scispace - formally typeset
Search or ask a question

Showing papers in "Bioprocess and Biosystems Engineering in 2010"


Journal ArticleDOI
TL;DR: FTIR analysis suggests that platinum nanoparticle synthesis using Diopyros kaki is not an enzyme-mediated process, which is the first report of platinum nanoparticles synthesis using a plant extract.
Abstract: The leaf extract of Diopyros kaki was used as a reducing agent in the ecofriendly extracellular synthesis of platinum nanoparticles from an aqueous H(2)PtCl(6).6H(2)O solution. A greater than 90% conversion of platinum ions to nanoparticles was achieved with a reaction temperature of 95 degrees C and a leaf broth concentration of >10%. A variety of methods was used to characterize the platinum nanoparticles synthesized: inductively coupled plasma spectrometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The average particle size ranged from 2 to 12 nm depending on the reaction temperature and concentrations of the leaf broth and PtCl(6) (2-). FTIR analysis suggests that platinum nanoparticle synthesis using Diopyros kaki is not an enzyme-mediated process. This is the first report of platinum nanoparticle synthesis using a plant extract.

323 citations


Journal ArticleDOI
TL;DR: An electrochemical aptasensor was developed using ssDNA aptamer that selectively binds to tetracycline as recognition element that showed high selectivity for tetr Tracycline over the other structurally related tetrACYcline derivatives (oxytetracy Cline and doxycycline) in a mixture.
Abstract: An electrochemical aptasensor was developed for the detection of tetracycline using ssDNA aptamer that selectively binds to tetracycline as recognition element. The aptamer was highly selective for tetracycline which distinguishes minor structural changes on other tetracycline derivatives. The biotinylated ssDNA aptamer was immobilized on a streptavidin-modified screen-printed gold electrode, and the binding of tetracycline to aptamer was analyzed by cyclic voltammetry and square wave voltammetry. Our results showed that the minimum detection limit of this sensor was 10 nM to micromolar range. The aptasensor showed high selectivity for tetracycline over the other structurally related tetracycline derivatives (oxytetracycline and doxycycline) in a mixture. The aptasensor developed in this study can potentially be used for detection of tetracycline in pharmaceutical preparations, contaminated food products, and drinking water.

147 citations


Journal ArticleDOI
TL;DR: This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.
Abstract: Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340–900 m2 m−3. A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g−1VSS h−1 and a power production of 2.4 ± 0.1 W m−3 at a current density of 6.9 A m−3 were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L−1. Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

130 citations


Journal ArticleDOI
TL;DR: The laccase immobilized on magnetic chitosan beads was very effective for removal of textile dyes from aqueous solution which creates an important environmental problem in the discharged textile dying solutions.
Abstract: Cross-linked magnetic chitosan beads were prepared by phase-inversion technique in the presence of epichlorohydrin under alkaline condition, and used for covalent immobilization of laccase. The activity of the immobilized laccase on the magnetic chitosan was about 260 U (g/dry beads) with an enzyme loading of about 16.33 +/- 0.39 mg [(g/dry beads) mg/g]. Kinetic parameters, V (max) and K (m) values were determined as 21.7 U/mg protein and 9.4 microM for free enzyme, and 15.6 U/mg protein and 19.7 microM for the immobilized laccase, respectively. The operational and thermal stabilities of the immobilized laccase were improved compared to free counterpart. The immobilized laccase was operated in a batch reactor for the decolorization of reactive dyes from aqueous solution. The laccase immobilized on magnetic chitosan beads was very effective for removal of textile dyes from aqueous solution which creates an important environmental problem in the discharged textile dying solutions.

105 citations


Journal ArticleDOI
TL;DR: The effect of shear stress on the viability of Chaetoceros muelleri was studied using a combination of a rheometer and dedicated shearing devices, whilst preserving laminar flow conditions through the use of a thickening agent.
Abstract: The effect of shear stress on the viability of Chaetoceros muelleri was studied using a combination of a rheometer and dedicated shearing devices. Different levels of shear stress were applied by varying the shear rates and the medium viscosities. It was possible to quantify the effect of shear stress over a wide range, whilst preserving laminar flow conditions through the use of a thickening agent. The threshold value at which the viability of algae was negatively influenced was between 1 and 1.3 Pa. Beyond the threshold value the viability decreased suddenly to values between 52 and 66%. The effect of shear stress was almost time independent compared to normal microalgae cultivation times. The main shear stress effect was obtained within 1 min, with a secondary effect of up to 8 min.

90 citations


Journal ArticleDOI
TL;DR: It is envisioned that the ‘cells-on-a-chip’ technology will serve as a valuable link between in vitro and in vivo studies, reducing the demand for animal studies, and making clinical trials more effective.
Abstract: After administration, drugs go through a complex, dynamic process of absorption, distribution, metabolism and excretion. The resulting time-dependent concentration, termed pharmacokinetics (PK), is critical to the pharmacological response from patients. An in vitro system that can test the dynamics of drug effects in a more systematic way would save time and costs in drug development. Integration of microfabrication and cell culture techniques has resulted in ‘cells-on-a-chip’ technology, which is showing promise for high-throughput drug screening in physiologically relevant manner. In this review, we summarize current research efforts which ultimately lead to in vitro systems for testing drug’s effect in PK-based manner. In particular, we highlight the contribution of microscale systems towards this goal. We envision that the ‘cells-on-a-chip’ technology will serve as a valuable link between in vitro and in vivo studies, reducing the demand for animal studies, and making clinical trials more effective.

81 citations


Journal ArticleDOI
TL;DR: The engineered MnO and Fe3O4 exhibited excellent stability compared with Feridex for a prolonged incubation time, and the cytotoxic effect was negligible for 18 h incubation even at highest concentration of 500 μg/ml.
Abstract: In this study, we present in vitro cytotoxicity of iron oxide (Fe3O4) and manganese oxide (MnO) using live/dead cell assay, lactate dehydrogenase assay, and reactive oxygen species detection with variation of the concentration of nanoparticles (5–500 μg/ml), incubation time (18–96 h), and different human cell lines (lung adenocarcinoma, breast cancer cells, and glioblastoma cells). The surface of nanoparticles is modified with polyethyleneglycol-derivatized phospholipid to enhance the biocompatibility, water-solubility, and stability under an aqueous media. While the cytotoxic effect was negligible for 18 h incubation even at highest concentration of 500 μg/ml, MnO nanoparticle represented higher level of toxicity than those of Fe3O4 and the commercial medical contrast reagent, Feridex after 2 and 4 day incubation time. However, the cytotoxicity of Fe3O4 is equivalent or better than Feridex based on the live/dead cell viability assay. The engineered MnO and Fe3O4 exhibited excellent stability compared with Feridex for a prolonged incubation time.

79 citations


Journal ArticleDOI
TL;DR: The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated and found that the efficiency of the reactors increased with decrease in size and increase in Specific surface area of the support media.
Abstract: The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 ± 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover–Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (Umax) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (KB) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

77 citations


Journal ArticleDOI
TL;DR: Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand, suspended solids and aeration tank mixed liquor suspended Solids concentrations of the Ankara central wastewater treatment plant, confirming that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.
Abstract: Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

76 citations


Journal ArticleDOI
TL;DR: It is anticipated that the recycled uses of highly active and stable βG coating can improve the economics of cellulosic ethanol production so long as economical materials are employed as a host of enzyme immobilization.
Abstract: β-Glucosidase (βG) can relieve the product inhibition of cellobiose in the cellulosic ethanol production by converting cellobiose into glucose. For the potential recycled uses, βG was immobilized and stabilized in the form of enzyme coating on polymer nanofibers. The βG coating (EC-βG) was fabricated by crosslinking additional βG molecules onto covalently attached βG molecules (CA-βG) via glutaraldehyde treatment. The initial activity of EC-βG was 36 times higher than that of CA-βG. After 20 days of incubation under shaking, CA-βG and EC-βG retained 33 and 91% of each initial activity, respectively. Magnetic nanofibers were also used for easy recovery and recycled uses of βG coating. It is anticipated that the recycled uses of highly active and stable βG coating can improve the economics of cellulosic ethanol production so long as economical materials are employed as a host of enzyme immobilization.

76 citations


Journal ArticleDOI
TL;DR: The products generated during MFC operation could be deposited, resulting in removing sulfide and V(V) from wastewaters thoroughly, and the results showed that these factors greatly affected the performance of the MFCs.
Abstract: Sulfide and vanadium (V) are pollutants commonly found in wastewaters. A novel approach has been investigated using microbial fuel cell (MFC) technologies by employing sulfide and V(V) as electron donor and acceptor, respectively. This results in oxidizing sulfide and deoxidizing V(V) simultaneously. A series of operating parameters as initial concentration, conductivity, pH, external resistance were carefully examined. The results showed that these factors greatly affected the performance of the MFCs. The average removal rates of about 82.2 and 26.1% were achieved within 72 h operation for sulfide and V(V), respectively, which were accompanied by the maximum power density of about 614.1 mW m−2 under all tested conditions. The products generated during MFC operation could be deposited, resulting in removing sulfide and V(V) from wastewaters thoroughly.

Journal ArticleDOI
TL;DR: Sulfonated beads were characterized by swelling studies, FT-IR, SEM and elemental analysis, and were used for reversible immobilization of lipase, and exhibited improved thermal and storage stabilities over those of the free enzyme.
Abstract: Poly(2-hydroxyethyl methacrylate/ethylenglycol dimethacrylate) beads were grafted with poly(glycidylmethacrylate) via surface initiated atom transfer radical polymerization Epoxy groups of the grafted polymer were modified in to sulfone groups Sulfonated beads were characterized by swelling studies, FT-IR, SEM and elemental analysis, and were used for reversible immobilization of lipase Under given experimental conditions, the beads had an adsorption capacity of 447 mg protein/g beads The adsorbed lipase on beads retained up to 674% of its initial activity The immobilized lipase exhibited improved thermal and storage stabilities over those of the free enzyme The immobilized lipase could desorb 10 M NaCl solution at pH 80, and the sulfonated beads can be repeatedly charged with fresh enzyme after inactivation upon use

Journal ArticleDOI
TL;DR: By in situ microscopy, an imaging procedure will be described, which allows the determination of direct and non-direct cell variables in real time without sampling, which gives an overview of optical procedures for the inline determination of cell count, cell size distribution and other variables.
Abstract: To observe and control cultivation processes, optical sensors are used increasingly. Important variables for controlling such processes are cell count, cell size distribution and the morphology of cells. Among turbidity measurement methods, imaging procedures are applied for determining these process values. A disadvantage of most previously developed imaging procedures is that they are only available offline, which requires sampling. On the other hand, available imaging inline probes can only deliver a limited number of process values so far. This contribution gives an overview of optical procedures for the inline determination of cell count, cell size distribution and other variables. In particular, by in situ microscopy, an imaging procedure will be described, which allows the determination of direct and non-direct cell variables in real time without sampling.

Journal ArticleDOI
TL;DR: Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethylcarbonate played as the reaction medium and a variety of lipases have been tested for their abilities to catalyze transesterification reaction.
Abstract: Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

Journal ArticleDOI
TL;DR: A simpler approach is presented where biomass is monitored using dielectric spectroscopy and the measurements are subjected to online balances and reconciled in real time against metabolite concentrations and off-gas composition.
Abstract: Reliable control of the specific growth rate (μ) in fed-batch fermentations depends on the availability of accurate online estimations of the controlled variable. Due to difficulties in measuring biomass, μ is typically estimated using reference models relating measurements of substrate consumption or oxygen uptake rate to biomass growth. However, as culture conditions vary, these models are adapted dynamically, resulting in complex algorithms that lack the necessary robustness for industrial applicability. A simpler approach is presented where biomass is monitored using dielectric spectroscopy. The measurements are subjected to online balances and reconciled in real time against metabolite concentrations and off-gas composition. The reconciled biomass values serve to estimate the growth rate and a simple control scheme is implemented to maintain the desired value of μ. The methodology is developed with the yeast Kluyveromyces marxianus, tested for disturbance rejection and validated with two other strains. It is applicable to other cellular systems with minor modifications.

Journal ArticleDOI
TL;DR: Higher ethanol yield and productivity were observed from fermentation with the hydrolysates when compared with those from fermentationWith glucose in which lactic acid was the main product, because the extra organic nitrogen in the Hydrolysates promoted cell growth and ethanol production.
Abstract: Cassava pulp was hydrolyzed with acids or enzymes. A high glucose concentration (>100 g/L) was obtained from the hydrolysis with 1 N HCl at 121 °C, 15 min or with cellulase and amylases. While a high glucose yield (>0.85 g/g dry pulp) was obtained from the hydrolysis with HCl, enzymatic hydrolysis yielded only 0.4 g glucose/g dry pulp. These hydrolysates were used as the carbon source in fermentation by Rhizopus oryzae NRRL395. R. oryzae could not grow in media containing the hydrolysates treated with 1.5 N H2SO4 or 2 N H3PO4, but no significant growth inhibition was found with the hydrolysates from HCl (1 N) and enzyme treatments. Higher ethanol yield and productivity were observed from fermentation with the hydrolysates when compared with those from fermentation with glucose in which lactic acid was the main product. This was because the extra organic nitrogen in the hydrolysates promoted cell growth and ethanol production.

Journal ArticleDOI
TL;DR: It was found that the modified sodium alginate possessed prolonged release behavior compared to unmodified sodiumAlginate, and it had potential application in controlled release as a drug carrier.
Abstract: Sodium alginate was hydrophobically modified by coupling of polybutyl methacrylate onto the alginate. The polybutyl methacrylate was previously prepared through polymerization of butyl methacrylate in the presence of 2-amino-ethanethiol as a chain transfer agent. The structure of the product was characterized by Fourier-transformed infrared spectrometry, nuclear magnetic resonance (1HNMR) and thermogravimetry. The result of fluorescence analysis showed that the hydrophobicity of the modified alginate was obviously increased. The modified alginate conjugate was used for immobilization of bovine serum albumin in the presence of calcium chloride. In addition, the release behavior of the drug-loaded alginate in deionized water and Tris–HCl buffer solution (pH 7.2) was investigated. It was found that the modified sodium alginate possessed prolonged release behavior compared to unmodified sodium alginate, and it had potential application in controlled release as a drug carrier.

Journal ArticleDOI
TL;DR: Although the extraction of chitin by biological treatment was incomplete compared to the chemical method, the biological treatment employed here could still be considered as an alternative method in a more environmentally benign approach.
Abstract: In this study, mainly biological treatment of prawn waste for chitin production was investigated. Lactic acid and protease fermentations were applied to extract chitin from prawn waste in the presence of various glucose concentrations. The results obtained were also compared with those of chemical method which was consisted of first mineral removal and then protein removal sequence. Different strategies were applied using lactic acid producing bacterium, Lactococcus lactis, and a protease producer, marine bacterium Teredinobacter turnirae. Both bacteria were first cultivated individually and then cofermented. In their individual cultivation, L. lactis removed the inorganic materials efficiently, while T. turnirae performed better in deproteinization process. Cofermentation of both bacteria was also conducted using three different protocols. The highest process yield (95.5%) was obtained when T. turnirae was first inoculated. Although the extraction of chitin by biological treatment was incomplete compared to the chemical method, the biological treatment employed here could still be considered as an alternative method in a more environmentally benign approach.

Journal ArticleDOI
TL;DR: The syntheses of poly-l-lactide (PLLA) and poly- Lactide-co-glycolide ( PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435).
Abstract: The syntheses of poly-L-lactide (PLLA) and poly-L-lactide-co-glycolide (PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF(6)] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435). The highest PLLA yield (63%) was attained at 90 degrees C with a molecular weight (M(n)) of 37.8 x 10(3) g/mol determined by size exclusion chromatography. This procedure produced relatively high crystalline polymers (up to 85% PLLA) as determined by DSC. In experiments at 90 degrees C product synthesis also occurred without biocatalyst, however, PLLA synthesis in [HMIM][PF(6)] at 65 degrees C followed only the enzymatic mechanism as ring opening was not observed without the enzyme. In addition, the enzymatic synthesis of PLLGA is first reported here using Novozyme 435 biocatalyst with up to 19% of lactyl units in the resulting copolymer as determined by NMR. Materials were also characterized by TGA, MALDI-TOF-MS, X-ray diffraction, polarimetry and rheology.

Journal ArticleDOI
TL;DR: A new device with parallel optical measurement of dissolved oxygen (DO) and pH in up to nine shake flasks applicable in any conventional shaking incubator used to characterize growth profiles of different l-lysine producing strains of Corynebacterium glutamicum, Saccharomyces cerevisiae and of Escherichia coli.
Abstract: We describe a new device with parallel optical measurement of dissolved oxygen (DO) and pH in up to nine shake flasks applicable in any conventional shaking incubator. Measurement ranges are 0–500% of air saturation for oxygen and 5.5–8.5 for pH. It was used to characterize growth profiles of different l-lysine producing strains of Corynebacterium glutamicum, of Saccharomyces cerevisiae and of Escherichia coli. Cultures in unbaffled flasks were highly reproducible. Oxygen limitation was indicated online which is particularly important when cultivating fast growing cells as E. coli. C. glutamicum strains showed distinct characteristic patterns of DO and pH indicating biological events. During the cultivation of S. cerevisiae on glucose, fructose and galactose, oxygen uptake rate was determined using the predetermined value of k L a. pH measurement was used to determine the minimum buffer requirement for a culture of C. glutamicum.

Journal ArticleDOI
TL;DR: A novel mixed culture comprising C. butyricum and a methane bacterium, Methanosarcina mazei, is proposed to relieve the inhibition and to utilise the by-products for energy production to examine the efficiency of such a mixed culture.
Abstract: Clostridium butyricum can convert glycerol into 1,3-propanediol, thereby generating unfortunately a high amount of acetate, formate and butyrate as inhibiting by-products. We have proposed a novel mixed culture comprising C. butyricum and a methane bacterium, Methanosarcina mazei, to relieve the inhibition and to utilise the by-products for energy production. In order to examine the efficiency of such a mixed culture, metabolic modelling of the culture system was performed in this work. The metabolic networks for the organisms were reconstructed from genomic and physiological data. Several scenarios were analysed to examine the preference of M. mazei in scavenging acetate and formate under conditions of different substrate availability, including methanol as a co-substrate, since it may exist in glycerol solution from biodiesel production. The calculations revealed that if methanol is present, the methane production can increase by 130%. M. mazei can scavenge over 70% of the acetate secreted by C. butyricum.

Journal ArticleDOI
TL;DR: Immobilization of whole cells harboring BLAI makes a suitable biocatalyst for the production of l-ribulose, particularly because of its high stability and low cost.
Abstract: Recombinant Escherichia coli whole cells harboring Bacillus licheniformisl-arabinose isomerase (BLAI) were immobilized with alginate. The operational conditions for immobilization were optimized with response surface methodology. Optimal alginate concentration, Ca2+ concentration, and cell mass loading were 1.8% (w/v), 0.1 M, and 44.5 g L−1, respectively. The interactions between Ca2+ concentration, alginate concentration, and initial cell mass were significant. After immobilization of BLAI, cross-linking with 0.1% glutaraldehyde significantly reduced cell leakage. The half-life of immobilized whole cells was 150 days, which was 50-fold longer than that of free cells. In seven repeated batches for l-ribulose production, the productivity was as high as 56.7 g L−1 h−1 at 400 g L−1 substrate concentration. The immobilized cells retained 89% of the initial yield after 33 days of reaction. Immobilization of whole cells harboring BLAI, therefore, makes a suitable biocatalyst for the production of l-ribulose, particularly because of its high stability and low cost.

Journal ArticleDOI
TL;DR: It is expected that redox potential can be used as a valuable parameter to monitor and control much more anaerobic fermentation production.
Abstract: The effects of redox potential used as a control parameter on the process of succinic acid production in batch cultures of Actinobacillus succinogenes NJ113 have been investigated In batch fermentation, cell growth and metabolite distribution were changed with redox potential levels in the range of -100 to -450 mV From the results, the ORP level of -350 mV was preferable, which resulted in high succinic acid yield (128 mol mol(-1)), high succinic acid productivity (118 g L(-1) h(-1)) and high mole ratio of succinic acid to acetic acid (202) The mechanism of redox potential regulation was discussed by metabolic flux analysis and the ratio of NADH/NAD+ We expected that redox potential can be used as a valuable parameter to monitor and control much more anaerobic fermentation production

Journal ArticleDOI
TL;DR: The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated and it was found that the discharged sludge from UASB–MBBR exerts an excellent settling property.
Abstract: The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT’s) of 13.3, 10 and 5.0 h. An overall reduction of 80–86% for CODtotal; 51–73% for CODcolloidal and 20–55% for CODsoluble was found at a total HRT of 5–10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of CODtotal, CODcolloidal and CODsoluble increased up to 92, 89 and 80%, respectively. However, the removal efficiency of CODsuspended in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of CODsuspended was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m−2 day−1. The removal efficiency was decreased by a value of 34 and 43% at a higher OLR’s of 7.4 and 17.8 g COD m−2 day−1, respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 × 104 MPN per 100 ml at a HRT of 13.3 h, 4.9 × 105 MPN per 100 ml at a HRT of 10 h and 9.4 × 105 MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log10 reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB–MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB–MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.

Journal ArticleDOI
TL;DR: Results, i.e., TTMP yields in flask or fermenter fermentations, were new records on TTMP fermentation by B. subtilis, and a DAP feeding strategy was developed and verified in further experiments.
Abstract: To examine the effects of ammonium salts on tetramethylpyrazine (TTMP) production by Bacillus subtilis CCTCC M 208157, different ammonium salts were tested, and diammonium phosphate (DAP) was found to have a predominant effect on stimulating TTMP synthesis. The DAP requirements for TTMP production were then investigated, experimental results showed that higher concentrations of DAP favored TTMP production, while both the ammonium and phosphate ions exhibited inhibitory effects on the cell growth and precursor 3-hydroxy-2-butanone accumulation. Based on the results above, a DAP feeding strategy was developed and verified in further experiments. By applying the proposed fed-batch strategy, the maximum TTMP concentrations reached 7.46 and 7.34 g/l in flask and fermenter experiments, increased by 55.1 and 29.0% compared to that of the batch TTMP fermentation, respectively. To our knowledge, these results, i.e., TTMP yields in flask or fermenter fermentations, were new records on TTMP fermentation by B. subtilis.

Journal ArticleDOI
TL;DR: A fed-batch culture process followed by subsequent photoautotrophic induction was established for the high density culture of astaxanthin-rich Haematococcus pluvialis using a CO2-fed flat type photobioreactor under unsynchronized illumination, which has high potential as simple and productive process for the production of valuable Haem atococcus astaxantha.
Abstract: A fed-batch culture process followed by subsequent photoautotrophic induction was established for the high density culture of astaxanthin-rich Haematococcus pluvialis using a CO2-fed flat type photobioreactor under unsynchronized illumination. Fed-batch culture was performed with an exponential feeding strategy of the growth-limiting nutrients, nitrate and phosphate, concurrently with the stepwise supplementation of light depending on the cell concentration. During the growth phase, a biomass of 1.47 g/L was obtained at a biomass productivity of 0.33 g/L/day. Photoautotrophic induction of the well-grown vegetative cells was performed consecutively by increasing the light intensity to 400 μmol photon/m2/s, while keeping the other conditions in the CO2-fed flat type photobioreactor fixed, yielding an astaxanthin production of 190 mg/L at an astaxanthin productivity of 14 mg/L/day. The proposed sequential photoautotrophic process has high potential as simple and productive process for the production of valuable Haematococcus astaxanthin.

Journal ArticleDOI
TL;DR: Glycerol triacetate was successfully used as a green solvent and as the acyl donor in the transesterification ofisoamyl alcohol to produce isoamyl acetate using free and immobilized Candida antarctica lipase B.
Abstract: Glycerol triacetate was successfully used as a green solvent and as the acyl donor in the transesterification of isoamyl alcohol to produce isoamyl acetate using free and immobilized Candida antarctica lipase B. Immobilized lipase was more catalytically active than free lipase and could be easily separated from the reaction mixture by filtration. In addition, it was found that increasing either the reaction temperature or the enzyme to substrate ratio increased the conversion of isoamyl alcohol. Using triacetin as the solvent also enabled the separation of product by simple extraction with petroleum ether and catalyst recycling.

Journal ArticleDOI
TL;DR: The MFB bioreactor exhibited excellent production stability during batch fermentation and the propionic acid productivity remained high after 78 days of fermentation, and a fed-batch strategy was applied for propionic Acid production.
Abstract: Propionic acid was produced in a multi-point fibrous-bed (MFB) bioreactor by Propionibacterium freudenreichii CCTCC M207015. The MFB bioreactor, comprising spiral cotton fiber packed in a modified 7.5-l bioreactor, was effective for cell-immobilized propionic acid production compared with conventional free cell fermentation. Batch fermentations at various glucose concentrations were investigated in the MFB bioreactor. Based on analysis of the time course of production, a fed-batch strategy was applied for propionic acid production. The maximum propionic acid concentration was 67.05 g l−1 after 496 h of fermentation, and the proportion of propionic acid to total organic acids was approximately 78.28% (w/w). The MFB bioreactor exhibited excellent production stability during batch fermentation and the propionic acid productivity remained high after 78 days of fermentation.

Journal ArticleDOI
TL;DR: Lipase-catalyzed esterification of glucose with fatty acids in ionic liquids (ILs) mixture was investigated by using supersaturated glucose solution and Novozym 435 showed the optimal stability and activity in a mixture of [Bmim] and [Omim][Tf2N] with a 1:1 volume ratio.
Abstract: Lipase-catalyzed esterification of glucose with fatty acids in ionic liquids (ILs) mixture was investigated by using supersaturated glucose solution. The effect of ILs mixture ratio, substrate ratio, lipase content, and temperature on the activity and stability of lipase was also studied. The highest yield of sugar ester was obtained in a mixture of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-methyl-3-octylimidazolium bis[(trifluoromethyl)-sulfonyl]amide ([Omim][Tf2N]) with a volume ratio of 9:1, while Novozym 435 (Candida antarctica type B lipase immobilized on acrylic resin) showed the optimal stability and activity in a mixture of [Bmim][TfO] and [Omim][Tf2N] with a 1:1 volume ratio. Reuse of lipase and ILs was successfully carried out at the optimized reaction conditions. After 5 times reuse of Novozym 435 and ILs, 78% of initial activity was remained.

Journal ArticleDOI
TL;DR: An integrated ethanol–methane fermentation coupled system characterized with full wastewater reutilization and anaerobic effluents from the digestion process with two subsequently connected tanks indicated that ethanol fermentation performance could be largely improved, and the fermentation lag could be completely eliminated.
Abstract: An integrated ethanol–methane fermentation coupled system characterized with full wastewater reutilization was proposed. The waste distillage originated from ethanol distillation was treated with anaerobic digestion and then recycled for medium preparation in the next ethanol fermentation run. This process could enhance wastewater reutilization, save fresh water and reduce energy consumption in the cassava-based ethanol production. The results indicated that, when using anaerobic effluents from the digestion process with only one tank, an ethanol concentration of 10.5% (v/v) compatible with that of conventional one could be achieved, but ethanol fermentation was partially inhibited and operation time gradually prolonged from 48 to 105 h. Using anaerobic effluents from the digestion process with two subsequently connected tanks, ethanol fermentation performance could be largely improved, and the fermentation lag could be completely eliminated. The performance enhancement was due to the concentrations reduction in organic acids, such as acetic and propionic acids in the digestion effluents using two digestion tanks in-series.