scispace - formally typeset
Search or ask a question
JournalISSN: 0006-8950

Brain 

Oxford University Press
About: Brain is an academic journal published by Oxford University Press. The journal publishes majorly in the area(s): Medicine & Parkinson's disease. It has an ISSN identifier of 0006-8950. Over the lifetime, 13332 publications have been published receiving 1517298 citations. The journal is also known as: animal brain.


Papers
More filters
Journal Article
30 Aug 1975-Brain
TL;DR: The data indicate that the McGill Pain Questionnaire provides quantitative information that can be treated statistically, and is sufficiently sensitive to detect differences among different methods to relieve pain.
Abstract: The McGill Pain Questionnaire consists primarily of 3 major classes of word descriptors--sensory, affective and evaluative--that are used by patients to specify subjective pain experience. It also contains an intensity scale and other items to determine the properties of pain experience. The questionnaire was designed to provide quantitative measures of clinical pain that can be treated statistically. This paper describes the procedures for administration of the questionnaire and the various measures that can be derived from it. The 3 major measures are: (1) the pain rating index, based on two types of numerical values that can be assigned to each word descriptor, (2) the number of words chosen; and (3) the present pain intensity based on a 1-5 intensity scale. Correlation coefficients among these measures, based on data obtained with 297 patients suffering several kinds of pain, are presented. In addition, an experimental study which utilized the questionnaire is analyzed in order to describe the nature of the information that is obtained. The data, taken together, indicate that the McGill Pain Questionnaire provides quantitative information that can be treated statistically, and is sufficiently sensitive to detect differences among different methods to relieve pain.

5,944 citations

Journal ArticleDOI
01 Apr 1996-Brain
TL;DR: It is proposed that mirror neurons form a system for matching observation and execution of motor actions, similar to that of mirror neurons exists in humans and could be involved in recognition of actions as well as phonetic gestures.
Abstract: We recorded electrical activity from 532 neurons in the rostral part of inferior area 6 (area F5) of two macaque monkeys. Previous data had shown that neurons of this area discharge during goal-directed hand and mouth movements. We describe here the properties of a newly discovered set of F5 neurons ("mirror neurons', n = 92) all of which became active both when the monkey performed a given action and when it observed a similar action performed by the experimenter. Mirror neurons, in order to be visually triggered, required an interaction between the agent of the action and the object of it. The sight of the agent alone or of the object alone (three-dimensional objects, food) were ineffective. Hand and the mouth were by far the most effective agents. The actions most represented among those activating mirror neurons were grasping, manipulating and placing. In most mirror neurons (92%) there was a clear relation between the visual action they responded to and the motor response they coded. In approximately 30% of mirror neurons the congruence was very strict and the effective observed and executed actions corresponded both in terms of general action (e.g. grasping) and in terms of the way in which that action was executed (e.g. precision grip). We conclude by proposing that mirror neurons form a system for matching observation and execution of motor actions. We discuss the possible role of this system in action recognition and, given the proposed homology between F5 and human Brocca's region, we posit that a matching system, similar to that of mirror neurons exists in humans and could be involved in recognition of actions as well as phonetic gestures.

4,358 citations

Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: A useful conceptual framework is provided for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated, and activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus.
Abstract: Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.

4,342 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023242
2022622
2021458
2020548
2019415
2018372