scispace - formally typeset
Search or ask a question

Showing papers in "Botanical Studies in 2015"


Journal ArticleDOI
TL;DR: The degree of nitrogen availability in the combination of temperature effect has been identified as the critical determinant for the maximal production of lipid in N. salina.
Abstract: This batch study deals with the relation between lipid as well as triglyceride contents in Nannochloropsis salina and variation in culture conditions such as nitrogen concentration and temperature The tested parameters caused reduction in growth expressed as cell count, optical density and dry weight, as well strongly involved in lipids and triglycerides accumulation and significantly affected the lipid productivity At the beginning of the work, the concentration of nitrogen in the medium was reduced to three quarter, half and quarter of the original f2 medium while the temperature kept constant After that, the optimal nitrogen concentration (quarter of the original media) giving high lipid yield was tested with different temperature degrees from 15 to 35°C with five degree intervals Although the growth was insignificantly influenced, a considerable increase in lipid and triglyceride (561 and 151% of dry weight respectively) was observed when the concentration of nitrogen in the medium was reduced to the quarter Moreover, 593% lipid and 171% triglyceride on the basis of dry weight were obtained by the combination of 25% nitrogen concentration and 30°C Simple regressions recommended that the interaction effect of nitrogen limitation and temperature on lipid and triglyceride accumulation was not as fundamental as for nitrogen limitation stress The degree of nitrogen availability in the combination of temperature effect has been identified as the critical determinant for the maximal production of lipid in N salina Nevertheless, major advances in this field can be considered by studying more stresses techniques and genetic strategies

86 citations


Journal ArticleDOI
Haiying Cui1, Xuejing Zhang1, Hui Zhou1, Chengting Zhao1, Lin Lin1 
TL;DR: Salvia sclarea essential oil damaged the cell membranes and changed the cell membrane permeability, leading to the release of some cytoplasm such as macromolecular substances, ATP and DNA.
Abstract: Nowadays, essential oils are recognized as safe substances and can be used as antibacterial additives. Salvia sclarea is one of the most important aromatic plants cultivated world-wide as a source of essential oils. In addition to being flavoring foods, Salvia sclarea essential oil can also act as antimicrobials and preservatives against food spoilage. Understanding more about the antibacterial performance and possible mechanism of Salvia sclarea essential oil will be helpful for its application in the future. But so far few related researches have been reported. In our study, Salvia sclarea oil showed obvious antibacterial activity against all tested bacterial strains. Minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) of seven pathogens were 0.05 and 0.1 % respectively. In addition, Salvia sclarea oil also exhibited a significant inhibitory effect on the growth of Escherichia coli (E. coli) in phosphate buffer saline (PBS) and meats. After treated with Salvia sclarea oil, Scanning Electron Microscope (SEM) images can clearly see the damage of cell membrane; the intracellular ATP concentrations of E. coli and S. aureus reduced 98.27 and 69.61 % respectively, compared to the control groups; the nuclear DNA content of E. coli and S. aureus was significantly reduced to 48.32 and 50.77 % respectively. In addition, there was massive leakage of cellular material when E. coli and S. aureus were exposed to Salvia sclarea oil. Salvia sclarea essential oil damaged the cell membrane and changed the cell membrane permeability, leading to the release of some cytoplasm such as macromolecular substances, ATP and DNA. In general, the antimicrobial action of Salvia sclarea essential oil is not only attributable to a unique pathway, but also involves a series of events both on the cell surface and within the cytoplasm. Therefore, more experiments need to be done to fully understand the antimicrobial mechanism of Salvia sclarea essential oil.

85 citations


Journal ArticleDOI
TL;DR: The current results indicate that phenolic profiles are valuable specific chemical markers and can be relevant as food tracing and authenticity indicators for plant-based preparations involving species of Physalis.
Abstract: Fruits of wild species of the genus Physalis are consumed as food and calyces and leaves are used in traditional medicine. The phenolic composition of the species of this genus have been scarcely studied. To contribute to a better knowledge for the use of all the potential of these wild species of plants, leaves, fruits, and calyces of five wild species of the genus were analyzed for their phenolic composition and antioxidant properties. Important tissue- and species-dependent variations were found. Calyces of Physalis subulata showed the highest contents of phenolics (176.58 mg of gallic acid equivalents/g dry tissue), flavonoids (39.63 mg/g dry tissue), and phenolic acids (50.57 mg of quercitrin equivalents/g dry tissue), and its leaves displayed the highest total antioxidant capacity (3.59 mg of ascorbic acid equivalents/mL) and one of the highest reduction powers (0.54 µg of ascorbic acid equivalents/mL). A high performance liquid chromatography with photodiode array detection analysis revealed a total of 28 phenolic compounds in foliar tissues (mainly kaempferol-3-O-glycosides), 16 in fruits (mainly phenolic acids), and 16 in calyces (mainly kaempferol-3-O-glycosides); the profiles of these compounds in the three types of tissue were species-specific. The studied species of Physalis are important sources of phenolics with relevant antioxidant activity. The current results indicate that phenolic profiles are valuable specific chemical markers and can be relevant as food tracing and authenticity indicators for plant-based preparations involving species of Physalis.

59 citations


Journal ArticleDOI
TL;DR: A new undescribed species of subgenus Philodendron section Macrobelium is found growing in lowland rainforest in Silva Jardim municipality, Brazil.
Abstract: Philodendron is the second largest genus of Araceae, being highly diverse in the Atlantic Forest biome, with nearly one third of the Brazilian species occurring in Southern Brazil, particularly in Rio de Janeiro state. During a local inventory in Silva Jardim municipality, we found a peculiar population of Philodendron growing in lowland rainforest. After morphological analysis and comparisons with similar species, the population proved to be a new undescribed species of subgenus Philodendron section Macrobelium. The new species, named Philodendron luisae, is here described, illustrated and compared to morphologically close species.

47 citations


Journal ArticleDOI
TL;DR: Different plants have different strategies to respond to the same abiotic stress, and each plant species possesses its own unique signaling pathways that regulate the responding process.
Abstract: The volatile organic compound ether is widely used as an industrial solvent and easily released to the environment. Our previous research indicated that ether triggers reactive oxygen species (ROS) production and activates ethylene biosynthetic genes and defense gene expressions in tomato. In the present study, we investigated the effect of ether on cell responses and gene expressions in Arabidopsis and compared the ROS and phytohormones produced in Arabidopsis and tomato plants in response to different air pollutants (O3 vs. ether). Ether induced the sequential production of superoxide anion and hydrogen peroxide in Arabidopsis. Ether also triggered expressions of ethylene, salicylic acid and jasmonic acid biosynthetic genes. The temporal expression patterns of MAP kinase and protein phosphatase genes are in good accordance with those of the ethylene and salicylic acid biosynthetic genes, suggesting that induction of these phytohormone biosynthesis were through signaling pathways including both phosphorylation and/or dephosphorylation. By contrast, expression pattern of protein phosphatase PP2A3&4 coincided well with the expression of jasmonic acid biosynthetic gene LOX4, suggesting that induction of jasmonic acid biosynthesis is through PP2A3&4. However, the production of ROS and temporal expression patterns of phytohormone biosynthetic genes in Arabidopsis in response to ether were different from those to O3 and were different from those in tomato as well. Different plants have different strategies to respond to the same abiotic stress, and each plant species possesses its own unique signaling pathways that regulate the responding process.

40 citations


Journal ArticleDOI
TL;DR: It is suggested that SFAR4 plays an important role in fatty acid degradation, thus reducing the fatty acid content in Arabidopsis.
Abstract: SFARs (seed fatty acid reducers) belonging to the GDSL lipases/esterases family have been reported to reduce fatty acid storage and composition in mature Arabidopsis seeds. GDSL lipases/esterases are hydrolytic enzymes that possess multifunctional properties, such as broad substrate specificity, regiospecificity, and stereoselectivity. Studies on the physiological functions and biochemical characteristics of GDSL lipases/esterases in plants are limited, so it is important to elucidate the molecular functions of GDSL-type genes. We found that SFAR4 (At3g48460), a fatty acid reducer belonging to the Arabidopsis GDSL lipases/esterases family, was intensely expressed in embryo protrusion, early seedlings, and pollen. The characterization of recombinant SFAR4 protein indicated that it has short-length p-nitrophenyl esterase activity. In addition, SFAR4 enhanced the expression of genes involved in fatty acid metabolism during seed germination and seedling development. SFAR4 elevated the expression of COMATOSE, which transports fatty acids into peroxisomes, and of LACS6 and LACS7, which deliver long-chain acetyl-CoA for β-oxidation. Furthermore, SFAR4 increased the transcription of PED1 and PNC1, which function in importing peroxisomal ATP required for fatty acid degradation. SFAR4 has another function on tolerance to high glucose concentrations but had no significant effects on the expression of the glucose sensor HXK1. The results demonstrated that SFAR4 is a GDSL-type esterase involved in fatty acid metabolism during post-germination and seedling development in Arabidopsis. We suggested that SFAR4 plays an important role in fatty acid degradation, thus reducing the fatty acid content.

39 citations


Journal ArticleDOI
TL;DR: These results indicate that the endophytic fungi associated with S.f. alba can be a potential source of novel natural antioxidants.
Abstract: Background: Salvia miltiorrhiza Bge. f. alba is a traditional Chinese herbal drug with special pharmacological effect on thromboangiitis obliterans. However, the nature source of S.miltiorrhiza Bge.f.alba is now in short supply because of the over-collection of the wild plant. To better utilize this resource, the diversity and antioxidant activity of endophytic fungi isolated from S. miltiorrhiza Bge. f. alba were investigated. Results: A total of 14 endophytic fungi were isolated from different parts of S. miltiorrhiza Bge.f.alba. Based on morphological and molecular identification, the endophytic fungi isolated were classified into four genera (Alternaria sp., Fusarium sp., Schizophyllum sp. and Trametes sp.). These fungal extracts were prepared using ethanol and evaluated for their phytochemical compounds and antioxidant activity. Alternaria alternata SaF-2 and Fusarium proliferatum SaR-2 are of particular interest because they yielded all of nine phytochemicals including saponins, phenol, flavonoids, cardiac glycosides, steroids, tannins, alkaloids, anthroquinone and terpenoids. F. proliferatum SaR-2 and A. alternata SaF-2 also exhibited stronger antioxidant activities by FRAP and DPPH method, having the higher levels of phenol and flavonoid than those of plant root. The total amount of phenol and flavonoid quantified were of 21.75, 20.53 gallic acid equivalent per gram and 8.27 and 7.36 μg/mg of quercetin equivalent respectively. These two endophytic fungi (SaR-2 and SaF-2) were found to have comparable scavenging abilities on both FRAP (1682.21 and 1659.05 μmol/mg, respectively) and DPPH-free radicals (90.14% and 83.25%, respectively, at 0.1 mg/mL). This is the first report about isolation of endophytic fungi from S. miltiorrhiza Bge.f.alba and their antioxidant activities. Conclusions: These results indicate that the endophytic fungi associated with S. miltiorrhiza Bge.f. alba can be a potential source of novel natural antioxidants.

28 citations


Journal ArticleDOI
TL;DR: The results suggest that EEO induced a bactericidal effect via structural membrane damage caused by deposition of EEO in the cytosol or through enzymatic degradation of bacterial intracellular enzymes that resulted in cellular lysis.
Abstract: Identification of natural antibacterial agents from various sources that can act effectively against disease causing foodborne bacteria is one of the major concerns throughout the world. However, the natural antibacterial agents identified to date are primarily effective against Gram positive bacteria, but less effective against Gram negative bacteria. In the present study, Enteromorpha linza L. essential oil (EEO) was evaluated for antibacterial activity against Escherichia coli and Salmonella Typhimurium along with the mode of their antibacterial action. The chemical composition of EEO revealed high amounts of acids (54.6 %) and alkenes (21.1 %). EEO was effective against both E. coli and S. Typhimurium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of EEO for both pathogens were 12.5 mg/ml and 25.0 mg/mL, respectively. EEO at the MIC acted on the loss in viability of E. coli ATCC 43890, which was used as the model system for evaluation of the antibacterial mode of action of EEO against Gram negative bacteria. Significant increase in relative electrical conductivity and K+ concentration were recorded with respect to time, indicating the disruption of tested E. coli cells owing to the controlling effect of EEO. Alternation of the morphology of the cell surface, increase in the release of 260 nm absorbing materials and loss of high salt tolerance were observed. The results suggest that EEO induced a bactericidal effect via structural membrane damage caused by deposition of EEO in the cytosol or through enzymatic degradation of bacterial intracellular enzymes that resulted in cellular lysis. Accordingly, EEO can be used as a strong natural antibacterial agent against Gram negative foodborne pathogens such as E. coli and S. Typhimurium.

27 citations


Journal ArticleDOI
TL;DR: The present study describes an in vitro culture protocol of Saussurea involucrata and shows much higher syringin content in in vitro shoots and callus as compared to commercially available market crude drug.
Abstract: Saussurea involucrata (Kar. et Kir.) commonly known as ‘snow lotus’ or ‘Xue Lian’ is an important plant in the traditional Chinese system of medicine. The plant contains flavonoids such as syringin and rutin. These compounds have been reported to be anti-rheumatic, anti-inflammatory and dilate blood vessels, lower blood pressure, prevent cardiovascular diseases, enhance immunity, and act as anti-aging, anti-cancer, and anti-fatigue agents. The species has become endangered due to the excessive collection of S. involucrata plants in the wild, slower plant growth and ecological destruction of natural habitats. There is a severe shortage of plant material, while the market demand is ever increasing. Hence, it is very important to apply tissue culture technique for plant propagation and production of the bioactive compounds of this species. Multiple shoot induction and proliferation in shoot base explants derived from in vitro raised seedlings of S. involucrata was achieved on 3/4 strength of Murashige and Skoog’s (MS) basal medium (MSBM) supplemented with 1.0 mg/L−1 BA and 1.5 mg/L−1 NAA. Rooting was induced in 100 % shoots cultured on 1/2X MSBM supplemented with 1.0 mg/L−1 IBA for one week and then transfer to auxin free medium. The plantlets could be acclimatized successfully by sachet technique and established in the greenhouse. Maximum callus induction and proliferation in leaf segments was achieved on 1/2X MSBM supplemented with 0.5 mg/L−1 BA, 0.5 mg/L−1 NAA, 0.4 % gelrite and on incubation at 20 °C. Container closures had an influence on the quality and quantity of callus and production of the active compounds. The HPLC analysis showed much higher syringin content in in vitro shoots and callus as compared to commercially available market crude drug. The present study describes an in vitro culture protocol of Saussurea involucrata. The bioactive compounds, syringin and rutin could be produced through tissue culture technique without sacrificing the endangered Saussurea involucrata plants in the wild.

23 citations


Journal ArticleDOI
TL;DR: This new species of Actephila alanbakeri is one of the strongest known nickel hyperaccumulator plants in Southeast Asia with up to 14,700 μg g−1 (1.47 %) nickel in its leaves.
Abstract: The Malaysian state of Sabah on the Island of Borneo is emerging as a hotspot for nickel hyperaccumulator species with at least 25 such species discovered to date. New discoveries of the hyperaccumulation trait in described taxa, as well as taxonomical novelties that are nickel hyperaccumulators, continue to be made. Here we describe a new nickel hyperaccumulating species of Actephila (Phyllanthaceae) originating from two known populations on ultramafic soils in Sabah. The most characteristic feature of Actephila alanbakeri are its knobbly fruits, but other diagnostic morphological characters are discussed and information about its ecology and rhizosphere and plant tissue chemistry is provided. This new species is one of the strongest known nickel hyperaccumulator plants in Southeast Asia with up to 14,700 μg g−1 (1.47 %) nickel in its leaves. The occurrences of Actephila alanbakeri on just two sites, both of which lie outside protected areas and are disturbed by recurring forest fires, combined with the small total numbers of individuals, render this species Endangered (EN) on the basis of IUCN Red List Criteria.

20 citations


Journal ArticleDOI
TL;DR: A careful study of the literature, herbarium specimens and living plants, both in the wild and in cultivation in the experimental greenhouse, supports the recognition of the six new species of Begonia, which are described and illustrated.
Abstract: Species of Begonia are richly represented in limestone karst areas across the Sino-Vietnamese border. More than one hundred species were known, many of which were documented recently. In continuation of our systematic studies of Asian Begonia, we report six species of Begonia that are unknown to science, namely B. caobangensis [sect. Platycentrum], B. circularis, B. melanobullata, B. langsonensis, B.locii and B. montaniformis [sect. Coelocentrum] from Northern Vietnam. Diagnostic features that separate them from morphologically allied species are provided. Somatic chromosome numbers were determined, which supports their placement in the respective sections. Foliar SEM microphotographs were taken and described. A careful study of the literature, herbarium specimens and living plants, both in the wild and in cultivation in the experimental greenhouse, supports the recognition of the six new species, which are described and illustrated.

Journal ArticleDOI
TL;DR: This summary of knowledge will encourage and facilitate continuing research on the pollination dynamics of Ficus and the associated insect fauna in Taiwan and provides a solid basis for future in-depth comparative studies.
Abstract: Although Ficus-associated wasp fauna have been extensively researched in Australasia, information on these fauna in Taiwan is not well accessible to scientists worldwide. In this study, we compiled records on the Ficus flora of Taiwan and its associated wasp fauna. Initial agronomic research reports on Ficus were published in Japanese in 1917, followed by reports on applied biochemistry, taxonomy, and phenology in Chinese. On the basis of the phenological knowledge of 15 species of the Ficus flora of Taiwan, recent research has examined the pollinating and nonpollinating agaonid and chalcid wasps (Hymenoptera: Chalcidoidea). Updating records according to the current nomenclature revealed that there are 30 taxa (27 species) of native or naturalized Ficus with an unusually high proportion of dioecious species (78%). Four species were observed to exhibit mutualism with more than one pollinating wasp species, and 18 of the 27 Ficus species were reported with nonpollinating wasp species. The number of nonpollinating wasp species associated with specific Ficus species ranges from zero (F. pumila) to 24 (F. microcarpa). Approximately half of the Taiwanese fig tree species have been studied with basic information on phenology and biology described in peer-reviewed journals or theses. This review provides a solid basis for future in-depth comparative studies. This summary of knowledge will encourage and facilitate continuing research on the pollination dynamics of Ficus and the associated insect fauna in Taiwan.

Journal ArticleDOI
TL;DR: Yam dioscorin exhibit improved MS activities in obese rats which the related mechanisms may need further investigations.
Abstract: The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50 mg/kg, dio50) was intervened daily concurrent HF diet (HF diet + dio50) for five weeks to check the changes of weights of body and tissues, blood pressures, and impaired glucose tolerances. The in vitro peptic hydrolysates of dioscorin with molecular mass between 3 kDa and 10 kDa and less than 3 kDa were used to determine dipeptidyl peptidase IV (DPP IV) inhibitory activities which DPP IV inhibitor has been reported to prevent and treat type 2 DM. There were no significant difference in body weights, feed intakes, feed conversion, and weights of adipose tissues of obese rats in groups of HF and (HF diet + dio50). However, the systolic blood pressures in obese rats of 2-, 3- and 4-week dioscorin interventions were showed significantly lower (P < 0.05) compared to the HF group. The dioscorin intervention (HF+ dio50) was showed significantly different (P < 0.05) and improved the impaired glucose tolerances compared to HF group in obese rats by the oral glucose tolerance tests. It was also found that the fraction with different molecular mass of dioscorin peptic hydrolysates (5 mg/ml) showed inhibitory activities against DPP IV using sitagliptin phosphate as positive controls. Yam dioscorins exhibit improved MS activities in obese rats which the related mechanisms may need further investigations.

Journal ArticleDOI
TL;DR: Higher levels of Rubisco proteins in TSS-AVRDC-2 could lead to increased carbon fixation efficiency to provide sufficient energy to enable stress tolerance under waterlogging at 40 °C.
Abstract: The production of broccoli (Brassica oleracea) is largely reduced by waterlogging and high temperature stresses. Heat-tolerant and heat-susceptible broccoli cultivars TSS-AVRDC-2 and B-75, respectively, were used for physiological and proteomic analyses. The objective of this study was to identify TSS-AVRDC-2 and B-75 proteins differentially regulated at different time periods in response to waterlogging at 40 °C for three days. TSS-AVRDC-2 exhibited significantly higher chlorophyll content, lower stomatal conductance, and better H2O2 scavenging under stress in comparison to B-75. Two-dimensional liquid phase fractionation analyses revealed that Rubisco proteins in both varieties were regulated under stressing treatments, and that TSS-AVRDC-2 had higher levels of both Rubisco large and small subunit transcripts than B-75 when subjected to high temperature and/or waterlogging. This report utilizes physiological and proteomic approaches to discover changes in the protein expression profiles of broccoli in response to heat and waterlogging stresses. Higher levels of Rubisco proteins in TSS-AVRDC-2 could lead to increased carbon fixation efficiency to provide sufficient energy to enable stress tolerance under waterlogging at 40 °C.

Journal ArticleDOI
TL;DR: I. pandurata is a species new to science and molecular phylogenetic analyses of sequences from both nuclear ribosomal and plastid genes confirm that this new species is distinct from morphologically similar species previously recorded.
Abstract: The species-rich genus Impatiens is mainly distributed throughout much of tropical Africa, India, southwest Asia, southern China and Japan. There are more than 270 species recorded in China, most of which are restricted to the southwest. An unknown species of Impatiens was collected from Yunnan, southwest China. Impatiens pandurata Y. H. Tan & S. X. Yu, a new species of Balsaminaceae from Jinping County and Malipo County, Yunnan, China is similar to I. apalophylla and I. clavigera in having racemose inflorescences, 4 lateral sepals, hammer-shaped capsules and ellipsoid seeds, but differs in having leaves with oblanceolate blades aggregated at the top of the stem, 3–5-flowered racemes, a yellow lower sepal without reddish patches, yellowish flowers, and a dorsal petal with stalks at the base. Molecular phylogenetic analyses of sequences from both nuclear ribosomal and plastid genes confirm that this new species is distinct from morphologically similar species previously recorded. With the support of careful morphological studies and phylogenetic analysis, I. pandurata is a species new to science.

Journal ArticleDOI
TL;DR: To understand how climatic factors affect plants, the sources, construction principles, and development of early plant bioclimatic models (PBMs) are described and the recent applications of PBMs in climate change research are summarized.
Abstract: Bioclimatics is an ancient science that was once neglected by many ecologists. However, as climate changes have attracted increasing attention, scientists have reevaluated the relevance of bioclimatology and it has thus become essential for exploring climate changes. Because of the rapidly growing importance of bioclimatic models in climate change studies, we evaluated factors that influence plant bioclimatology, constructed and developed bioclimatic models, and assessed the precautionary effects of the application of the models. The findings obtained by sequentially reviewing the development history and importance of bioclimatic models in climate change studies can be used to enhance the knowledge of bioclimatic models and strengthen their ability to apply them. Consequently, bioclimatic models can be used as a powerful tool and reference in decision-making responses to future climate changes. The objectives of this study were to (1) understand how climatic factors affect plants; (2) describe the sources, construction principles, and development of early plant bioclimatic models (PBMs); and (3) summarize the recent applications of PBMs in climate change research.

Journal ArticleDOI
TL;DR: In this paper, α-terpineol was evaluated for antibacterial activity against Penicillium digitatum along with the mode of their antibacterial action, and the results showed that mycelial growth of P. digitatum was strongly inhibited by α-tarpineol, with the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 2.00 and 8.00 µl/ml, respectively.
Abstract: Plant essential oils could act effectively against postharvest diseases, α-terpineol, a typical terpenoid of plant essential oils, exhibited strong antifungal activity in against Penicillium italicum, but the possible action mechanism remains undetermined. In present study, α-terpineol was evaluated for antibacterial activity against Penicillium digitatum along with the mode of their antibacterial action. The results showed that mycelial growth of P. digitatum was strongly inhibited by α-terpineol, with the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 2.00 and 8.00 µl/ml, respectively. Scanning electron microscopy observation revealed that α-terpineol obviously altered the morphology of P. digitatum hyphae by causing the loss of cytoplasm and distortion of mycelia. A rapid increase in the membrane permeability of P. digitatum was observed after treated with MIC or MFC of α-terpineol, evidenced by the release of cell constituents, the extracellular conductivity, and the extracellular pH. In addition, α-terpineol apparently induced a decrease in total lipid contents of P. digitatum cells, indicating the destruction of cell membrane structures after treatment. Based on our study, α-terpineol might affect the cell wall synthesis and lead to the disruption of cell wall. The cell wall disruption affected fungal morphogenesis, the integrity of membrane and leakage of intracellular components, these results suggested that α-terpineol treatment inhibited the growth of P. digitatum.

Journal ArticleDOI
TL;DR: In C. libani, onset and dynamics of cambial activity and xylogenesis are triggered by daily means of stem and air temperatures whereas water availability has a higher influence on growth rates and cessation of wood formation and thus may be a promising species for forestation in Central Europe with respect to climate change.
Abstract: The dynamics of cambial activity and xylogenesis provide information on how and to what extent wood formation respond to climatic variability. The Lebanon Cedar (Cedrus libani A.Rich) is a montane tree species which is distributed along a wide altitudinal range in the northeastern Mediterranean region, currently considered as a potential forest species for Central Europe with respect to climate change. This study provides first data on intra-annual growth dynamics at cellular level using the microcore technique for a montane Mediterranean tree species at different altitudes within and outside its natural range. Microcores were collected fortnightly in the growing season of 2013 in order to study temporal dynamics of cambial activity and xylogenesis in stems of C. libani at different altitudes in the Taurus Mountains (1000 – 2000 m a.s.l.) and at a plantation at Bayreuth (330 m a.s.l.; Germany). The dormant cambium consisted of about 5 cells at the Turkish sites and 7 cells at Bayreuth. Cambial activity set in, when daily minimum temperatures exceeded 0 °C and daily means of air and stem temperature exceeded 5 °C. Xylogenesis started between April and May, ended approximately the end of September to the beginning of October and lasted 134 (at tree line) to 174 days (at the lowest Turkish site). Mean ring widths varied from 0.55 to 3.35 mm, with highest values observed at Bayreuth very likely resulting from a steady water supply during growing season. Means of daily cell production rates varied from 0.73 to 0.12. Samples containing traumatic resin ducts occurred only rarely and where not used for analysis. In C. libani, onset and dynamics of cambial activity and xylogenesis are triggered by daily means of stem and air temperatures whereas water availability has a higher influence on growth rates and cessation of wood formation. Within sites, duration of xylogenesis does not significantly differ with respect to age and tree size. C. libani grows well outside its natural range and thus may be a promising species for forestation in Central Europe with respect to climate change. We suggest further studies on if/how traumatic resin ducts influence tree ring width.

Journal ArticleDOI
TL;DR: The results indicate that the loss-of-function of egy1 gene induces leaf senescence in A. thaliana, and the results showed that the yellow-green phenotype, chlorophyll content and ion leakage of Egy1 mutants was partially restored after exogenously applied glucose for 5 weeks.
Abstract: Ethylene-dependent gravitropism-deficient and yellow-green 1 (EGY1) protein is required for chloroplast development and photosynthesis conduction. The egy1 deletion mutants have a yellow-green phenotype and reduced granal thylakoids. Furthermore, the yellow-green phenotype of egy1 mutants is more obvious than that of wild-type (WT) plants with increasing leaf age, suggesting an early senescence in the egy1 mutants. However, the relationship between EGY1 functions and leaf senescence still remains poorly understood. We observed that egy1 mutant leaves were more yellow than those of WT (the same age) in Arabidopsis thaliana. In accompany with this phenotype, leaf survival, chlorophyll content, Fv/Fm and soluble protein content decreased, and ion leakage increased significantly in egy1 mutants compared to WT plants. At molecular level, the expressions of senescence-associated genes increased, and photosynthesis genes decreased significantly in the mutants compared to those in WT plants. Furthermore, after darkness treatment, the yellow-green phenotype of egy1 mutants was more obvious than that of WT. These results indicate that the loss-of-function of egy1 gene induces leaf senescence in A. thaliana. In addition, our results showed that the yellow-green phenotype, chlorophyll content and ion leakage of egy1 mutants was partially restored after exogenously applied glucose for 5 weeks. At the same time, the expression of hexokinase 1 (HXK1) and/or senescence-associated gene 12 (SAG12) in egy1 mutants growing on 2 % glucose was lower than that in egy1 mutants without glucose. EGY1-defection induced leaf senescence and this senescence was partially restored by glucose in A. thaliana.

Journal ArticleDOI
TL;DR: The results indicate that the breeding system of P. cephalophora is morphologically and functionally distylous, with only one morph per individual.
Abstract: Background: Psychotria cephalophora Merr. (Rubiaceae), a shrub in oceanic islands of Taiwan and the Philippines, appears to be distylous, but distyly is usually rare on oceanic islands. To elucidate the functional breeding system of P. cephalophora can improve our understanding of plant reproductive ecology on oceanic islands. Results: Field investigations on Lanyu (Orchid Island) off the coast of southeastern Taiwan revealed the flowers to be distylous with short (S)- and long (L)-styled morphs, with only one morph per individual. Laboratory observations revealed that both morphs had stainable pollen grains and indicated dimorphism in stigmatic papillae and pollen size. In hand pollination experiments, the pollen tubes reached the base of the style in intermorph crossing, whereas they rarely penetrated stylar tissue in intramorph crossing and selfing. Open pollinated S- and L-styled flowers produced fruit. Conclusions: The results indicate that the breeding system of P. cephalophora is morphologically and functionally distylous.

Journal ArticleDOI
TL;DR: Molecular phylogenetic analyses based on nuclear ITS and chloroplast trnL-F and trnH-psbA sequences strongly support the placement the three new species in Primulina.
Abstract: The limestone karsts of Southeast Asia and South China are a major biodiversity hotspot of global terrestrial biomes. With more than 130 described species, Paraboea has become one of the most characteristic plant groups in the Southeast Asian limestone flora. During the course of extensive field work on the limestone formations of southern and southwestern China, three unknown species of Paraboea were collected. Molecular phylogenetic analyses based on nuclear ITS and chloroplast trnL-F sequences strongly confirm the placements of the three new species in Paraboea sensu Puglisi et al. (Taxon 65:277–292. https://doi.org/10.12705/652.5 , 2016). Moreover, these three novelties can be distinguished from known Paraboea species with distinct morphological characters, further supporting their recognition as new species. With the support of detailed morphological studies and molecular phylogenetic analyses, Paraboea dushanensis, P. sinovietnamica and P. xiangguiensis are recognized as three species new to science.

Journal ArticleDOI
TL;DR: The GLR, GLRF, and their hot-water extracts with beneficial activities could be processed as feed additives which could increase the waste-recycling.
Abstract: Large amounts of Ganoderma lucidum (GL) commercial products are provided in the worldwide market such as powders, tea bags, or capsules as dietary supplements which contained triterpenoids and/or polysaccharides. Therefore, it was estimated that several thousand tons of GL residues (GLR) are produced and discarded. For recycling uses, the aim of this study was to evaluate the benefits of two hot-water extracts from GLR (HWP_GLR) and solid-state fermentation GLR inoculated with GL mycelia (HWP_GLRF) on the growths of Lactobacillus rhamnosus and Bifidobacterium longum. The RAW264.7 cells were used to investigate the effects of HWP_GLR and HWP_GLRF on nitric oxide productions, phagocytic activities against FITC-labeled E. coli, and to lower lipopolysaccharide (LPS)-binding capacities. The powders of GLR and GLRF were used as additives in the commercial feeds for feeding broiler chicks in vivo to evaluate the immune-stimulatory and prebiotic activities. HWP_GLR and HWP_GLRF with molecular size 5 to 8 kDa were showed to stimulate growths of L. rhamnosus and B. longum. It was found that in the presence of polymyxin B HWP_GLR and HWP_GLRF could stimulate nitric oxide productions, elevate phagocytic activities against FITC-labeled E. coli, and to lower lipopolysaccharide-binding capacities in RAW264.7 cells. The broiler chicks were selected for feedings in vivo. The 1-day-old chicks were fed commercial feeds for 1 week, and then were fed without or with 4 or 8 % of GLR and GLRF additives for 3 weeks. There was no significant weight difference among feeding groups. However, the phagocytosis and natural killer cytotoxicity in the peripheral bloods, and prebiotic activities of bifidobacteria in feces of GLR and/or GLRF groups were significantly different compared to the control (P < 0.05). The GLR, GLRF, and their hot-water extracts with beneficial activities could be processed as feed additives which could increase the waste-recycling.

Journal ArticleDOI
TL;DR: It is suggested that B. brizantha could be useful for a weed suppressive residue or soil additive materials in the variety of agricultural settings to develop sustainable agriculture options and the effectiveness of B. Brizantha of June and October as a Weed suppressive agent may be greater than that of January.
Abstract: Controlling weeds through allelopathy is one strategy to reduce dependency on synthetic herbicides. The plant shoots of the grass Brachiaria brizantha incorporated into the field soil were found to inhibit the growth of several plant species. We investigated the variations of allelopathic activity and allelopathic substances in B. brizantha harvested in June, October and January. All extracts of B. brizantha obtained from June, October and January inhibited the root and shoot growth of cress, lettuce, Phleum pretense and Lolium multiflorum in a concentration dependent manner. However, the inhibitory activity of B. brizantha of June and October was greater than that of B. brizantha of January. Concentrations of three potent allelopathic active substances, (6R,9S)-3-oxo-α-ionol, (6R,9R)-3-oxo-α-ionol and 4-ketopinoresinol were also greater in B. brizantha of June and October than those in B. brizantha of January. The results suggest that the allelopathic activity and the levels of those allelopathic active substances are greater in B. brizantha of June and October than those in B. brizantha of January. It is possible that B. brizantha could be useful for a weed suppressive residue or soil additive materials in the variety of agricultural settings to develop sustainable agriculture options. The effectiveness of B. brizantha of June and October as a weed suppressive agent may be greater than that of January.

Journal ArticleDOI
TL;DR: The functional characterization of Arabidopsis BET11 and BET12, two genes that may code for Qc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), showed reduced transmission of the mutant alleles, reduced fertilization of seeds, defective embryo development, reduced pollen tube lengths and formation of secondary pollen tubes.
Abstract: BET11 and 12 are required for pollen tube elongation. Pollen tubes are rapidly growing specialized structures that elongate in a polar manner. They play a crucial role in the delivery of sperm cells through the stylar tissues of the flower and into the embryo sac, where the sperm cells are released to fuse with the egg cell and the central cell to give rise to the embryo and the endosperm. Polar growth at the pollen tube tip is believed to result from secretion of materials by membrane trafficking mechanisms. In this study, we report the functional characterization of Arabidopsis BET11 and BET12, two genes that may code for Qc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Double mutants (bet11/bet12) in a homozygous/heterozygous background showed reduced transmission of the mutant alleles, reduced fertilization of seeds, defective embryo development, reduced pollen tube lengths and formation of secondary pollen tubes. Both BET11 and BET12 are required for fertility and development of pollen tubes in Arabidopsis. More experiments are required to dissect the mechanisms involved.

Journal ArticleDOI
TL;DR: The distribution and accumulation of metabolites are associated with different parts and plant growth, which provide potential evidences for the rational application and exploitation of G. rigescens.
Abstract: Gentiana rigescens, an important medicinal plant in China, has been widely cultivated in Yunnan province, China. Previous studies were focused on analysis and determination of the metabolites isolated from this species, the accumulation of these metabolites during growth period are not yet clear. In this study, samples for the experiments were obtained by tissue culture. FT-IR and LC-MS/MS method were performed to distinguish the variation on the major metabolites in G. rigescens during growing stage when combined with chemometrics. Methodology validations were all within the required limits. The metabolites were visually different in tissue culture samples and mature plants. The diversity of metabolites increased proportionally with plant growth. The quantitative analysis showed the content of gentiopicroside was significantly vary during different growing stage. The highest content of gentiopicroside (122.93 ± 7.01 mg/g) was detected in leaf of regenerated plantlet, whereas its content in root significantly increased along with underground parts growth. Moreover, flavonoids mainly distributed in aerial parts showed potential competitive relationship during plant growth. The distribution and accumulation of metabolites are associated with different parts and plant growth, which provide potential evidences for the rational application and exploitation of G. rigescens.

Journal ArticleDOI
TL;DR: It is concluded that appropriate magnetic field intensity and treatment time play a vital role in the growth of soil bacteria which increases the nitrogen fixing ability which affects the yield of plant.
Abstract: Symbiotic nitrogen fixation in plants occurs in roots with the help of some bacteria which help in soil nitrogen fertility management. Isolation of significant environment friendly bacteria for nitrogen fixation is very important to enhance yield in plants. In this study effect of different magnetic field intensity and treatment time was studied on the morphology, physiology and nitrogen fixing capacity of newly isolated Paenibaccilus sp. from brown soil. The bacterium was identified by 16S rDNA sequence having highest similarity (99%) with Paenibacillus sp as revealed by BLAST. Different magnetic intensities such as 100mT, 300mT and 500mT were applied with processing time of 0, 5, 10, 20 and 30 minutes. Of all these treatment 300mT with processing time of 10 minutes was found to be most suitable treatment. Results revealed that magnetic treatment improve the growth rate with shorter generation time leading to increased enzyme activities (catalase, peroxidase and superoxide dismutase) and nitrogen fixing efficiencies. High magnetic field intensity (500mT) caused ruptured cell morphology and decreased enzyme activities which lead to less nitrogen fixation. It is concluded that appropriate magnetic field intensity and treatment time play a vital role in the growth of soil bacteria which increases the nitrogen fixing ability which affects the yield of plant. These results were very helpful in future breading programs to enhance the yield of soybean.

Journal ArticleDOI
TL;DR: The limestone habitats in the Puerto Princesa Subterranean River National Park environs support a unique flora and the description of three new species from a small area within the park demonstrates how much remains to be discovered there, and the importance of its continued protection.
Abstract: Begonia is a mega-diverse genus of flowering plants prone to generating micro-endemic species, especially on limestone habitats. During fieldwork in the Puerto Princesa Subterranean River National Park, Palawan (Philippines), three species were encountered which did not match any previously described from the region. Following morphological, anatomical, molecular phylogenetic and cytological investigation a hypothesis of three new species is supported. The three new species belong to a clade endemic to Palawan and Borneo. The limestone habitats in the Puerto Princesa Subterranean River National Park environs support a unique flora. The description of three new species from a small area within the park demonstrates how much remains to be discovered there, and the importance of its continued protection.

Journal ArticleDOI
TL;DR: The authors' identifications of T. japonicum and O. odonatae agree well with descriptions in the literature and are highly supported by DNA sequence analysis.
Abstract: Ophiocordycipitaceae is a highly diverse fungal family parasitizing a wide range of arthropods and hypogeous fungi. We collected two ophiocordycipitaceous species previously unknown in Taiwan: one emerged from hypogeous fruiting bodies of an Elaphomyces fungus and the other was associated with dragonflies. Based on gross morphology, microscopic features, ITS sequences, and hosts, the two ophiocordycipitaceous fungi were identified as Tolypocladium japonicum and Ophiocordyceps odonatae. We isolated axenic cultures of these two fungi, and their anamorphs were obtained. The simplicillium-like anamorph of T. japonicum is described herein for the first time. The anamorph of O. odonatae produce conidia holoblastically in sympodial sequence and is assignable to Hymenostilbe. A dichotomous key to the species of Ophiocordycipitaceae reported in Taiwan is provided. A thorough literature study indicates that the two fungi reported herein have rarely been collected. Our identifications of T. japonicum and O. odonatae agree well with descriptions in the literature and are highly supported by DNA sequence analysis.

Journal ArticleDOI
TL;DR: Four major components from its methanolic extract were isolated and determined to be (acetylated) HMG-substituted flavonol glycosides, which are rare in nature.
Abstract: Graptopetalum paraguayense E. Walther is a popular traditional Chinese herb and possesses several health benefits. In earlier studies, we demonstrated that G. paraguayense showed no genotoxicity and showed several biological activities. However, the constituents of G. paraguayense have not been studied yet. In this present study, we isolated and identified the constituents of the leaves of G. paraguayense E. Walther. A total of seven flavonoid compounds were isolated from the methanolic extract of G. paraguayense. The four major compounds isolated were flavonoid glucoside derivatives of quercetin (1, 3) and kampferol (2, 4), each presenting a 3-hydroxyl-3-methylglutaroyl (HMG) substituent; compounds 3 and 4—the 2´´-acetyl derivatives of 1 and 2, respectively—are novel compounds isolated from nature for the first time. High-performance liquid chromatography for the quantitative analyses of the four major HMG-substituted flavonoid glycosides in G. paraguayense E. Walther were accomplished to acquire the high yields of 1–4 in the methanolic extract (4.8, 5.7, 4.3, and 2.5 mg/g, respectively). Furthermore, the antioxidant activities, including radical-scavenging, reducing power and lipid peroxidation inhibitory effects of these isolated flavonoids were also evaluated. All seven of the isolated flavonoid compounds possessed antioxdative activity. In this study of the constituents of the leaves of G. paraguayense E. Walther, we isolated four major components from its methanolic extract and determined their structures to be (acetylated) HMG-substituted flavonol glycosides, which are rare in nature. All seven of the isolated compounds possessed antioxdative activity, and those flavonoid compounds may be responsible for the functional ingredients in G. paraguayense. Further investigation of their bioactivities or pharmacological activities will be continued.

Journal ArticleDOI
TL;DR: It is proposed that the continuous male fig production on tree trunks can enhance the survival of pollinating fig wasps through faster localization of receptive figs while reducing the mutualistic conflict between the fig and its obligate pollinators.
Abstract: Timing of reproductive events has become central in ecological studies linking success in pollination and seed dispersion to optimizing the probability and periods of encounters with pollinators or dispersers. Obligate plant–insect interactions, especially Ficus–fig wasp mutualisms, offer striking examples of fine-tuned encounter optimization as biological cycles between mutualistic partners are deeply dependent on each other and intertwined over generations. Despite fig flowering phenology being crucial in maintaining Ficus–fig wasp mutualisms, until now, the forces of selection shaping the phenological evolution of dioecious fig trees have received little attention. By conducting a 2-year survey of a population of Ficus benguetensis in Northern Taiwan, we assessed whether environmental factors or other selective pressures shape the phenology of male and female fig trees. Constraints by mutualistic pollinating wasps and seed dispersers, rather than climatic factors, appeared to mainly shape fig phenology and allometry in F. benguetensis. We identified a new sexual specialization in dioecious fig trees: the position of fig production. We propose that the continuous male fig production on tree trunks can enhance the survival of pollinating fig wasps through faster localization of receptive figs while reducing the mutualistic conflict between the fig and its obligate pollinators. By contrast, in female trees, fig production is massive in summer, located on the twigs of the foliar crown and seem more related to seed dispersal and germination. Identifying variations in the allometry and phenology of dioecious figs provide valuable insights into how monoecious and dioecious species resolve mutualism conflicts and into the emergence of dioecy in fig trees.