scispace - formally typeset
Search or ask a question

Showing papers in "Biotechnology and Bioengineering in 2015"


Journal ArticleDOI
TL;DR: The role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment, is examined.
Abstract: Lignin, one of the major components of lignocellulosic biomass, plays an inhibitory role on the enzymatic hydrolysis of cellulose. This work examines the role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment. Hardwood pretreated with liquid hot water at severities ranging from log Ro = 8.25 to 12.51 resulted in 80–90% recovery of the initial lignin in the residual solids. The ratio of acid insoluble lignin (AIL) to acid soluble lignin (ASL) increased and the formation of spherical lignin droplets on the cell wall surface was observed as previously reported in the literature. When lignins were isolated from hardwoods pretreated at increasing severities and characterized based on glass transition temperature (Tg), the Tg of isolated lignins was found to increase from 171 to 180°C as the severity increased from log Ro = 10.44 to 12.51. The increase in Tg suggested that the condensation reactions of lignin molecules occurred during pretreatment and altered the lignin structure. The contribution of the changes in lignin properties to enzymatic hydrolysis were examined by carrying out Avicel hydrolysis in the presence of isolated lignins. Lignins derived from more severely pretreated hardwoods had higher Tg values and showed more pronounced inhibition of enzymatic hydrolysis. Biotechnol. Bioeng. 2015;112: 252–262. © 2014 Wiley Periodicals, Inc.

279 citations


Journal ArticleDOI
TL;DR: This study fabricated vascular‐like cellular structures using a liquid support‐based inkjet printing approach, which utilizes a calcium chloride solution as both a cross‐linking agent and support material, which enables the freeform printing of spanning and overhang features by providing a buoyant force.
Abstract: Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. Biotechnol. Bioeng. 2015;112: 1047–1055. © 2014 Wiley Periodicals, Inc.

264 citations


Journal ArticleDOI
TL;DR: The analysis presented in this paper shows that lignins with higher guaiacyl content adsorb more cellulase enzymes, particularly β‐glucosidase, and that adsorption of β-glucOSidase onto lignin indirectly suppresses enzymatic hydrolysis of cellulose in pretreated hardwoods due to decreased hydrolytic activity of cellobiose which in turn accumulates and inhibits CBH.
Abstract: The adsorption of cellulase enzymes onto lignin is shown to be non-productive and therefore reduces enzymatic hydrolysis of liquid hot water pretreated cellulose. Among the enzyme components of Trichoderma reesei cellulase cocktail, β-glucosidase showed the strongest adsorption onto lignin. Only 2–18% of the initial β-glucosidase activity remained in the supernatant while 50–60% of cellobiohydrolase and endoglucanase activities were recovered after incubation with lignin. By increasing the pH to 5.5 and adding NaCl to a 200 mM, the free enzymes in the supernatant were increased but hydrolysis was not enhanced since optimal pH for enzymatic hydrolysis is at 4.8. Electrostatic interactions contributed to enzyme adsorption and their effect was most pronounced for T. reesei β-glucosidase which had high molecular weights (78–94 kDa) and high isoelectric points (pI 5.7–6.4). Since the enzyme components which are required to synergistically hydrolyze cellulose have different profiles (molecular weight, hydrophobicity and pI), they exhibit different adsorption behaviors with lignin, and thereby change the ratio of enzyme activities needed for synergism during cellulose hydrolysis. β-glucosidase from Aspergillus niger exhibits less adsorption than β-glucosidase from T. reesei. Supplemental addition of A. niger β-glucosidase to the enzyme mixture increases hydrolysis of pretreated hardwood by a factor of two. The analysis presented in this paper shows that lignins with higher guaiacyl content adsorb more cellulase enzymes, particularly β-glucosidase, and that adsorption of β-glucosidase onto lignin indirectly suppresses enzymatic hydrolysis of cellulose in pretreated hardwoods due to decreased hydrolysis of cellobiose which in turn accumulates and inhibits CBH. Biotechnol. Bioeng. 2015;112: 447–456. © 2014 Wiley Periodicals, Inc.

205 citations


Journal ArticleDOI
TL;DR: The results indicate that for the anammox conversion, the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e., θ) as typically applied for other biological processes.
Abstract: Autotrophic nitrogen removal appears as a prerequisite for the implementation of energy autarchic municipal wastewater treatment plants. Whilst the application of anammox-related technologies in the side-stream is at present state of the art, the feasibility of this energy-efficient process in main-stream conditions is still under investigation. Lower operating temperatures and ammonium concentrations, together with a demand for high and stable nitrogen removal efficiency, represent the main challenges to overcome for this appealing new frontier of the wastewater treatment field. In this study, we report the short-term effect of temperature on the maximum biomass specific activity of anaerobic ammonium oxidizing (anammox) bacteria as evaluated by means of batch tests. The experiments were performed on anammox biomass sampled from two full-scale reactors and two lab-scale reactors, all characterized by different reactor configurations and operating conditions. The results indicate that for the anammox conversion, the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e., θ) as typically applied for other biological processes. The temperature effect is increasing at lower temperatures. Adaptation of anammox bacteria after long-term cultivation at 20 and 10°C was observed. Implications for modeling and process design are finally discussed.

177 citations



Journal ArticleDOI
TL;DR: It is demonstrated that RGNs could recognize the desired sequences and edit endogenous genes through homologous recombination‐mediated targeted gene replacement with high efficiency and will open the way for the development of various CRISPR/Cas‐based applications in filamentous fungi.
Abstract: CRISPR/Cas-derived RNA-guided nucleases (RGNs) that can generate DNA double-strand breaks (DSBs) at a specific sequence are widely used for targeted genome editing by induction of DSB repair in many organisms. The CRISPR/Cas system consists of two components: a single Cas9 nuclease and a single-guide RNA (sgRNA). Therefore, the system for constructing RGNs is simple and efficient, but the utilization of RGNs in filamentous fungi has not been validated. In this study, we established the CRISPR/Cas system in the model filamentous fungus, Pyricularia oryzae, using Cas9 that was codon-optimized for filamentous fungi, and the endogenous RNA polymerase (RNAP) III U6 promoter and a RNAP II fungal promoter for the expression of the sgRNA. We further demonstrated that RGNs could recognize the desired sequences and edit endogenous genes through homologous recombination-mediated targeted gene replacement with high efficiency. Our system will open the way for the development of various CRISPR/Cas-based applications in filamentous fungi.

174 citations


Journal ArticleDOI
TL;DR: It is found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP‐GlcNAc biosynthesis as a result of insufficient extracellular Gln, and galactosylation of the mAb Fc glycans was found to be limited by UDP‐Gal biosynthesis, which was observed to be both cell line and cultivation condition‐dependent.
Abstract: Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans was found to be limited by UDP-Gal biosynthesis, which was observed to be both cell line and cultivation condition-dependent. Extracellular glucose and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality.

160 citations


Journal ArticleDOI
TL;DR: The development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold‐free biomimetic macrovascular structures for regenerative medicine approaches to regenerate damaged or diseased tissues.
Abstract: Cardiovasculardiseasesaretheleadingcauseofdeaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissueengineeringinvestigationshavebeen basedonthecell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, andinflammationofbiomaterialsused,therecenttissueengineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macro- vascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computa- tional algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct. Biotechnol. Bioeng. 2015;112: 811-821.

142 citations


Journal ArticleDOI
TL;DR: This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases and offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods.
Abstract: When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed.

133 citations


Journal ArticleDOI
TL;DR: A nascent approach to risk assessment of HCPs based upon such data is described, drawing attention to timeliness in relation to biosimilar initiatives.
Abstract: The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme-linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk-based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to biosimilar initiatives. The development of such an approach requires databases based on cumulative knowledge of multiple risk factors that would require national and international regulators, standards authorities (e.g., NIST and NIBSC), industry and academia to all be involved in shaping what is the best approach to the adoption of the latest bioanalytical technology to this area, which is vital to delivering safe efficacious biological medicines of all types.

129 citations


Journal ArticleDOI
TL;DR: It is believed that this liver model closely mimics the in vivo liver sinusoid and supports long‐term primary liver cell culture and could be extended to diverse liver biology studies and liver‐related disease research such as drug induced liver toxicology, cancer research, and analysis of pathological effects and replication strategies of various hepatotropic infectious agents.
Abstract: We describe the generation of microfluidic platforms for the co-culture of primary hepatocytes and endothelial cells; these platforms mimic the architecture of a liver sinusoid. This paper describes a progressional study of creating such a liver sinusoid on a chip system. Primary rat hepatocytes (PRHs) were co-cultured with primary or established endothelial cells in layers in single and dual microchannel configurations with or without continuous perfusion. Cell viability and maintenance of hepatocyte functions were monitored and compared for diverse experimental conditions. When primary rat hepatocytes were co-cultured with immortalized bovine aortic endothelial cells (BAECs) in a dual microchannel with continuous perfusion, hepatocytes maintained their normal morphology and continued to produce urea for at least 30 days. In order to demonstrate the utility of our microfluidic liver sinusoid platform, we also performed an analysis of viral replication for the hepatotropic hepatitis B virus (HBV). HBV replication, as measured by the presence of cell-secreted HBV DNA, was successfully detected. We believe that our liver model closely mimics the in vivo liver sinusoid and supports long-term primary liver cell culture. This liver model could be extended to diverse liver biology studies and liver-related disease research such as drug induced liver toxicology, cancer research, and analysis of pathological effects and replication strategies of various hepatotropic infectious agents. .

Journal ArticleDOI
TL;DR: A novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes.
Abstract: Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes. This approach is attractive because it is scalable, represents a modular strategy for site-specific enzyme immobilization, and has the potential to stabilize enzymes under denaturing environmental conditions. We site-specifically immobilized a recombinant α-amylase, fused to the SpyCatcher attachment domain, onto E. coli curli fibers displaying complementary SpyTag capture domains. We characterized the effectiveness of this immobilization technique on the biofilms and tested the stability of immobilized α-amylase in unfavorable conditions. This enzyme-modified biofilm maintained its activity when exposed to a wide range of pH and organic solvent conditions. In contrast to other biofilm-based catalysts, which rely on high cellular metabolism, the modified curli-based biofilm remained active even after cell death due to organic solvent exposure. This work lays the foundation for a new and versatile method of using the extracellular polymeric matrix of E. coli for creating novel biocatalytic surfaces.

Journal ArticleDOI
TL;DR: The results presented in this work may be useful for rational design of novel and green ILs for delignification of lignocellulose, especially basic amino acid‐based ILs, are the most effective pretreatment solvents.
Abstract: In this work, 28 cholinium ionic liquids (ILs), most of which are good solvents for dissolving lignin, were used for rice straw pretreatment to improve subsequent enzymatic hydrolysis. The anion exerted a significant effect on the pretreatment effectiveness of the IL as well as the subsequent enzymatic hydrolysis efficiency of rice straw residues. The presence of the basic group(s) in the anion significantly enhanced the IL pretreatment effectiveness, while the carboxyl, hydroxyl and aromatic groups had a negative impact on IL delignification. Except for amino acid-based ILs, the delignification abilities of the ILs are linearly and positively correlated with the pKa values of the conjugate acids of the anions. Of the ILs tested, amino acid-based ILs, especially basic amino acid-based ILs, are the most effective pretreatment solvents. Satisfactory reducing sugar yields (81% for glucose and 26% for xylose) were obtained in the enzymatic hydrolysis of rice straw pretreated by cholinium argininate ([Ch][Arg]) under a pretty mild pretreatment severity (60°C, 6 h). The results presented in this work may be useful for rational design of novel and green ILs for delignification of lignocellulose. Biotechnol. Bioeng. 2015;112: 65–73. © 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: It is demonstrated that addition of protein effecting a seven‐fold decrease in the specific activity of cellulases enables a ten‐fold reduction in enzyme loading while maintaining a high level of cellulose hydrolysis in pretreated hardwood.
Abstract: Fundamental characterization of pretreated hardwood and its interactions with cellulolytic enzymes has confirmed that a pathway exists for dramatically reducing the loading of cellulase required for hydrolysis of pretreated biomass. We demonstrate that addition of protein effecting a seven-fold decrease in the specific activity of cellulases enables a ten-fold reduction in enzyme loading while maintaining a high level of cellulose hydrolysis in pretreated hardwood. While use of protein and other additives that adsorb on lignin have been reported previously, the current work demonstrates the effect in a dramatic manner and brings the rationale for this change into clear focus. The key to this result is recognizing and mitigating the pretreatment conundrum where increasingly severe pretreatment conditions enhance accessibility of the enzymes not only to cellulose, but also to lignin. The lignin adsorbs enzyme protein causing loss of cellulase activity. More enzyme, added to compensate for this lost activity, results in a higher cellulase loading. The addition of a different protein, such as BSA, prevents cellulase adsorption on lignin and enables the enzyme itself to better target its glucan substrate. This effect dramatically reduces the amount of cellulase for a given level of conversion with enzyme loadings of 15 FPU and 1.3 FPU/g solids both achieving 80% conversion. The understanding of this phenomenon reinvigorates motivation for the search for other approaches that prevent cellulase adsorption on lignin in order to achieve high glucose yields at low enzyme loadings for pretreated lignocellulose. Biotechnol. Bioeng. 2015;112: 677–687. © 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: Electroactive biofilms play essential roles in determining the power output of microbial fuel cells (MFCs) and a heterologously overexpressed a c‐di‐GMP biosynthesis gene ydeH in Shewanella oneidensis MR‐1 resulted in a mutant strain in which the expression of y deH is under the control of IPTG‐inducible promoter, and a strains in which yde H is under a constitutive promoter.
Abstract: Electroactive biofilms play essential roles in determining the power output of microbial fuel cells (MFCs). To engineer the electroacitve biofilm formation of Shewanella oneidensis MR-1, a model exoelectrogen, we herein heterologously overexpressed a c-di-GMP biosynthesis gene ydeH in S. oneidensis MR-1, constructing a mutant strain in which the expression of ydeH is under the control of IPTG-inducible promoter, and a strain in which ydeH is under the control of a constitutive promoter. Such engineered Shewanella strains had significantly enhanced biofilm formation and bioelectricity generation. The MFCs inoculated with these engineered strains accomplished a maximum power density of 167.6 ± 3.6 mW/m2, which was ∼ 2.8 times of that achieved by the wild-type MR-1 (61.0 ± 1.9 mW/m2). In addition, the engineered strains in the bioelectrochemical system at poised potential of 0.2 V vs. saturated calomel electrode (SCE) generated a stable current density of 1100 mA/m2, ∼ 3.4 times of that by wild-type MR-1 (320 mA/m2). Biotechnol. Bioeng. 2015;112: 2051–2059. © 2015 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: This study describes for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae and shows that elimination of the hexadecenal dehydrogenase HFD1 and expression of a redox system are essential for alkane biosynthesis in yeast.
Abstract: In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfdl and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFDI together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

Journal ArticleDOI
TL;DR: This review aims at analyzing the state‐of‐the‐art in viral downstream purification processes, encompassing the classical unit operations and their recent developments, with emphasis on novel strategies for process intensification.
Abstract: The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented.

Journal ArticleDOI
TL;DR: Overall, the observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures.
Abstract: The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures.

Journal ArticleDOI
TL;DR: It is found that a novel aldehyde dehydrogenase, GabD4 from Cupriavidus necator, possessed the highest enzyme activity toward 3‐HPA reported to date, and can be a key enzyme for the development of industrial 3‐HP‐producing microbial strains.
Abstract: 3-Hydroxypropionic acid (3-HP) can be produced in microorganisms as a versatile platform chemical. However, owing to the toxicity of the intermediate product 3-hydroxypropionaldehyde (3-HPA), the minimization of 3-HPA accumulation is critical for enhancing the productivity of 3-HP. In this study, we identified a novel aldehyde dehydrogenase, GabD4 from Cupriavidus necator, and found that it possessed the highest enzyme activity toward 3-HPA reported to date. To augment the activity of GabD4, several variants were obtained by site-directed and saturation mutagenesis based on homology modeling. Escherichia coli transformed with the mutant GabD4_E209Q/E269Q showed the highest enzyme activity, which was 1.4-fold higher than that of wild type GabD4, and produced up to 71.9 g L−1 of 3-HP with a productivity of 1.8 g L−1 h−1. To the best of our knowledge, these are the highest 3-HP titer and productivity values among those reported in the literature. Additionally, our study demonstrates that GabD4 can be a key enzyme for the development of industrial 3-HP-producing microbial strains, and provides further insight into the mechanism of aldehyde dehydrogenase activity. Biotechnol. Bioeng. 2015;112: 356–364. © 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: The impact of cell age on the extracellular CHO HCP impurity profile is presented and HCPs with variable expression levels are identified, which warrant further investigation to facilitate their clearance in downstream purification.
Abstract: During biopharmaceutical manufacturing, Chinese hamster ovary (CHO) cells produce hundreds of extracellular host cell protein (HCP) impurities, which must be removed from the therapeutic product by downstream purification operations to ensure patient safety. A subset of 118 of these HCPs have been reported as exceptionally difficult to remove during downstream purification because they co-purify due to retention characteristics on chromatographic media and/or product-association through strongly attractive interactions to the therapeutic protein. As the biopharmaceutical industry moves towards continuous bioprocessing, it is important to consider the impact of extended culture of CHO cells on the expression of extracellular HCP impurities, especially those HCPs known to challenge downstream purification. Two complementary proteomic techniques, two-dimensional electrophoresis (2DE) and shotgun, were applied to detect variations in the extracellular CHO HCP profile over 500 days of culture. In total, 92 HCPs exhibited up to 48-fold changes in expression, with 34 of these HCPs previously reported as difficult to purify. Each proteomic technique detected differential expression by a distinct set of HCPs, with 10 proteins exhibiting significant variable expression by both methods. This study presents the impact of cell age on the extracellular CHO HCP impurity profile and identifies HCPs with variable expression levels, which warrant further investigation to facilitate their clearance in downstream purification.

Journal ArticleDOI
TL;DR: The combined experimental/FBA approach generated insight as to how product glycosylation can be impacted by changes in culture temperature, and better feeding strategies can be developed based on the understanding of the metabolic flux distribution.
Abstract: The application of mild hypothermic conditions to cell culture is a routine industrial practice used to improve recombinant protein production. However, a thorough understanding of the regulation of dynamic cellular processes at lower temperatures is necessary to enhance bioprocess design and optimization. In this study, we investigated the impact of mild hypothermia on protein glycosylation. Chinese hamster ovary (CHO) cells expressing a monoclonal antibody (mAb) were cultured at 36.5°C and with a temperature shift to 32°C during late exponential/early stationary phase. Experimental results showed higher cell viability with decreased metabolic rates. The specific antibody productivity increased by 25% at 32°C and was accompanied by a reduction in intracellular nucleotide sugar donor (NSD) concentrations and a decreased proportion of the more processed glycan structures on the mAb constant region. To better understand CHO cell metabolism at 32°C, flux balance analysis (FBA) was carried out and constrained with exometabolite data from stationary phase of cultures with or without a temperature shift. Estimated fluxomes suggested reduced fluxes of carbon species towards nucleotide and NSD synthesis and more energy was used for product formation. Expression of the glycosyltransferases that are responsible for N-linked glycan branching and elongation were significantly lower at 32°C. As a result of mild hypothermia, mAb glycosylation was shown to be affected by both NSD availability and glycosyltransferase expression. The combined experimental/FBA approach generated insight as to how product glycosylation can be impacted by changes in culture temperature. Better feeding strategies can be developed based on the understanding of the metabolic flux distribution.

Journal ArticleDOI
TL;DR: The results confirmed that the CCR in C. tyrobutyricum could be overcome through overexpressing xylT, xylA, and xylB, and the potential application of Ct(Δack)‐pTBA for industrial biobutanol production from lignocellulosic biomass was demonstrated.
Abstract: The glucose-mediated carbon catabolite repression (CCR) in Clostridium tyrobutyricum impedes efficient utilization of xylose present in lignocellulosic biomass hydrolysates. In order to relieve the CCR and enhance xylose utilization, three genes (xylT, xylA, and xylB) encoding a xylose proton-symporter, a xylose isomerase and a xylulokinase, respectively, from Clostridium acetobutylicum ATCC 824 were co-overexpressed with aldehyde/alcohol dehydrogenase (adhE2) in C. tyrobutyricum (Δack). Compared to the strain Ct(Δack)-pM2 expressing only adhE2, the mutant Ct(Δack)-pTBA had a higher xylose uptake rate and was able to simultaneously consume glucose and xylose at comparable rates for butanol production. Ct(Δack)-pTBA produced more butanol (12.0 vs. 3.2 g/L) with a higher butanol yield (0.12 vs. 0.07 g/g) and productivity (0.17 vs. 0.07 g/L · h) from both glucose and xylose, while Ct(Δack)-pM2 consumed little xylose in the fermentation. The results confirmed that the CCR in C. tyrobutyricum could be overcome through overexpressing xylT, xylA, and xylB. The mutant was also able to co-utilize glucose and xylose present in soybean hull hydrolysate (SHH) for butanol production, achieving a high butanol titer of 15.7 g/L, butanol yield of 0.24 g/g, and productivity of 0.29 g/L · h. This study demonstrated the potential application of Ct(Δack)-pTBA for industrial biobutanol production from lignocellulosic biomass. Biotechnol. Bioeng. 2015;112: 2134–2141. © 2015 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: A combined approach was followed linking curvature driven cell growth to fluid dynamics modeling, showing a significant difference in the amplitude of shear stress for cells located within the micro‐porous neo‐tissue or at the neotissue/medium interface, demonstrating the importance of taking along the neOTissue in the calculation of the mechanical stimulation of cells during culture.
Abstract: Bone tissue engineering strategies use flow through perfusion bioreactors to apply mechanical stimuli to cells seeded on porous scaffolds. Cells grow on the scaffold surface but also by bridging the scaffold pores leading a fully filled scaffold following the scaffold's geometric characteristics. Current computational fluid dynamic approaches for tissue engineering bioreactor systems have been mostly carried out for empty scaffolds. The effect of 3D cell growth and extracellular matrix formation (termed in this study as neotissue growth), on its surrounding fluid flow field is a challenge yet to be tackled. In this work a combined approach was followed linking curvature driven cell growth to fluid dynamics modeling. The level-set method (LSM) was employed to capture neotissue growth driven by curvature, while the Stokes and Darcy equations, combined in the Brinkman equation, provided information regarding the distribution of the shear stress profile at the neotissue/medium interface and within the neotissue itself during growth. The neotissue was assumed to be micro-porous allowing flow through its structure while at the same time allowing the simulation of complete scaffold filling without numerical convergence issues. The results show a significant difference in the amplitude of shear stress for cells located within the micro-porous neo-tissue or at the neotissue/medium interface, demonstrating the importance of taking along the neotissue in the calculation of the mechanical stimulation of cells during culture.The presented computational framework is used on different scaffold pore geometries demonstrating its potential to be used a design as tool for scaffold architecture taking into account the growing neotissue. Biotechnol. Bioeng. 2015;112: 2591-2600. © 2015 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: This approach demonstrates that once an h MSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component‐free hMSC production process from expansion through to cryopreservation.
Abstract: Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100mL stirred spinner flasks at a density of 3×105cells.mL-1 in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63±0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8±1.4% with a similar 3h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation.

Journal ArticleDOI
TL;DR: This study characterized eight different combinations of 5′ regulatory regions and PsbA coding sequences for their ability to restore photosynthesis in a psbA‐deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psb a promoter/5′UTR.
Abstract: Recombinant protein production in microalgae chloroplasts can provide correctly folded proteins in significant quantities and potentially inexpensive costs compared to other heterologous protein production platforms. The best results have been achieved by using the psbA promoter and 5′ untranslated region (UTR) to drive the expression of heterologous genes in a psbA-deficient, non-photosynthetic, algal host. Unfortunately, using such a strategy makes the system unviable for large scale cultivation using natural sunlight for photosynthetic growth. In this study we characterized eight different combinations of 5′ regulatory regions and psbA coding sequences for their ability to restore photosynthesis in a psbA-deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psbA promoter/5′UTR. The recombinant protein corresponded to bovine Milk Amyloid A (MAA), which is present in milk colostrum and could be used to prevent infectious diarrhea in mammals. This approach allowed us to identify photosynthetic strains that achieved constitutive production of MAA when grown photosynthetically in 100 L bags in a greenhouse. Under these conditions, the maximum MAA expression achieved was 1.86% of total protein, which corresponded to 3.28 mg/L of culture medium. Within our knowledge, this is the first report of a recombinant protein being produced this way in microalgae. Biotechnol. Bioeng. 2015;112: 339–345. © 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
Seo Yun Kim1, Joungmin Lee1, Sang Yup Lee1
TL;DR: The results obtained in this study demonstrate the possibility of efficiently producing L-ornithine by metabolically engineered C. glutamicum.
Abstract: L-ornithine is a non-essential amino acid for various industrial applications in food industry. In this study, Corynebacterium glutamicum ATCC 13032 was metabolically engineered for the production of L-ornithine. First, the proB and argF genes were deleted to block the competitive branch pathway and to block the conversion of L-ornithine to citrulline, respectively. In addition, the argR gene encoding the regulatory repressor of the L-arginine operon was also deleted. The resulting strain produced 230 mg/L of L-ornithine from glucose in flask culture. This base strain was further engineered by the plasmid-based overexpression of the argCJBD genes from C. glutamicum ATCC 21831, which resulted in the production of 7.19 g/L of L-ornithine. To enrich the NADPH pool, the carbon flux was redirected towards the pentose phosphate pathway by changing the start codons of the pgi and zwf genes and replacing the native promoter of the tkt operon with the strong sod promoter. Fed-batch cultivation of this final strain YW06 (pSY223) allowed production of 51.5 g/L of L-ornithine in 40 h with the overall productivity of 1.29 g/L/h. The results obtained in this study demonstrate the possibility of efficiently producing L-ornithine by metabolically engineered C. glutamicum. Biotechnol. Bioeng. 2015;112: 416–421. © 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: It is determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by decreasing tryptophanase activity and thus indole via reduction of the global regulator cAMP.
Abstract: Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c-di-GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c-di-GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c-di-GMP and phospho- diesterases that breakdown c-di-GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both tran- scriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosPas a c- di-GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Cor- roborating this result, the reduction of cAMP via CpdA, a cAMP-specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phospho- diesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2014;9999: 1-13.

Journal ArticleDOI
TL;DR: The results demonstrate the suitability of orbitally‐shaken bioreactors for the scaled‐up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY‐2 culture medium.
Abstract: Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387?g/L and M12 yields of ~20?mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.

Journal ArticleDOI
TL;DR: In this paper, a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells.
Abstract: Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N-glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP-N-acetylglucosamine:α-1,6-D-mannoside β1,6-N-acetylglucosaminyltransferase (GnTV/Mgat5), was incorporated into CHO-K1 together with ST6Gal1. Tri- and tetraantennary N-glycans represented approximately 92% of the total N-glycans on the resulting EPO as measured using MS analysis. Furthermore, sialic acid content of rEPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides a mean for enhancing both N-glycan branching complexity and sialylation with opportunities to generate tailored complex N-glycan structures on therapeutic glycoproteins in the future.

Journal ArticleDOI
TL;DR: High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR, and may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues.
Abstract: Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues.