scispace - formally typeset
Search or ask a question

Showing papers in "Biotechnology and Bioengineering in 2007"


Journal ArticleDOI
TL;DR: Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a ligne cellulose biorefinery.
Abstract: Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery.

585 citations


Journal ArticleDOI
TL;DR: The results suggest that it is feasible to expand heterotrophic Chlorella fermentation for biodiesel production at the industry level, and comparable to conventional diesel fuel and comply with the US Standard for Biodiesel.
Abstract: An integrated approach of biodiesel production from heterotrophic Chlorella protothecoides focused on scaling up fermentation in bioreactors was reported in this study. Through substrate feeding and fermentation process controls, the cell density of C. protothecoides achieved 15.5 g L(-1) in 5 L, 12.8 g L(-1) in 750 L, and 14.2 g L(-1) in 11,000 L bioreactors, respectively. Resulted from heterotrophic metabolism, the lipid content reached 46.1%, 48.7%, and 44.3% of cell dry weight in samples from 5 L, 750 L, and 11,000 L bioreactors, respectively. Transesterification of the microalgal oil was catalyzed by immobilized lipase from Candidia sp. 99-125. With 75% lipase (12,000 U g(-1), based on lipid quantity) and 3:1 molar ratio of methanol to oil batch-fed at three times, 98.15% of the oil was converted to monoalkyl esters of fatty acids in 12 h. The expanded biodiesel production rates were 7.02 g L(-1), 6.12 g L(-1), and 6.24 g L(-1) in 5 L, 750 L, and 11,000 L bioreactors, respectively. The properties of biodiesel from Chlorella were comparable to conventional diesel fuel and comply with the US Standard for Biodiesel (ASTM 6751). These results suggest that it is feasible to expand heterotrophic Chlorella fermentation for biodiesel production at the industry level.

570 citations


Journal ArticleDOI
TL;DR: The effect of some of the lignocellulosic hydrolysate inhibitors associated with C. beijerinckii BA101 growth and acetone–butanol–ethanol (ABE) production decreased significantly and had stimulatory effect on the growth of the microorganism and ABE production.
Abstract: During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, rho-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lignocellulosic [e.g., corn fiber, distillers dry grain solubles (DDGS), etc] hydrolysates such as cellobiose, glucose, mannose, arabinose, and xylose. In these studies we investigated the effect of some of the lignocellulosic hydrolysate inhibitors associated with C. beijerinckii BA101 growth and acetone-butanol-ethanol (ABE) production. When 0.3 g/L rho-coumaric and ferulic acids were introduced into the fermentation medium, growth and ABE production by C. beijerinckii BA101 decreased significantly. Furfural and HMF are not inhibitory to C. beijerinckii BA101; rather they have stimulatory effect on the growth of the microorganism and ABE production.

565 citations


Journal ArticleDOI
TL;DR: Experiments conducted at 2%–40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM, and a decrease in ethanol yield at increasing initial DM.
Abstract: To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.

520 citations


Journal ArticleDOI
TL;DR: Direct evidence is provided to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.
Abstract: Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme diges- tion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a pur- ified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important com- ponent of cellulase preparations. The results showed cellu- lose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreat- ment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessi- bility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose. Biotechnol. Bioeng. 2007;98: 112-122. 2007 Wiley Periodicals, Inc.

516 citations


Journal ArticleDOI
TL;DR: A biologically inspired artificial liver sinusoid with a microfluidic endothelial-like barrier having mass transport properties similar to the liver acinus is created.
Abstract: Primary hepatocytes represent a physiologically relevant model for drug toxicity screening. Here, we created a biologically inspired artificial liver sinusoid with a microfluidic endothelial-like barrier having mass transport properties similar to the liver acinus. This unit consisted of a cord of hepatocytes (50 x 30 x 500 microm) fed by diffusion of nutrients across the microfluidic endothelial-like barrier from a convective transport vessel (10 nL/min). This configuration sustained rat and human hepatocytes for 7 days without an extracellular matrix (ECM) coating. Experiments with the metabolism mediated liver toxicant diclofenac showed no hepatotoxicity after 4 h and an IC(50) of 334 +/- 41 microM after 24 h.

464 citations


Journal ArticleDOI
TL;DR: This work will outline a number of challenges of interest in particulate drug delivery, and provide examples of applications, for local and systemic drug delivery.
Abstract: Particulate drug delivery systems have become important in experimental pharmaceutics and clinical medicine. The distinction is often made between micro- and nanoparticles, being particles with dimensions best described in micrometers and nanometers respectively. That size difference entails real differences at many levels, from formulation to in vivo usage. Here I will discuss those differences and provide examples of applications, for local and systemic drug delivery. I will outline a number of challenges of interest in particulate drug delivery.

447 citations


Journal ArticleDOI
TL;DR: A dynamic, one‐dimensional, multi‐species model for the biofilm using the Nernst‐Monod expression to describe the rate of electron‐donor (ED) oxidation is developed to study dual limitation in biofilm by the ED concentration and local potential.
Abstract: The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density.

446 citations


Journal ArticleDOI
TL;DR: It is suggested that so‐called “accessory” enzymes such as xylanase and pectinase stimulate cellulose hydrolysis by removing non‐cellulosic polysaccharides that coat cellulose fibers, and validating this approach towards enzyme improvement and process cost reduction for lignocellulose Hydrolysis.
Abstract: The ability of a commercial Trichoderma reesei cellulase preparation (Celluclast 1.5L), to hydrolyze the cellulose and xylan components of pretreated corn stover (PCS) was significantly improved by supplementation with three types of crude commercial enzyme preparations nominally enriched in xylanase, pectinase, and beta-glucosidase activity. Although the well-documented relief of product inhibition by beta-glucosidase contributed to the observed improvement in cellulase performance, significant benefits could also be attributed to enzymes components that hydrolyze non-cellulosic polysaccharides. It is suggested that so-called "accessory" enzymes such as xylanase and pectinase stimulate cellulose hydrolysis by removing non-cellulosic polysaccharides that coat cellulose fibers. A high-throughput microassay, in combination with response surface methodology, enabled production of an optimally supplemented enzyme mixture. This mixture allowed for a approximately twofold reduction in the total protein required to reach glucan to glucose and xylan to xylose hydrolysis targets (99% and 88% conversion, respectively), thereby validating this approach towards enzyme improvement and process cost reduction for lignocellulose hydrolysis.

396 citations


Journal ArticleDOI
TL;DR: Reduction in substrate particle size was found to affect the AFEX process and rate of hydrolysis as well and implications of the stover particle size, composition, and inhibitory role of the phenolic fragments on an integrated biorefinery are discussed.
Abstract: Particle size and compositional variance are found to have a substantial influence on ammonia fiber explosion (AFEX) pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Corn stover was milled and fractionated into particle sizes of varying composition. The larger particle size fractions (rich in corn cob and stalk portions) were found to be more recalcitrant to hydrolysis compared to the smaller size fractions (rich in leaves and husk portion). Electron spectroscopy for chemical analysis (ESCA) and Fourier transform infrared spectroscopy (FTIR) were used for biomass surface and bulk compositional analysis, respectively. The ESCA results showed a 15-30% decrease in the O/C (oxygen to carbon) ratio after the pretreatment indicating an increase in the hydrophobic nature of biomass surface. FTIR results confirmed cleavage of the lignin-carbohydrate complex (LCC) for the AFEX-treated fractions. The spectroscopic results indicate the extraction of cleaved lignin phenolic fragments and other cell wall extractives to the biomass surface upon AFEX. Water washing of AFEX-treated fractions removed some of the hydrophobic extractives resulting in a 13% weight loss (dry weight basis). Phenolic content of wash stream was evaluated by the modified Prussian blue (MPB) method. Removal of ligno-phenolic extractives from the AFEX-treated biomass by water washing vastly improved the glucan conversion as compared to the unwashed samples. Reduction in substrate particle size was found to affect the AFEX process and rate of hydrolysis as well. Implications of the stover particle size, composition, and inhibitory role of the phenolic fragments on an integrated biorefinery are discussed.

383 citations


Journal ArticleDOI
TL;DR: A review of experimental kinetics of non‐native protein aggregation illustrates how many of these can be understood within a general framework that treats aggregation as a multi‐stage process, and how most available kinetic models of aggregation can be grouped hierarchically in terms of which stage(s) they include.
Abstract: Experimental kinetics of non-native protein aggregation are of practical importance in that they help dictate viable processing, formulation, and storage conditions for biotechnology products, and appear to play a role in determining the onset of a number of diseases. Fundamentally, aggregation kinetics provide insights into the identity of key intermediates in the process, and quantitative tests of available models of aggregation. Although aggregation kinetics often display seemingly disparate behaviors across different proteins and sample conditions, this review illustrates how many of these can be understood within a general framework that treats aggregation as a multi-stage process, and how most available kinetic models of aggregation can be grouped hierarchically in terms of which stage(s) they include. This provides an aid for workers seeking a mechanistic interpretation of in vitro aggregation kinetics, for discriminating among competing models, and in designing experiments to assess in vitro protein stability. Limitations and the utility of purely kinetic approaches to studying aggregation, clarifications of common misperceptions regarding experimental aggregation kinetics, and some outstanding challenges in the field are briefly discussed.

Journal ArticleDOI
TL;DR: An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18‐25 culture filtrate and demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobIOhydrolases tested.
Abstract: An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18-25 culture filtrate. The CBH IIb demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobiohydrolases tested, including C. lucknowense CBH Ia, Ib, IIa, and Trichoderma reesei CBH I and II. Using purified C. lucknowense enzymes (CBH Ia, Ib, and IIb; endoglucanases II and V; beta-glucosidase, xylanase II), artificial multienzyme mixtures were reconstituted, displaying an extremely high performance in a conversion of different cellulosic substrates (Avicel, cotton, pretreated Douglas fir wood) to glucose. These mixtures were much or notably more effective in hydrolysis of the cellulosic substrates than the crude multienzyme C. lucknowense preparation and other crude cellulase samples produced by T. reesei and Penicillium verruculosum. Highly active cellulases are a key factor in bioconversion of plant lignocellulosic biomass to ethanol as an alternative to fossil fuels.

Journal ArticleDOI
TL;DR: A comparative study of antimicrobial activity is done using three different electrospun nanofibers namely—CA, PAN, and PVC used as control and with various amounts of AgNO3 being treated with UV‐irradiation leading to the enhancement of silver nanoparticles.
Abstract: A comparative study of antimicrobial activity is done using three different electrospun nanofibers namely-CA, PAN, and PVC used as control and with various amounts of AgNO(3) being treated with UV-irradiation leading to the enhancement of silver nanoparticles. DMF is used as the common solvent which helps to undergo spontaneous slow reduction at room temperature to form silver nanoparticles followed by UV-irradiation using a 400 W source. The time required for the formation of silver nanoparticles is short and they are more or less well dispersed with few such aggregates. The presence of silver nanoparticles is confirmed using various characterization techniques. The antimicrobial activity is studied using nanofibers with fabricated functionality.

Journal ArticleDOI
TL;DR: It is demonstrated that electricity can be generated from cellulose by exploiting rumen microorganisms as biocatalysts and cellulose as the electron donor in two‐compartment MFCs, but both technical and biological optimization is needed to maximize power output.
Abstract: In microbial fuel cells (MFCs) bacteria generate electricity by mediating the oxidation of organic compounds and transferring the resulting electrons to an anode electrode. The objective of this study was to test the possibility of generating electricity with rumen microorganisms as biocatalysts and cellulose as the electron donor in two-compartment MFCs. The anode and cathode chambers were separated by a proton exchange membrane and graphite plates were used as electrodes. The medium in the anode chamber was inoculated with rumen microorganisms, and the catholyte in the cathode compartment was ferricyanide solution. Maximum power density reached 55 mW/m(2) (1.5 mA, 313 mV) with cellulose as the electron donor. Cellulose hydrolysis and electrode reduction were shown to support the production of current. The electrical current was sustained for over 2 months with periodic cellulose addition. Clarified rumen fluid and a soluble carbohydrate mixture, serving as the electron donors, could also sustain power output. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA genes revealed that the microbial communities differed when different substrates were used in the MFCs. The anode-attached and the suspended consortia were shown to be different within the same MFC. Cloning and sequencing analysis of 16S rRNA genes indicated that the most predominant bacteria in the anode-attached consortia were related to Clostridium spp., while Comamonas spp. abounded in the suspended consortia. The results demonstrated that electricity can be generated from cellulose by exploiting rumen microorganisms as biocatalysts, but both technical and biological optimization is needed to maximize power output.

Journal ArticleDOI
TL;DR: Particle size associated with accessible surface area has a significant impact on the saccharification of plant cell walls by cellulolytic enzymes, and pretreatment enlarges accessible and susceptible surface area leading to enhanced cellulose hydrolysis.
Abstract: Particle size associated with accessible surface area has a significant impact on the saccharification of plant cell walls by cellulolytic enzymes. Small particle sizes of untreated cellulosic substrate are more readily hydrolyzed than large ones because of higher specific surface area. Pretreatment enlarges accessible and susceptible surface area leading to enhanced cellulose hydrolysis. These hypotheses were tested using ground corn stover in the size ranges of 425-710 and 53-75 microm. Ultrastructural changes in these particles were imaged after treatment with cellulolytic enzymes before and after liquid hot water pretreatment. The smaller 53-75 microm corn stover particles are 1.5x more susceptible to hydrolysis than 425-710 microm corn stover particles. This difference between the two particle size ranges is eliminated when the stover is pretreated with liquid hot water pretreatment at 190 degrees C for 15 min, at pH between 4.3 and 6.2. This pretreatment causes ultrastructural changes and formation of micron-sized pores that make the cellulose more accessible to hydrolytic enzymes.

Journal ArticleDOI
TL;DR: Examination of the conformational status of a recombinant GFP protein when produced in Escherichia coli below 37°C indicates that physicochemical conditions governing protein folding affect concurrently the quality of the soluble and the aggregated forms of a misfolding‐prone protein, and that protein mis Folding and aggregation are clearly not coincident events.
Abstract: Protein aggregation is a major bottleneck during the bacterial production of recombinant proteins. In general, the induction of gene expression at sub-optimal growth temperatures improves the solubility of aggregation-prone polypeptides and minimizes inclusion body (IB) formation. However, the effect of low temperatures on the quality of the recombinant protein, especially within the insoluble cell fraction, has been hardly ever explored. In this work, we have examined the conformational status of a recombinant GFP protein when produced in Escherichia coli below 37 degrees C. As expected, the fraction of aggregated protein largely decreased at lower temperatures, while the conformational quality of both soluble and aggregated GFP, as reflected by its specific fluorescence emission, progressively improved. This observation indicates that physicochemical conditions governing protein folding affect concurrently the quality of the soluble and the aggregated forms of a misfolding-prone protein, and that protein misfolding and aggregation are clearly not coincident events.

Journal ArticleDOI
TL;DR: Investigation of the product spectrum of an open mixed culture fermentation (MCF) process as a function of the pH found a transition from CO2/H2 production at lower pH values to formate production at higher pH values, likely due to a decrease in the oxidation state of the electrons in the cell.
Abstract: Catabolic products from anaerobic fermentation processes are potentially of industrial interest. The volatile fatty acids and alcohols produced can be used as building blocks in chemical processes or applied directly as substrates in a mixed culture process to produce bioplastics. Development of such applications requires a predictable and controllable product spectrum of the fermentation process. The aim of the research described in this paper was (i) to investigate the product spectrum of an open mixed culture fermentation (MCF) process as a function of the pH, using glucose as substrate, and (ii) to relate the product spectrum obtained to generalized biochemical and thermodynamic considerations. A chemostat was operated under carbon and energy limitation in order to investigate the pH effect on the product spectrum in a MCF process. A transition from CO 2 / H 2 production at lower pH values to formate production at higher pH values was observed. The ratio of CO 2 /H 2 versus formate production was found to be related to the thermodynamics of formate dehydrogenation to CO 2 /H 2 . This transition was associated with a shift in the catabolic products, from butyrate and acetate to ethanol and acetate, likely due to a decrease in the oxidation state of the electron carriers in the cell. The product spectrum of the MCF process as a function of the pH could largely be explained using general biochemical considerations.

Journal ArticleDOI
TL;DR: Through transposome‐mediated chromosome integration, the RhlAB gene was inserted into the chromosome of the Pseudomonas aeruginosa PAO1‐rhlA− and Escherichia coli BL21 (DE3), neither of which could produce rhamnolipid.
Abstract: Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including enhanced oil recovery (EOR), biodegradation, and bio- remediation. Rhamnolipid is composed of rhamnose sugar molecule and b-hydroxyalkanoic acid. The rhamnosyltrans- ferase 1 complex (RhlAB) is the key enzyme responsible for transferring the rhamnose moiety to the b-hydroxyalkanoic acid moiety to biosynthesize rhamnolipid. Through transposome-mediated chromosome integration, the RhlAB gene was inserted into the chromosome of the Pseudomonas aeruginosa PAO1-rhlAand Escherichia coli BL21 (DE3), neither of which could produce rhamnolipid. After chromosome integration of the RhlAB gene, the constitute strains P. aeruginosa PEER02 and E. coli TnERAB did produce rhamnolipid. The HPLC/MS spectrum showed that the structure of purified rhamnolipid from P. aeruginosa PEER02 was similar to that from other P. aeruginosa strains, but with different percentage for each of the several con- geners. The main congener (near 60%) of purified rhamnolipid from E. coli TnERAB was 3-(3-hydroxydeca- noyloxy) decanoate (C10-C10) with mono-rhamnose. The surfactant performance of rhamnolipid was evaluated by measurement of interfacial tension (IFT) and oil recovery via sand-pack flooding tests. As expected, pH and salt concentration of the rhamnolipid solution significantly affected the IFT properties. With just 250 mg/L rhamnolipid (fromP. aeruginosa PEER02 with soybean oil assubstrate) in citrate-Na2HPO4, pH 5, 2% NaCl, 42% of oil otherwise trapped was recovered from a sand pack. This result suggests rhamnolipid might be considered for EOR applications. Biotechnol. Bioeng. 2007;98: 842-853. 2007 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: Analysis of oxygen transport in the constructs for the two flow rates yielded oxygen levels significantly higher than those at which cell growth and metabolism are affected (Jiang et al., 1996 ), which indicates that differences in convective transport have no significant influence on cell grow and metabolism for the range of flow rates studied.
Abstract: Shear stress is an important biomechanical parameter in regulating human mesenchymal stem cell (hMSC) construct development. In this study, the biomechanical characteristics of hMSCs within highly porous 3-D poly (ethylene terephthalate) (PET) matrices in a perfusion bioreactor system were analyzed for two flow rates of 0.1 and 1.5 mL/min, respectively over a 20-day culture period. A 1.4 times higher proliferation rate, higher CFU-F formation, and more fibronectin and HSP-47 secretion at day 20 were observed at the flow rate of 0.1 mL/min compared to those at the flow rate of 1.5 mL/min. The higher flow rate of 1.5 mL/min upregulated osteogenic differentiation potential at day 20 as measured by the expression of alkaline phosphatase activity and calcium deposition in the matrix after 14 days osteogenic induction, consistent with those reported in literatures. Mathematical modeling indicated that shear stress existed in the range of 1 x 10(-5) to 1 x 10(-4) Pa in the constructs up to a depth of 70 microm due to flow penetration in the porous constructs. Analysis of oxygen transport in the constructs for the two flow rates yielded oxygen levels significantly higher than those at which cell growth and metabolism are affected (Jiang et al., 1996). This indicates that differences in convective transport have no significant influence on cell growth and metabolism for the range of flow rates studied. These results demonstrate that shear stress is an important microenvironment parameter that regulates hMSC construct development at a range significantly lower than those reported previously in the perfusion system.

Journal ArticleDOI
TL;DR: Ethanol production was evaluated on pretreated wheat straw hydrolysate using four different recombinant Saccharomyces cerevisiae strains and formic acid had the most severe influence on the hydrolysis rate resulting in a complete inactivation of the two enzyme mixtures.
Abstract: In the process of producing ethanol from lignocellulosic materials such as wheat straw, compounds that can act inhibitory to enzymatic hydrolysis and to cellular growth may be generated during the pretreatment. Ethanol production was evaluated on pretreated wheat straw hydrolysate using four different recombinant Saccharomyces cerevisiae strains, CPB.CR4, CPB.CB4, F12, and FLX. The fermentation performance of the four S. cerevisiae strains was tested in hydrolysate of wheat straw that has been pretreated at high dry matter content (220 g/L dry matter). The results clearly showed that F12 was the most robust strain, whereas the other three strains were strongly inhibited when the fraction of hydrolysate in the fermentation medium was higher than 60% (v/v). Furthermore, the impact of different lignin derivatives commonly found in the hydrolysate of pretreated wheat straw, was tested on two different enzyme mixtures, a mixture of Celluclast 1.5 L FG and Novozym 188 (3:1) and one crude enzyme preparation produced from Penicillium brasilianum IBT 20888. From all the potential inhibiting compounds that were tested, formic acid had the most severe influence on the hydrolysis rate resulting in a complete inactivation of the two enzyme mixtures.

Journal ArticleDOI
TL;DR: The two-stage system indoors yields a richer astaxanthin product, is more readily upscalable and amenable to outdoors production, and the former is best fit in an efficient mass production setup.
Abstract: Haematococcus pluvialis under stress conditions overproduces the valuable red ketocarotenoid astaxanthin. Two proposed strategies for commercial production are under current analysis. One separates in time the production of biomass (optimal growth, green stage) and pigment (permanent stress, red stage), while the other uses an approach based on continuous culture under limiting stress at steady state. The productivities, efficiencies and yields for the pigment accumulation in each case have been compared and analyzed in terms of the algal basic physiology. The two-stage system indoors yields a richer astaxanthin product (4% of dry biomass) with a final astaxanthin productivity of 11.5 mg L(-1) day(-1), is more readily upscalable and amenable to outdoors production. Furthermore, each stage can be optimized for green biomass growth and red pigment accumulation by adjusting independently the respective ratio of effective irradiance to cell density. We conclude that the two-stage system performs better (by a factor of 2.5-5) than the one-stage system, and the former is best fit in an efficient mass production setup.

Journal ArticleDOI
TL;DR: It is proposed that an internal vessel wall with high density is required for the tube to sustain a certain pressure and an increase in wall thickness by a increase in oxygen ratio might explain the increasing burst pressure with increasing oxygen ratio.
Abstract: Bacterial cellulose (BC) was deposited in tubular form by fermenting Acetobacter xylinum on top of silicone tubes as an oxygenated support and by blowing different concns. of oxygen, i.e., 21% (air), 35%, 50%, and 100%. Mech. properties such as burst pressure and tensile properties were evaluated for all tubes. The burst pressure of the tubes increased with an increase in oxygen ratio and reached a top value of 880 mmHg at 100% oxygen. The Young's modulus was approx. 5 MPa for all tubes, irresp. of the oxygen ratio. The elongation to break decreased from 30% to 10-20% when the oxygen ratio was increased. The morphol. of the tubes was characterized by SEM (SEM). All tubes had an even inner side and a more porous outer side. The cross section indicated that the tubes are composed of layers and that the amt. of layers and the yield of cellulose increased with an increase in oxygen ratio. We propose that an internal vessel wall with high d. is required for the tube to sustain a certain pressure. An increase in wall thickness by an increase in oxygen ratio might explain the increasing burst pressure with increasing oxygen ratio. The fermn. method used renders it possible to produce branched tubes, tubes with unlimited length and inner diams. Endothelial cells (ECs) were grown onto the lumen of the tubes. The cells formed a confluent layer after 7 days. The tubes potential as a vascular graft is currently under investigation in a large animal model at the Center of Vascular Engineering, Sahlgrenska University Hospital, Gothenburg.

Journal ArticleDOI
TL;DR: It is demonstrated that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.
Abstract: α-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of α-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for 2 weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity. Biotechnol. Bioeng. 2007;96: 210–218. © 2006 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: Brain scanning showed the humanized HIRMAb was rapidly transported into all parts of the primate brain after intravenous administration, and may be used as a brain drug and gene delivery system for the targeting of large molecule therapeutics across the BBB in humans.
Abstract: A murine monoclonal antibody (MAb) to the human insulin receptor (HIR) has been engineered for use as a brain drug delivery system for transport across the human blood-brain barrier (BBB) The HIRMAb was humanized by complementarity determining region (CDR) grafting on the framework regions (FR) of the human B43 IgG heavy chain and the human REI kappa light chain A problem encountered in the humanization process was the poor secretion of the CDR-grafted HIRMAb by myeloma cells This problem was solved by the production of human/mouse hybrids of the engineered heavy chain variable region (VH), which led to the replacement of five amino acids in the FR3 of the VH with original murine amino acids No replacement of FR amino acids in the light chain variable region (VL) was required The affinity of the humanized HIRMAb for the HIR was decreased 27% relative to the murine HIRMAb The humanized HIRMAb avidly bound to the HIR of isolated human brain capillaries, which are used as an in vitro model system of the human BBB The HIRMAb cross reacts with the HIR of Old World primates such as the Rhesus monkey The humanized HIRMAb was radiolabeled with 125-iodine, and injected intravenously into an adult, anesthetized Rhesus monkey Brain scanning showed the humanized HIRMAb was rapidly transported into all parts of the primate brain after intravenous administration The humanized HIRMAb may be used as a brain drug and gene delivery system for the targeting of large molecule therapeutics across the BBB in humans

Journal ArticleDOI
TL;DR: Feasibility study and results obtained from a new approach to investigate the process of protein crystals stabilization by glutaraldehyde crosslinking showed that reaction rate was much faster at alkaline pH, and different reaction end products, indicating different reaction mechanisms, were identified for crossl linking taking place under alkaline or acidic conditions.
Abstract: Glutaraldehyde has been used for several decades as an effective crosslinking agent for many applications including sample fixation for microscopy, enzyme and cell immobilization, and stabilization of protein crystals. Despite of its common use as a crosslinking agent, the mechanism and chemistry involved in glutaraldehyde crosslinking reaction is not yet fully understood. Here we describe feasibility study and results obtained from a new approach to investigate the process of protein crystals stabilization by glutaraldehyde crosslinking. It involves exposure of a model protein crystal (Lysozyme) to glutaraldehyde in alkaline or acidic pH for different incubation periods and reaction arrest by medium exchange with crystallization medium to remove unbound glutaraldehyde. The crystals were subsequently incubated in diluted buffer affecting dissolution of un-crosslinked crystals. Samples from the resulting solution were subjected to protein composition analysis by gel electrophoresis and mass spectroscopy while crosslinked, dissolution resistant crystals were subjected to high resolution X-ray structural analysis. Data from gel electrophoresis indicated that the crosslinking process starts at specific preferable crosslinking site by lysozyme dimer formation, for both acidic and alkaline pH values. These dimer formations were followed by trimer and tetramer formations leading eventually to dissolution resistant crystals. The crosslinking initiation site and the end products obtained from glutaraldehyde crosslinking in both pH ranges resulted from reactions between lysine residues of neighboring protein molecules and the polymeric form of glutaraldehyde. Reaction rate was much faster at alkaline pH. Different reaction end products, indicating different reaction mechanisms, were identified for crosslinking taking place under alkaline or acidic conditions.

Journal ArticleDOI
TL;DR: B lodgepole pine appears to be an excellent candidate for efficient and productive bioconversion to ethanol and provided consistently higher ethanol yields after SSF than the other substrates tested.
Abstract: Utilization of ethanol produced from biomass has the potential to offset the use of gasoline and reduce CO(2) emissions. This could reduce the effects of global warming, one of which is the current outbreak of epidemic proportions of the mountain pine beetle (MPB) in British Columbia (BC), Canada. The result of this is increasing volumes of dead lodgepole pine with increasingly limited commercial uses. Bioconversion of lodgepole pine to ethanol using SO(2)-catalyzed steam explosion was investigated. The optimum pretreatment condition for this feedstock was determined to be 200 degrees C, 5 min, and 4% SO(2) (w/w). Simultaneous saccharification and fermentation (SSF) of this material provided an overall ethanol yield of 77% of the theoretical yield from raw material based on starting glucan, mannan, and galactan, which corresponds to 244 g ethanol/kg raw material within 30 h. Three conditions representing low (L), medium (M), and high (H) severity were also applied to healthy lodgepole pine. Although the M severity conditions of 200 degrees C, 5 min, and 4% SO(2) were sufficiently robust to pretreat healthy wood, the substrate produced from beetle-killed (BK) wood provided consistently higher ethanol yields after SSF than the other substrates tested. BK lodgepole pine appears to be an excellent candidate for efficient and productive bioconversion to ethanol.

Journal ArticleDOI
TL;DR: In order to optimize the process, anoxic phases can be implemented in the SBR‐cycle configuration, leading to a more efficient overall N‐removal, as shown by model simulations with varying oxygen concentration, temperature, and granule size.
Abstract: A mathematical model was developed that can be used to describe an aerobic granular sludge reactor, fed with a defined influent, capable of simultaneously removing COD, nitrogen and phosphate in one sequencing batch reactor (SBR). The model described the experimental data from this complex system sufficiently. The effect of process parameters on the nutrient removal rates could therefore be reliably evaluated. The influence of oxygen concentration, temperature, granule diameter, sludge loading rate, and cycle configuration were analyzed. Oxygen penetration depth in combination with the position of the autotrophic biomass played a crucial role in the conversion rates of the different components and thus on overall nutrient removal efficiencies. The ratio between aerobic and anoxic volume in the granule strongly determines the N-removal efficiency as it was shown by model simulations with varying oxygen concentration, temperature, and granule size. The optimum granule diameter for maximum N- and P-removal in the standard case operating conditions (DO 2 mg L(-1), 20 degrees C) was found between 1.2 and 1.4 mm and the optimum COD loading rate was 1.9 kg COD m(-3) day(-1). When all ammonia is oxidized, oxygen diffuses to the core of the granule inhibiting the denitrification process. In order to optimize the process, anoxic phases can be implemented in the SBR-cycle configuration, leading to a more efficient overall N-removal. Phosphate removal efficiency mainly depends on the sludge age; if the SRT exceeds 30 days not enough biomass is removed from the system to keep effluent phosphate concentrations low.

Journal ArticleDOI
TL;DR: A novel multicolumn solvent gradient purification process (MCSGP‐process) is introduced, which combines two chromatographic separation techniques, which are solvent gradient batch and continuous countercurrent SMB.
Abstract: Biomolecules are often purified via solvent gradient batch chromatography Typically suitable smooth linear solvent gradients are applied to obtain the separation between the desired component and hundreds of impurities The desired product is usually intermediate between weakly and strongly adsorbing impurities, and therefore a central cut is required to get the desired pure product The stationary phases used for preparative and industrial separations have a low efficiency due to strong axial dispersion and strong mass transfer resistances Therefore a satisfactory purification often cannot be achieved in a single chromatographic step For large scale productions and for very valuable molecules, countercurrent operation such as the well known SMB process, is needed in order to increase separation efficiency, yield and productivity In this work a novel multicolumn solvent gradient purification process (MCSGP-process) is introduced, which combines two chromatographic separation techniques, which are solvent gradient batch and continuous countercurrent SMB The process consists of several chromatographic columns, which are switched in position opposite to the flow direction Most of the columns are equipped with a gradient pump to adjust the modifier concentration at the column inlet Some columns are interconnected, so that non pure product streams are internally, countercurrently recycled Other columns are short circuited and operate in batch mode As a working example the purification of an industrial stream containing 46% of the hormone Calcitonin is considered It is found that for the required purity the MCSGP unit achieves a yield close to 100% compared to a maximum value of a single column batch chromatography of 66%

Journal ArticleDOI
TL;DR: Cytodex‐3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks and favored the preservation of the S25 cells pluripotent state.
Abstract: Embryonic stem (ES) cells have been shown to differentiate in vitro into a wide variety of cell types having significant potential for tissue regeneration. Therefore, the operational conditions for the ex vivo expansion and differentiation should be optimized for large-scale cultures. The expansion of mouse ES cells has been evaluated in static culture. However, in this system, culture parameters are difficult to monitor and scaling-up becomes time consuming. The use of stirred bioreactors facilitates the expansion of cells under controlled conditions but, for anchorage-dependent cells, a proper support is necessary. Cytodex-3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks. The effect of inocula and microcarrier concentration on cell growth and metabolism were analyzed. Typically, after seeding, the cells exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to the maximum cell density of 2.5-3.9 x 10(6) cells/mL. Improved expansion was achieved using an inoculum of 5 x 10(4) cells/mL and a microcarrier concentration of 0.5 mg/mL. Medium replacement allowed the supply of the nutrients and the removal of waste products inhibiting cell growth, leading to the maintenance of the cultures in steady state for several days. These conditions favored the preservation of the S25 cells pluripotent state, as assessed by quantitative real-time PCR and immunostaining analysis.

Journal ArticleDOI
TL;DR: This work cultivated aerobic granules that can degrade phenol at a constant rate of 49 mg‐phenol/g·VSS/h up to 1,000 mg/L of Phenol, achieving a near constant reaction rate over a wide range of phenol concentration.
Abstract: Aerobic granules effectively degrade phenol at high concentrations. This work cultivated aerobic granules that can degrade phenol at a constant rate of 49 mg-phenol/g·VSS/h up to 1,000 mg/L of phenol. Fluorescent staining and confocal laser scanning microscopy (CLSM) tests demonstrated that an active biomass was accumulated at the granule outer layer. A strain with maximum ability to degrade phenol and a high tolerance to phenol toxicity isolated from the granules was identified as Candida tropicalis via 18S rRNA sequencing. This strain degrades phenol at a maximum rate of 390 mg-phenol/g·VSS/h at pH 6 and 30°C, whereas inhibitory effects existed at concentrations >1,000 mg/L. The Haldane kinetic model elucidates the growth and phenol biodegradation kinetics of the C. tropicalis. The fluorescence in situ hybridization (FISH) and CLSM test suggested that the Candida strain was primarily distributed throughout the surface layer of granule; hence, achieving a near constant reaction rate over a wide range of phenol concentration. The mass transfer barrier provided by granule matrix did not determine the reaction rates for the present phenol-degrading granule. Biotechnol. Bioeng. 2007;96:844–852. © 2006 Wiley Periodicals, Inc.