scispace - formally typeset
Search or ask a question

Showing papers in "bioRxiv in 2011"


Posted ContentDOI
01 Jan 2011-bioRxiv
TL;DR: The results demonstrate how the female post-mating response can evolve under different mating systems, and provide novel insights into the genes targeted by sexual selection in females, by identifying a list of candidate genes responsible for the decrease in female fecundity in the absence of promiscuity.
Abstract: Sexual conflict is broadly defined as a conflict between the evolutionary interests of the two sexes. Depending on the genetic architecture of the traits involved, it can occur at the level of male-female interactions or take the form of selection acting to change the mean of a shared trait against the sign of its genetic correlation. The aim of my thesis was to use genome-wide expression profiles in the model organism Drosophila melanogaster to provide novel insights in the study of sexual conflict. First, we studied the female post-mating response to partition transcriptional changes associated with reproduction from male-induced effects, which are known to be harmful to females. We found substantial changes in expression of metabolic pathways associated with the activation of reproduction, while male-specific effects were dominated by the onset of an immune response. Changes in female response under different mating strategies was studied using experimental evolution: we found that monogamous females suffered decreased fecundity and their gene expression profiles suggested an overall weaker response to mating. To identify sexually antagonistic genes, we used hemiclonal lines and associated their sex-specific fitness with genome-wide transcript abundance. We confirmed the presence of a negative covariance for fitness and identified a group of candidate genes experiencing sexually antagonistic selection. We then focused on mitochondria, which can enable the accumulation of deleterious mutations with sex-specific effects due to their maternal inheritance, and found few effects on nuclear gene expression in females but major effects in males, predominantly in male-specific tissues. Finally, we used published data to compare intraspecific and interspecific genetic variation for a set of transcripts, to test whether speciation occurs along lines of maximum genetic variance. In conclusion, gene expression techniques can generate useful results in the study of sexual conflict, particularly in association with phenotypic data or when integrated with published datasets.

3 citations


Posted ContentDOI
11 Apr 2011-bioRxiv
TL;DR: The method proposed computes TC by using machine learning techniques trained with information on morphological parameters of segmented nuclei in order to classify regions of the image as tumour or normal, and the best result was obtained with Support Vector Machines.
Abstract: This paper describes a method for residual tumour cellularity (TC) estimation in Neoadjuvant treatment (NAT) of advanced breast cancer. This is determined manually by visual inspection by a radiologist, then an automated computation will contribute to reduce time workload and increase precision and accuracy. TC is estimated as the ratio of tumour area by total image area estimated after the NAT. The method proposed computes TC by using machine learning techniques trained with information on morphological parameters of segmented nuclei in order to classify regions of the image as tumour or normal. The data is provided by the 2019 SPIE Breast challenge, which was proposed to develop automated TC computation algorithms. Three algorithms were implemented: Support Vector Machines, Nearest K-means and Adaptive Boosting (AdaBoost) decision trees. Performance based on accuracy is compared and evaluated and the best result was obtained with Support Vector Machines. Results obtained by the methods implemented were submitted during ongoing challenge with a maximum of 0.76 of prediction probability of success.