compared with GnRH antagonist protocols, under in vitro fertilization conditions on endometrial receptivity, is still debated. Therefore, we compared the effect of both GnRH antagonist and agonist long protocols on the endometrial receptivity by analyzing, to our knowledge for the first time, the global gene expression profile shift during the prereceptive and receptive stages of stimulated cycles under the two GnRH analogue protocols compared with natural cycles in the same patients. For the same normal-responder patients, endometrial biopsies were collected on the day of oocyte retrieval and on the day of embryo transfer after human chorionic gonadotropin administration of a stimulated cycle with either GnRH agonist long or GnRH antagonist protocols and compared with the prereceptive and receptive stages of a natural cycle. Samples were analyzed using DNA microarrays. Gene expression profiles and biological pathways involved during the prereceptive stage to the receptive endometrial transition of stimulated and natural cycles were analyzed and compared for each patient. Both protocols affect endometrial receptivity in comparison with their natural cycle in the same patients. Major differences in endometrial chemokines and growth factors under stimulated cycles in comparison with natural cycles were observed. Such an effect has been associated with gene expression alterations of endometrial receptivity. However, the endometrial receptivity under the GnRH antagonist protocol was more similar to the natural cycle receptivity than that under the GnRH agonist protocol.

Journal ArticleDOI
TL;DR: Two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities.
Abstract: Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

Journal ArticleDOI
TL;DR: This is the first systematic study of endometrial transcriptome changes in response to the presence of an embryo during maternal recognition of pregnancy and an important step toward deciphering the embryo-maternal dialogue in equids.
Abstract: Establishment and maintenance of pregnancy are critically dependent on embryo-maternal communication during the preimplantation period. To gain new insights into this complex process in the horse, transcriptional profiling of Day 13.5 pregnant and cyclic endometrial tissue samples was carried out using custom-designed microarrays. Selected array data were validated using quantitative RT-PCR, and proteins of interest were localized using immunohistochemistry. One hundred and six transcripts were up-regulated, whereas 47 transcripts showed lower expression levels in pregnant mares, that is, were down-regulated in pregnant mares. Half of the genes with known or inferred function are classically regulated by estrogens. Elevated transcript levels were found for genes involved in cell-cell signaling, heat shock response, and secretory proteins, among others. Solute carrier family 36 (proton/amino acid symporter), member 2, SLC36A2, was one of the most highly up-regulated genes, potentially reflecting the nutritional needs of the rapidly developing embryo. Among the genes showing lower expression in pregnant mares, estrogen receptor 1 was of particular interest because of its potential involvement in the initiation of luteolysis in cyclic mares. We hypothesize that either conceptus' estrogens or luteinizing hormone of uterine origin is involved in the observed down-regulation of estrogen receptor 1. Several of the genes identified in the current study are known to play a role in early pregnancy in species other than the horse. Thus, products of these commonly expressed genes likely contain universal activities for controlling endometrial receptivity to the conceptus, whereas other factors play unique roles within specific species in ensuring ongoing corpus luteum function. This is the first systematic study of endometrial transcriptome changes in response to the presence of an embryo during maternal recognition of pregnancy and an important step toward deciphering the embryo-maternal dialogue in equids.

Journal ArticleDOI
TL;DR: It is suggested that the PeN kisspeptin neurons could be responsible for the estrogen positive feedback regulation to induce gonadotropin-releasing hormone/luteinizing hormone (GnRH/LH) surge in the pig.
Abstract: Kisspeptin-GPR54 signaling plays an essential role in normal reproduction in mammals via stimulation of gonadotropin secretion. Here, we cloned the porcine KISS1 cDNA from the hypothalamic tissue and investigated the effect of estrogen on the distribution and numbers of KISS1 mRNA-expressing cells in the porcine hypothalamus. The full length of the cDNA was 857 bp encoding the kisspeptin of 54 amino acids, with the C-terminal active motif designated kisspeptin-10 being identical to that of mouse, rat, cattle, and sheep. In situ hybridization analysis revealed that KISS1-positive cell populations were mainly distributed in the hypothalamic periventricular nucleus (PeN) and arcuate nucleus (ARC). KISS1 expression in the PeN of ovariectomized (OVX) pigs was significantly upregulated by estradiol benzoate (EB) treatment. On the other hand, KISS1-expressing cells were abundantly distributed throughout the ARC in both OVX and OVX with EB animals. The number of KISS1-expressing neurons was significantly lowered by EB treatment only in the most caudal part of the ARC, but other ARC populations were not affected. The present study thus suggests that the PeN kisspeptin neurons could be responsible for the estrogen positive feedback regulation to induce gonadotropin-releasing hormone/luteinizing hormone (GnRH/LH) surge in the pig. In addition, the caudal ARC kisspeptin neurons could be involved in the estrogen negative feedback regulation of GnRH/LH release. This is the first report of identification of porcine KISS1 gene and of estrogen regulation of KISS1 expression in the porcine brain, which may be helpful for better understanding of the role of kisspeptin in reproduction of the pig.