scispace - formally typeset
Search or ask a question
JournalISSN: 0006-3592

Biotechnology and Bioengineering 

Wiley
About: Biotechnology and Bioengineering is an academic journal published by Wiley. The journal publishes majorly in the area(s): Fermentation & Immobilized enzyme. It has an ISSN identifier of 0006-3592. Over the lifetime, 15190 publications have been published receiving 756876 citations. The journal is also known as: Combinatorial chemistry & Biotechnology & bioengineering.


Papers
More filters
Journal ArticleDOI
TL;DR: The experiments showed that the eustigmatophyte Nannochloropsis sp.
Abstract: Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. FM102: 100–112. © 2008 Wiley Periodicals, Inc.

2,714 citations

Journal ArticleDOI
TL;DR: The use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogel hybrids that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix are discussed.
Abstract: Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic-biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism.

2,298 citations

Journal ArticleDOI
TL;DR: It is suggested that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject.
Abstract: Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject.

1,852 citations

Journal ArticleDOI
TL;DR: General rules for the optimization of different biocatalytic systems in various types of media containing organic solvents are derived by combining data from the literature, and the logarithm of the partition coefficient, log P, as a quantitative measure of solvent polarity.
Abstract: General rules for the optimization of different biocatalytic systems in various types of media containing organic solvents are derived by combining data from the literature, and the logarithm of the partition coefficient, log P, as a quantitative measure of solvent polarity. (1) Biocatalysis in organic solvents is low in polar solvents having a log P 4. It was found that this correlation between polarity and activity parallels the ability of organic solvents to distort the essential water layer that stabilizes the biocatalysts. (2) Further optimization of biocatalysis in organic solvents is achieved when the polarity of the microenvironment of the biocatalyst (log P(i)) and the continuous organic phase (log P(cph)) is tuned to the polarities of both the substrate (log P(s)) and the product (log P(p)) according to the following rules: |log P(i) - log P(s)| and |log P(cph) - log P(p)| should be minimal and |log P(cph) - log P(s)| and |log P(i) - log P(p)| should be maximal, with the exception that in the case of substrate inhibition log P(i), should be optimized with respect to log P(s) In addition to these simple optimization rules, the future developments of biocatalysis in organic solvents are discussed.

1,540 citations

Journal ArticleDOI
TL;DR: In this paper, the main results obtained with the process in the laboratory as well as in 6 m3 pilot plant and 200 m3 full-scale experiments are presented and evaluated in this paper.
Abstract: In recent years considerable effort has been made in the Netherlands toward the development of a more sophisticated anaerobic treatment process, suitable for treating low a strength wastes and for applications at liquid detention times of 3–4 hr. The efforts have resulted in new type of upflow anaerobic sludge blanket (UASB) process, which in recent 6 m3 pilot-plant experiments has shown to be capable of handling organic space loads of 15–40 kg chemical oxygen demand (COD)·m−3/day at 3–8 hr liquid detention times. In the first 200 m3 full-scale plant of the UASB concept, organic space loadings of up to 16 kg COD·m−3/day could be treated satisfactorily at a detention times of 4 hr, using sugar beet waste as feed. The main results obtained with the process in the laboratory as well as in 6 m3 pilot plant and 200 m3 full-scale experiments are presented and evaluated in this paper. Special attention is given to the main operating characteristics of the UASB reactor concept. Moreover, some preliminary results are presented of laboratory experiments concerning the use of the USB reactor concept for denitrification as well as for the acid formation step in anaerobic treatment. For both purposes the process looks feasible because very satisfactory results with respect to denitrification and acid formation can be achieved at very high hydraulic loads (12 day−1) and high organic loading rates, i.e., 20 kg COD·m−3/day in the denitrification and 60–80 kg COD·m−3/day in the acid formation experiments.

1,339 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023173
2022316
2021419
2020324
2019287
2018267