scispace - formally typeset
Search or ask a question

Showing papers in "Brain in 2006"


Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: A useful conceptual framework is provided for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated, and activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus.
Abstract: Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.

4,342 citations


Journal ArticleDOI
01 Jan 2006-Brain
TL;DR: Data support an immunopathogenetic mechanism whereby B-cell follicles developing in the multiple sclerosis meninges exacerbate the detrimental effects of humoral immunity with a subsequent major impact on the integrity of the cortical structures.
Abstract: Intrathecal antibody production is a hallmark of multiple sclerosis and humoral immunity is thought to play an important role in the inflammatory response and development of demyelinated lesions. The presence of lymphoid follicle-like structures in the cerebral meninges of some multiple sclerosis patients indicates that B-cell maturation can be sustained locally within the CNS and contribute to the establishment of a compartmentalized humoral immune response. In this study we examined the distribution of ectopic B-cell follicles in multiple sclerosis cases with primary and secondary progressive clinical courses to determine their association with clinical and neuropathological features. A detailed immunohistochemical and morphometric analysis was performed on post-mortem brain tissue samples from 29 secondary progressive (SP) and 7 primary progressive (PP) multiple sclerosis cases. B-cell follicles were detected in the meninges entering the cerebral sulci of 41.4% of the SPMS cases, but not in PPMS cases. The SPMS cases with follicles significantly differed from those without with respect to a younger age at multiple sclerosis onset, irreversible disability and death and more pronounced demyelination, microglia activation and loss of neurites in the cerebral cortex. Cortical demyelination in these SPMS cases was also more severe than in PPMS cases. Notably, all meningeal B-cell follicles were found adjacent to large subpial cortical lesions, suggesting that soluble factors diffusing from these structures have a pathogenic role. These data support an immunopathogenetic mechanism whereby B-cell follicles developing in the multiple sclerosis meninges exacerbate the detrimental effects of humoral immunity with a subsequent major impact on the integrity of the cortical structures.

1,201 citations


Journal ArticleDOI
01 Jul 2006-Brain
TL;DR: Findings demonstrating that synaptic LTP can be induced in human CNS tissue are summarized and it is suggested that rodent and human LTP probably share similar molecular mechanisms.
Abstract: Long-term potentiation (LTP) is a well-characterized form of synaptic plasticity that fulfils many of the criteria for a neural correlate of memory. LTP has been studied in a variety of animal models and, in rodents in particular, there is now a strong body of evidence demonstrating common underlying molecular mechanisms in LTP and memory. Results are beginning to emerge from studies of neural plasticity in humans. This review will summarize findings demonstrating that synaptic LTP can be induced in human CNS tissue and that rodent and human LTP probably share similar molecular mechanisms. We will also discuss the application of non-invasive stimulation techniques to awake human subjects to induce LTP-like long-lasting changes in localized neural activity. These techniques have potential therapeutic application in manipulating neural plasticity to treat a variety of conditions, including depression, Parkinson's disease, epilepsy and neuropathic pain.

1,067 citations


Journal ArticleDOI
01 Aug 2006-Brain
TL;DR: Critically discuss models of experimental autoimmune encephalomyelitis that reproduce specific features of the histopathology and neurobiology of multiple sclerosis and their shortcomings as tools to investigate emerging therapeutic approaches.
Abstract: In view of disease heterogeneity of multiple sclerosis and limited access to ex vivo specimens, different approaches must be undertaken to better understand disease pathogenesis and new therapeutic challenges. Here, we critically discuss models of experimental autoimmune encephalomyelitis (EAE) that reproduce specific features of the histopathology and neurobiology of multiple sclerosis and their shortcomings as tools to investigate emerging therapeutic approaches. By using EAE models we have understood mechanisms of T-cell mediated immune damage of the CNS, and the associated effector cascade of innate immunity. Also, the importance of humoral components of the immune system for demyelination has been delineated in EAE, before it was applied therapeutically to subtypes of multiple sclerosis. Yet, similar to multiple sclerosis, EAE is also heterogeneous and influenced by the selected autoantigen, species and the genetic background. In particular, the relevance of cytotoxic CD8 T cells for human multiple sclerosis has been underestimated in most EAE models, and no EAE model exists that mimics primary progressive disease courses of multiple sclerosis. Seventy years after the first description of EAE and the publication of >7000 articles, we are aware of the obvious limitations of EAE as a model of multiple sclerosis, but feel strongly that when used appropriately it will continue to provide a crucial tool for improving our understanding and treatment of this devastating disease.

995 citations


Journal ArticleDOI
01 Jun 2006-Brain
TL;DR: The data suggest that brain reorganization during language recovery proceeds in three phases: a strongly reduced activation of remaining left language areas in the acute phase is followed by an upregulation with recruitment of homologue language zones, which correlates with language improvement.
Abstract: Previous functional imaging studies of chronic stroke patients with aphasia suggest that recovery of language occurs in a pre-existing, bilateral network with an upregulation of undamaged areas and a recruitment of perilesional tissue and homologue right language areas. The present study aimed at identifying the dynamics of reorganization in the language system by repeated functional MRI (fMRI) examinations with parallel language testing from the acute to the chronic stage. We examined 14 patients with aphasia due to an infarction of the left middle cerebral artery territory and an age-matched control group with an auditory comprehension task in an event-related design. Control subjects were scanned once, whereas patients were scanned repeatedly at three consecutive dates. All patients recovered clinically as shown by a set of aphasia tests. In the acute phase [mean: 1.8 days post-stroke (dps)], patients' group analysis showed little early activation of non-infarcted left-hemispheric language structures, while in the subacute phase (mean: 12.1 dps) a large increase of activation in the bilateral language network with peak activation in the right Broca-homologue (BHo) was observed. A direct comparison of both examinations revealed the strongest increase of activation in the right BHo and supplementary motor area (SMA). These upregulated areas also showed the strongest correlation between improved language function and increased activation (r(BHo) = 0.88, r(SMA) = 0.92). In the chronic phase (mean: 321 dps), a normalization of activation with a re-shift of peak activation to left-hemispheric language areas was observed, associated with further language improvement. The data suggest that brain reorganization during language recovery proceeds in three phases: a strongly reduced activation of remaining left language areas in the acute phase is followed by an upregulation with recruitment of homologue language zones, which correlates with language improvement. Thereafter, a normalization of activation is observed, possibly reflecting consolidation in the language system.

908 citations


Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: The observational data suggest that the clinical phenotype and course of multiple sclerosis are age dependent, and primary and secondary progression might be regarded as essentially similar.
Abstract: Multiple sclerosis can follow very different patterns of evolution and variable rates of disability accumulation. This raises the issue whether it represents one or several distinct diseases. We assessed demographic and clinical characteristics in 1844 patients with multiple sclerosis that we categorized according to the classification of Lublin and Reingold (1996) into 1066 (58%) relapsing-remitting, 496 (27%) secondary progressive, 109 (6%) progressive relapsing and 173 (9%) primary progressive cases of multiple sclerosis. Relapsing-remitting and secondary progressive cases shared similar age at disease onset (median = 28.7 versus 29.5 years; P = 0.21), initial symptoms of the relapsing-remitting phase, degree of recovery from the first neurological episode, and time from the first to the second episode. By contrast, disease duration was twice as long in secondary progressive than in relapsing-remitting cases (mean +/- SD = 17.6 +/- 9.6 versus 8.7 +/- 8.6 years; P < 0.001). Progressive relapsing and primary progressive cases were essentially similar in their clinical characteristics. In patients experiencing a progressive course, median age at onset of progressive phase was similar in secondary progressive cases and in cases who were progressive from onset (39.1 versus 40.1 years; P = 0.47). The proportion of cases with superimposed relapses during progression was approximately 40% in both categories. Finally, the 1562 patients with an exacerbating-remitting initial course and the 282 patients with a progressive initial course of the disease were essentially similar with respect to the time course of disability accumulation from assignment to a given disability score, and the age at assignment of disability landmarks. These observational data suggest that the clinical phenotype and course of multiple sclerosis are age dependent. Relapsing-remitting disease can be regarded as multiple sclerosis in which insufficient time has elapsed for the conversion to secondary progression; secondary progressive forms as relapsing-remitting multiple sclerosis that has 'grown older'; and progressive from onset cases as multiple sclerosis 'amputated' from the usual preceding relapsing-remitting phase. Times to reach disability milestones, and ages at which these landmarks are reached, follow a predefined schedule not obviously influenced by relapses, whenever they may occur, or by the initial course of the disease, whatever its phenotype. This leads to a unifying concept of the disease in which primary and secondary progression might be regarded as essentially similar. From the clinical and statistical positions, multiple sclerosis might be considered as one disease with different clinical phenotypes rather than an entity encompassing several distinct diseases-the position of complexity rather than true heterogeneity.

804 citations


Journal ArticleDOI
01 Dec 2006-Brain
TL;DR: Data indicate that potentially destructive neutrophils and activated microglia, replete with oxidative and proteolytic enzymes, appear within the first few days of SCI, suggesting that anti-inflammatory 'neuroprotective' strategies should be directed at preventing early neutrophil influx and modifying microglial activation.
Abstract: Spinal cord injury (SCI) provokes an inflammatory response that generates substantial secondary damage within the cord but also may contribute to its repair. Anti-inflammatory treatment of human SCI and its timing must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and then decrease in number, and the nature of their actions. Using post-mortem spinal cords, we evaluated the time course and distribution of pathological change, infiltrating neutrophils, monocytes/macrophages and lymphocytes, and microglial activation in injured spinal cords from patients who were ‘dead at the scene’ or who survived for intervals up to 1 year after SCI. SCI caused zones of pathological change, including areas of inflammation and necrosis in the acute cases, and cystic cavities with longer survival (Zone 1), mantles of less severe change, including axonal swellings, inflammation and Wallerian degeneration (Zone 2) and histologically intact areas (Zone 3). Zone 1 areas increased in size with time after injury whereas the overall injury (size of the Zones 1 and 2 combined) remained relatively constant from the time (1–3 days) when damage was first visible. The distribution of inflammatory cells correlated well with the location of Zone 1, and sometimes of Zone 2. Neutrophils, visualized by their expression of human neutrophil α-defensins (defensin), entered the spinal cord by haemorrhage or extravasation, were most numerous 1–3 days after SCI, and were detectable for up to 10 days after SCI. Significant numbers of activated CD68-immunoreactive ramified microglia and a few monocytes/macrophages were in injured tissue within 1–3 days of SCI. Activated microglia, a few monocytes/macrophages and numerous phagocytic macrophages were present for weeks to months after SCI. A few CD8+ lymphocytes were in the injured cords throughout the sampling intervals. Expression by the inflammatory cells of the oxidative enzymes myeloperoxidase (MPO) and nicotinamide adenine dinucleotide phosphate oxidase (gp91phox), and of the pro-inflammatory matrix metalloproteinase (MMP)-9, was analysed to determine their potential to cause oxidative and proteolytic damage. Oxidative activity, inferred from MPO and gp91phox immunoreactivity, was primarily associated with neutrophils and activated microglia. Phagocytic macrophages had weak or no expression of MPO or gp91phox. Only neutrophils expressed MMP-9. These data indicate that potentially destructive neutrophils and activated microglia, replete with oxidative and proteolytic enzymes, appear within the first few days of SCI, suggesting that anti-inflammatory ‘neuroprotective’ strategies should be directed at preventing early neutrophil influx and modifying microglial activation.

753 citations


Journal ArticleDOI
04 Dec 2006-Brain
TL;DR: This study is the first to demonstrate the complementary nature of TMS and MRI techniques in predicting functional potential in chronic stroke patients, and an algorithm is proposed for the selection of individualized rehabilitation strategies, based on the prediction of functional potential.
Abstract: Determining whether a person with stroke has reached their full potential for recovery is difficult. While techniques such as transcranial magnetic stimulation (TMS) and MRI have some prognostic value, their role in rehabilitation is undefined. This study used TMS and MRI to determine which factors predict functional potential, defined as an individual's capacity for further functional improvement at least 6 months following stroke. We studied 21 chronic stroke patients with upper limb impairment. The functional integrity of the corticospinal tracts (CSTs) was assessed using TMS and functional MRI. The presence or absence of motor-evoked responses (MEPs) to TMS in the affected upper limb, and the lateralization of cortical activity during affected hand use were determined. The structural integrity of the CST was assessed using MRI, and diffusion tensor imaging was used to measure the asymmetry in fractional anisotropy (FA) of the internal capsules. A multiple linear regression analysis was performed, to predict both clinical score at inception and change in clinical score for 17 patients who completed a 30 day programme of motor practice with the affected upper limb. The main findings were that in patients with MEPs, meaningful gains were still possible 3 years after stroke, although the capacity for improvement declined with time. In patients without MEPs, functional potential declines with increasing CST disruption, with no meaningful gains possible if FA asymmetry exceeds a value of 0.25. This study is the first to demonstrate the complementary nature of TMS and MRI techniques in predicting functional potential in chronic stroke patients. An algorithm is proposed for the selection of individualized rehabilitation strategies, based on the prediction of functional potential. These strategies could include neuromodulation using a range of emerging techniques, to prime the motor system for a plastic response to rehabilitation.

726 citations


Journal ArticleDOI
01 Aug 2006-Brain
TL;DR: It is proposed that semantic cognition is supported by two interacting principal components: a set of amodal representations that progressively degrade in SD and executive processes that help to direct and control semantic activation in a task-appropriate fashion (which are dysfunctional in comprehension-impaired stroke aphasic patients).
Abstract: Different neuropsychological populations implicate diverse cortical regions in semantic memory: semantic dementia (SD) is characterized by atrophy of the anterior temporal lobes whilst poor comprehension in stroke aphasia is associated with prefrontal or temporal–parietal infarcts. This study employed a case-series design to compare SD and comprehension-impaired stroke aphasic patients directly on the same battery of semantic tests. Although the two groups obtained broadly equivalent scores, they showed qualitatively different semantic deficits. The SD group showed strong correlations between different semantic tasks—regardless of input/output modality—and substantial consistency when a set of items was assessed several times. They were also highly sensitive to frequency/familiarity and made coordinate and superordinate semantic errors in picture naming. These findings support the notion that amodal semantic representations degrade in SD. The stroke aphasia group also showed multimodal deficits and consistency across different input modalities, but inconsistent performance on tasks requiring different types of semantic processing. They were insensitive to familiarity/frequency—instead, tests of semantic association were influenced by the ease with which relevant semantic relationships could be identified and distractors rejected. In addition, the aphasic patients made associative semantic errors in picture naming that SD patients did not make. The aphasic patients' picture naming performance improved considerably with phonemic cues suggesting that these patients retained knowledge that could not be accessed without contextual support. We propose that semantic cognition is supported by two interacting principal components: (i) a set of amodal representations (which progressively degrade in SD) and (ii) executive processes that help to direct and control semantic activation in a task-appropriate fashion (which are dysfunctional in comprehension-impaired stroke aphasic patients).

702 citations


Journal ArticleDOI
01 Dec 2006-Brain
TL;DR: The results suggest that the variable and patient-dependent extent of remyelination must be considered in the design of future clinical trials aimed at promoting CNS repair.
Abstract: Although spontaneous remyelination does occur in multiple sclerosis lesions, its extent within the global population with this disease is presently unknown. We have systematically analysed the incidence and distribution of completely remyelinated lesions (so-called shadow plaques) or partially remyelinated lesions (shadow plaque areas) in 51 autopsies of patients with different clinical courses and disease durations. The extent of remyelination was variable between cases. In 20% of the patients, the extent of remyelination was extensive with 60-96% of the global lesion area remyelinated. Extensive remyelination was found not only in patients with relapsing multiple sclerosis, but also in a subset of patients with progressive disease. Older age at death and longer disease duration were associated with significantly more remyelinated lesions or lesion areas. No correlation was found between the extent of remyelination and either gender or age at disease onset. These results suggest that the variable and patient-dependent extent of remyelination must be considered in the design of future clinical trials aimed at promoting CNS repair.

700 citations


Journal ArticleDOI
01 Dec 2006-Brain
TL;DR: A hybrid model of the anatomical and functional organization of the lateral SFG for WM is supported, according to which this region is involved in higher levels of WM processing but remains oriented towards spatial cognition, although the domain specificity is not exclusive and is overridden by an increase in executive demand, regardless of the domain being processed.
Abstract: The superior frontal gyrus (SFG) is thought to contribute to higher cognitive functions and particularly to working memory (WM), although the nature of its involvement remains a matter of debate. To resolve this issue, methodological tools such as lesion studies are needed to complement the functional imaging approach. We have conducted the first lesion study to investigate the role of the SFG in WM and address the following questions: do lesions of the SFG impair WM and, if so, what is the nature of the WM impairment? To answer these questions, we compared the performance of eight patients with a left prefrontal lesion restricted to the SFG with that of a group of 11 healthy control subjects and two groups of patients with focal brain lesions [prefrontal lesions sparing the SFG (n = 5) and right parietal lesions (n = 4)] in a series of WM tasks. The WM tasks (derived from the classical n-back paradigm) allowed us to study the impact of the SFG lesions on domain (verbal, spatial, face) and complexity (1-, 2- and 3-back) processing within WM. As expected, patients with a left SFG lesion exhibited a WM deficit when compared with all control groups, and the impairment increased with the complexity of the tasks. This complexity effect was significantly more marked for the spatial domain. Voxel-to-voxel mapping of each subject's performance showed that the lateral and posterior portion of the SFG (mostly Brodmann area 8, rostral to the frontal eye field) was the subregion that contributed the most to the WM impairment. These data led us to conclude that (i) the lateral and posterior portion of the left SFG is a key component of the neural network of WM; (ii) the participation of this region in WM is triggered by the highest level of executive processing; (iii) the left SFG is also involved in spatially oriented processing. Our findings support a hybrid model of the anatomical and functional organization of the lateral SFG for WM, according to which this region is involved in higher levels of WM processing (monitoring and manipulation) but remains oriented towards spatial cognition, although the domain specificity is not exclusive and is overridden by an increase in executive demand, regardless of the domain being processed. From a clinical perspective, this study provides new information on the impact of left SFG lesions on cognition that will be of use to neurologists and neurosurgeons.

Journal ArticleDOI
01 Nov 2006-Brain
TL;DR: Relatively stable PIB retention after 2 years of follow-up in patients with mild Alzheimer's disease suggests that amyloid deposition in the brain reaches a plateau by the early clinical stages of Alzheimer’s disease and therefore may precede a decline in rCMRGlc and cognition.
Abstract: Beta amyloid is one of the major histopathological hallmarks of Alzheimer's disease. We recently reported in vivo imaging of amyloid in 16 Alzheimer patients, using the PET ligand N-methyl[11C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole (PIB). In the present study we rescanned these 16 Alzheimer patients after 2.0 +/- 0.5 years and have described the interval change in amyloid deposition and regional cerebral metabolic rate for glucose (rCMRGlc) at follow-up. Sixteen patients with Alzheimer's disease were re-examined by means of PET, using PIB and 2-[18F]fluoro-2-deoxy-d-glucose (FDG) after 2.0 +/- 0.5 years. The patients were all on cholinesterase inhibitor treatment and five also on treatment with the N-methyl-d-aspartate (NMDA) antagonist memantine. In order to estimate the accuracy of the PET PIB measurements, four additional Alzheimer patients underwent repeated examinations with PIB within 20 days (test-retest). Relative PIB retention in cortical regions differed by 3-7% in the test-retest study. No significant difference in PIB retention was observed between baseline and follow-up while a significant (P 3 (21.4 +/- 3.5 to 15.6 +/- 3.9, P < 0.01) (AD-progressive) while the rest of the patients were cognitively more stable (MMSE score = 25.6 +/- 3.1 to 25.9 +/- 3.7) (AD-stable) compared with baseline. A positive correlation (P = 0.001) was observed in the parietal cortex between Rey Auditory Verbal Learning (RAVL) test score and rCMRGlc at follow-up while a negative correlation (P = 0.018) was observed between RAVL test and PIB retention in the parietal at follow-up. Relatively stable PIB retention after 2 years of follow-up in patients with mild Alzheimer's disease suggests that amyloid deposition in the brain reaches a plateau by the early clinical stages of Alzheimer's disease and therefore may precede a decline in rCMRGlc and cognition. It appears that anti-amyloid therapies will need to induce a significant decrease in amyloid load in order for PIB PET images to detect a drug effect in Alzheimer patients. FDG imaging may be able to detect a stabilization of cerebral metabolism caused by therapy administered to patients with a clinical diagnosis of Alzheimer's disease.

Journal ArticleDOI
01 Jun 2006-Brain
TL;DR: Refining the classification of the degenerative aphasias and AOS may be necessary to improve the understanding of the relationships among behavioural, pathological and imaging correlations.
Abstract: Apraxia of speech (AOS) is a motor speech disorder characterized by slow speaking rate, abnormal prosody and distorted sound substitutions, additions, repetitions and prolongations, sometimes accompanied by groping, and trial and error articulatory movements. Although AOS is frequently subsumed under the heading of aphasia, and indeed most often co-occurs with aphasia, it can be the predominant or even the sole manifestation of a degenerative neurological disease. In this study we determine whether the clinical classifications of aphasia and AOS correlated with pathological diagnoses and specific biochemical and anatomical structural abnormalities. Seventeen cases with initial diagnoses of a degenerative aphasia or AOS were re-classified independently by two speech-language pathologists--blinded to pathological and biochemical findings--into one of five operationally defined categories of aphasia and AOS. Pathological diagnoses in the 17 cases were progressive supranuclear palsy in 6, corticobasal degeneration in 5, frontotemporal lobar degeneration with ubiquitin-only-immunoreactive changes in 5 and Pick's disease in 1. Magnetic resonance imaging analysis using voxel-based morphometry (VBM), and single photon emission tomography were completed, blinded to the clinical diagnoses, and clinicoimaging and clinicopathological associations were then sought. Interjudge clinical classification reliability was 87% (kappa = 0.8) for all evaluations. Eleven cases had evidence of AOS, of which all (100%) had a pathological diagnosis characterized by underlying tau biochemistry, while five of the other six cases without AOS did not have tau biochemistry (P = 0.001). A majority of the 17 cases had more than one yearly evaluation, demonstrating the evolution of the speech and language syndromes, as well as motor signs. VBM revealed the premotor and supplemental motor cortices to be the main cortical regions associated with AOS, while the anterior peri-sylvian region was associated with non-fluent aphasia. Refining the classification of the degenerative aphasias and AOS may be necessary to improve our understanding of the relationships among behavioural, pathological and imaging correlations.

Journal Article
01 Jan 2006-Brain
TL;DR: The extent of remyelination was variable between cases as mentioned in this paper, with 60-96% of the global lesion area remyeled in 20% of patients, while in 50% of those patients, the extent was not only in relapsing multiple sclerosis, but also in a subset of patients with progressive disease.
Abstract: Although spontaneous remyelination does occur in multiple sclerosis lesions, its extent within the global population with this disease is presently unknown. We have systematically analysed the incidence and distribution of completely remyelinated lesions (so-called shadow plaques) or partially remyelinated lesions (shadow plaque areas) in 51 autopsies of patients with different clinical courses and disease durations. The extent of remyelination was variable between cases. In 20% of the patients, the extent of remyelination was extensive with 60-96% of the global lesion area remyelinated. Extensive remyelination was found not only in patients with relapsing multiple sclerosis, but also in a subset of patients with progressive disease. Older age at death and longer disease duration were associated with significantly more remyelinated lesions or lesion areas. No correlation was found between the extent of remyelination and either gender or age at disease onset. These results suggest that the variable and patient-dependent extent of remyelination must be considered in the design of future clinical trials aimed at promoting CNS repair.

Journal ArticleDOI
01 Nov 2006-Brain
TL;DR: Findings indicate that CSF P-tau231P may serve as an in vivo surrogate biomarker of neurofibrillary pathology in Alzheimer's disease.
Abstract: Hyperphosphorylated tau protein (P-tau) in CSF is a core biomarker candidate of Alzheimer's disease. Hyperphosphorylation of tau is thought to lead to neurofibrillary changes, a neuropathological hallmark of this type of dementia. Currently, the question is unresolved whether CSF levels of P-tau reflect neurofibrillary changes within the brain of a patient with the illness. Twenty-six patients were included with intra-vitam CSF as well as post-mortem neuropathological data. In the CSF, P-tau phosphorylated at threonine 231 (P-tau231P) was analysed. Post-mortem, scores of neurofibrillary tangles (NFT) and neuritic plaques (NP) were assessed in frontal, temporal, parietal and hippocampal cortical areas. In the same cortical regions, load of hyperphosphorylated tau protein (HP-tau load) was determined. Concentrations of P-tau231P were measured in frontal cortex homogenates. We found significant correlations between CSF P-tau231P concentrations and scores of NFTs and HP-tau load in all neocortical regions studied. The score of NPs was correlated with CSF P-tau231P only within the frontal cortex. There was a correlation between P-tau231P in CSF and brain homogenates. These findings indicate that CSF P-tau231P may serve as an in vivo surrogate biomarker of neurofibrillary pathology in Alzheimer's disease.

Journal ArticleDOI
01 Oct 2006-Brain
TL;DR: Findings indicate that the reactive astrocytes play essential roles in preserving neural tissue and restricting inflammation after moderate focal brain injury.
Abstract: Astrocytes respond to traumatic brain injury (TBI) by altered gene expression, hypertrophy and proliferation that occur in a gradated fashion in relation to the severity of the injury. Both beneficial and detrimental effects have been attributed to reactive astrocytes, but their roles after brain injury are not well understood. To investigate these roles, we determined the effects on cortical tissue of ablating reactive astrocytes after contusion injury generated by controlled cortical impact (CCI) of different severities in transgenic mice that express a glial fibrillary acidic protein-herpes simplex virus-thymidine kinase transgene. Treatment of these mice with the antiviral agent, ganciclovir, conditionally ablates proliferating reactive astrocytes. Moderate or severe CCI were generated with a precisely regulated pneumatic piston, and forebrain tissue was evaluated using immunohistochemistry and quantitative morphometry. Moderate CCI in control mice triggered extensive and persisting reactive astrogliosis, with most neurons being preserved, little inflammation and an 18% loss of cortical tissue beneath the impact site. Ablation of reactive astrocytes after moderate CCI in transgenic mice caused substantial neuronal degeneration and inflammation, with a significantly greater 60% loss of cortical tissue. Severe CCI in control mice caused pronounced neuronal degeneration and loss of about 88% of cortical tissue that was not significantly altered by ablating reactive astrocytes in transgenic mice. Thus, ablation of dividing reactive astrocytes exacerbated cortical degeneration after moderate CCI, but did not alter cortical degeneration after severe CCI. These findings indicate that the reactive astrocytes play essential roles in preserving neural tissue and restricting inflammation after moderate focal brain injury.

Journal ArticleDOI
01 Feb 2006-Brain
TL;DR: The traditional teaching that the cerebellum is purely a motor control device no longer appears valid, if, indeed, ever it was, and there is increasing recognition that it contributes to cognitive processing and emotional control in addition to its role in motor coordination.
Abstract: The traditional teaching that the cerebellum is purely a motor control device no longer appears valid, if, indeed, ever it was. There is increasing recognition that the cerebellum contributes to cognitive processing and emotional control in addition to its role in motor coordination. Anatomical and physiological studies reveal that there is a primary sensorimotor region of the cerebellum in the anterior lobe, and a secondary sensorimotor region in the medial aspect of the posterior lobe. In contrast, cerebral association areas that subserve higher order behaviour are linked preferentially with the lateral hemispheres of the cerebellar posterior lobe—in feedforward loops via the nuclei of the basis pontis, and in feedback loops from deep cerebellar nuclei via the thalamus. There are also reciprocal connections between the cerebellum and hypothalamus. These pathways facilitate cerebellar incorporation into the distributed neural circuits governing intellect, emotion and autonomic function in addition to sensorimotor control. The clinical relevance of these observations is found in anecdotal observations of cognitive and psychiatric manifestations of cerebellar lesions, and in the description of the cerebellar cognitive affective syndrome (CCAS) in patients with lesions confined to the cerebellum (Schmahmann and Sherman, 1998). The CCAS has subsequently been observed in adults and children with stroke, tumour, cerebellar degeneration, superficial siderosis, cerebellar hypoplasia and agenesis, and children born very preterm who have disproportionately small cerebella. These neurobehavioural deficits may occur in the absence of the …

Journal ArticleDOI
01 Dec 2006-Brain
TL;DR: It is suggested that spreading depolarizations with prolonged depressions are a promising target for treatment development in SAH and ischaemic stroke.
Abstract: Progressive ischaemic damage in animals is associated with spreading mass depolarizations of neurons and astrocytes, detected as spreading negative slow voltage variations. Speculation on whether spreading depolarizations occur in human ischaemic stroke has continued for the past 60 years. Therefore, we performed a prospective multicentre study assessing incidence and timing of spreading depolarizations and delayed ischaemic neurological deficit (DIND) in patients with major subarachnoid haemorrhage (SAH) requiring aneurysm surgery. Spreading depolarizations were recorded by electrocorticography with a subdural electrode strip placed on cerebral cortex for up to 10 days. A total of 2110 h recording time was analysed. The clinical state was monitored every 6 h. Delayed infarcts after SAH were verified by serial CT scans and/or MRI. Electrocorticography revealed 298 spreading depolarizations in 13 of the 18 patients (72%). A clinical DIND was observed in seven patients 7.8 days (7.3, 8.2) after SAH. DIND was time-locked to a sequence of recurrent spreading depolarizations in every single case (positive and negative predictive values: 86 and 100%, respectively). In four patients delayed infarcts developed in the recording area. As in the ischaemic penumbra of animals, delayed infarction was preceded by progressive prolongation of the electrocorticographic depression periods associated with spreading depolarizations to >60 min in each case. This study demonstrates that spreading depolarizations have a high incidence in major SAH and occur in ischaemic stroke. Repeated spreading depolarizations with prolonged depression periods are an early indicator of delayed ischaemic brain damage after SAH. In view of experimental evidence and the present clinical results, we suggest that spreading depolarizations with prolonged depressions are a promising target for treatment development in SAH and ischaemic stroke.

Journal ArticleDOI
01 Jan 2006-Brain
TL;DR: The strong linkage of CXCL13 to immune cells and immunoglobulin levels in CSF suggests that this is one of the factors that attract and maintain B and T cells in inflamed CNS lesions.
Abstract: Understanding the mechanisms of immune cell migration to multiple sclerosis lesions offers significant therapeutic potential. This study focused on the chemokines CXCL12 (SDF-1) and CXCL13 (BCA-1), both of which regulate B cell migration in lymphoid tissues. We report that immunohistologically CXCL12 was constitutively expressed in CNS parenchyma on blood vessel walls. In both active and chronic inactive multiple sclerosis lesions CXCL12 protein was elevated and detected on astrocytes and blood vessels. Quantitative PCR demonstrated that CXCL13 was produced in actively demyelinating multiple sclerosis lesions, but not in chronic inactive lesions or in the CNS of subjects who had no neurological disease. CXCL13 protein was localized in perivascular infiltrates and scattered infiltrating cells in lesion parenchyma. In the CSF of relapsing-remitting multiple sclerosis patients, both CXCL12 and CXCL13 were elevated. CXCL13, but not CXCL12, levels correlated strongly with intrathecal immunoglobulin production as well as the presence of B cells, plasma blasts and T cells. About 20% of CSF CD4+ cells and almost all B cells expressed the CXCL13 receptor CXCR5. In vitro, CXCL13 was produced by monocytes and at much higher levels by macrophages. CXCL13 mRNA and protein expression was induced by TNFalpha and IL-1beta but inhibited by IL-4 and IFNgamma. Together, CXCL12 and CXCL13 are elevated in active multiple sclerosis lesions and CXCL12 also in inactive lesions. The consequences of CXCL12 up-regulation could be manifold. CXCL12 localization on blood vessels indicates a possible role in leucocyte extravasation, and CXCL12 may contribute to plasma cell persistence since its receptor CXCR4 is retained during plasma cell differentiation. CXCL12 may contribute to axonal damage as it can become a neurotoxic mediator of cleavage by metalloproteases, which are present in multiple sclerosis lesions. The strong linkage of CXCL13 to immune cells and immunoglobulin levels in CSF suggests that this is one of the factors that attract and maintain B and T cells in inflamed CNS lesions. Therefore, both CXCL13 and CXCR5 may be promising therapeutic targets in multiple sclerosis.

Journal ArticleDOI
01 Sep 2006-Brain
TL;DR: The findings provide further evidence of underintegration of language and imagery in autism (and hence expand the understanding of underconnectivity) but also show that people with autism are more reliant on visualization to support language comprehension.
Abstract: Comprehending high-imagery sentences like The number eight when rotated 90 degrees looks like a pair of eyeglasses involves the participation and integration of several cortical regions. The linguistic content must be processed to determine what is to be mentally imaged, and then the mental image must be evaluated and related to the sentence. A theory of cortical underconnectivity in autism predicts that the interregional collaboration required between linguistic and imaginal processing in this task would be underserved in autism. This functional MRI study examined brain activation in 12 participants with autism and 13 age- and IQ-matched control participants while they processed sentences with either high- or low-imagery content. The analysis of functional connectivity among cortical regions showed that the language and spatial centres in the participants with autism were not as well synchronized as in controls. In addition to the functional connectivity differences, there was also a group difference in activation. In the processing of low-imagery sentences (e.g. Addition, subtraction and multiplication are all math skills), the use of imagery is not essential to comprehension. Nevertheless, the autism group activated parietal and occipital brain regions associated with imagery for comprehending both the low and high-imagery sentences, suggesting that they were using mental imagery in both conditions. In contrast, the control group showed imagery-related activation primarily in the high-imagery condition. The findings provide further evidence of underintegration of language and imagery in autism (and hence expand the understanding of underconnectivity) but also show that people with autism are more reliant on visualization to support language comprehension.

Journal ArticleDOI
01 Jul 2006-Brain
TL;DR: High frequency stimulation of the cZI results in greater improvement in contralateral motor scores in Parkinson's disease patients than stimulation ofThe subthalamic nucleus, and the potential role played by the ZI is discussed.
Abstract: Deep brain stimulation (DBS) has an increasing role in the treatment of idiopathic Parkinson's disease. Although, the subthalamic nucleus (STN) is the commonly chosen target, a number of groups have reported that the most effective contact lies dorsal/dorsomedial to the STN (region of the pallidofugal fibres and the rostral zona incerta) or at the junction between the dorsal border of the STN and the latter. We analysed our outcome data from Parkinson's disease patients treated with DBS between April 2002 and June 2004. During this period we moved our target from the STN to the region dorsomedial/medial to it and subsequently targeted the caudal part of the zona incerta nucleus (cZI). We present a comparison of the motor outcomes between these three groups of patients with optimal contacts within the STN (group 1), dorsomedial/medial to the STN (group 2) and in the cZI nucleus (group 3). Thirty-five patients with Parkinson's disease underwent MRI directed implantation of 64 DBS leads into the STN (17), dorsomedial/medial to STN (20) and cZI (27). The primary outcome measure was the contralateral Unified Parkinson's Disease Rating Scale (UPDRS) motor score (off medication/off stimulation versus off medication/on stimulation) measured at follow-up (median time 6 months). The secondary outcome measures were the UPDRS III subscores of tremor, bradykinesia and rigidity. Dyskinesia score, L-dopa medication reduction and stimulation parameters were also recorded. The mean adjusted contralateral UPDRS III score with cZI stimulation was 3.1 (76% reduction) compared to 4.9 (61% reduction) in group 2 and 5.7 (55% reduction) in the STN (P-value for trend <0.001). There was a 93% improvement in tremor with cZI stimulation versus 86% in group 2 versus 61% in group 1 (P-value = 0.01). Adjusted 'off-on' rigidity scores were 1.0 for the cZI group (76% reduction), 2.0 for group 2 (52% reduction) and 2.1 for group 1 (50% reduction) (P-value for trend = 0.002). Bradykinesia was more markedly improved in the cZI group (65%) compared to group 2 (56%) or STN group (59%) (P-value for trend = 0.17). There were no statistically significant differences in the dyskinesia scores, L-dopa medication reduction and stimulation parameters between the three groups. Stimulation related complications were seen in some group 2 patients. High frequency stimulation of the cZI results in greater improvement in contralateral motor scores in Parkinson's disease patients than stimulation of the STN. We discuss the implications of this finding and the potential role played by the ZI in Parkinson's disease.

Journal ArticleDOI
01 Jun 2006-Brain
TL;DR: It is shown that discrete HFOs can be recorded from human focal epileptic brain using depth macroelectrodes, and that they occur mostly in regions of primary epileptogenesis and rarely in areas of secondary spread.
Abstract: Discrete high-frequency oscillations (HFOs) in the range of 100-500 Hz have previously been recorded in human epileptic brains using depth microelectrodes. We describe for the first time similar oscillations in a cohort of unselected focal epileptic patients implanted with EEG macroelectrodes. Spectral analysis and visual inspection techniques were used to study seizures from 10 consecutive patients undergoing pre-surgical evaluation for medically refractory focal epilepsy. Four of these patients had focal seizure onset in the mesial temporal lobe, and in all 12 of their seizures, well-localized, segmental, very high frequency band (VHF: 250-500 Hz) oscillations were visually identified near the time of seizure onset from contacts in this zone. Increased high-frequency band (HF: 100-200 Hz) activity compared with the background was distinguished both visually and with spectral analysis later in the seizures of 3/4 mesial temporal patients, involving contacts in the generator region and, in one patient, areas of contralateral peri-hippocampal propagation. Three patients with well-defined neocortical seizure-onset areas also demonstrated focal HF or VHF oscillations confined to the seizure-onset channels during their eight seizures. No discrete HF or VHF activity was present in the poorly localized seizures from the remaining three patients. These results show that discrete HFOs can be recorded from human focal epileptic brain using depth macroelectrodes, and that they occur mostly in regions of primary epileptogenesis and rarely in regions of secondary spread. Absent high-frequency activity seems to indicate poor localization, whereas the presence of focal HFOs near the time of seizure onset may signify proximity to the epileptogenic focus in mesial temporal lobe and neocortical seizures. We postulate that focal HFOs recorded with depth macroelectrodes reflect the partial synchronization of very local oscillations such as those previously studied using microelectrodes, and result from interconnected small neuronal ensembles. Our finding that localized HFOs occur in varying anatomical structures and pathological conditions perhaps indicates commonality to diverse epileptogenic aetiologies.

Journal ArticleDOI
01 Jan 2006-Brain
TL;DR: The most striking finding is the highly significant association between the number of CGG repeats and the numbers of intranuclear inclusions in both neurons and astrocytes, indicating that the CGG repeat is a powerful predictor of neurological involvement in males, both clinically (age of death) and neuropathologically (number of inclusions).
Abstract: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder that affects carriers, principally males, of premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene Clinical features of FXTAS include progressive intention tremor and gait ataxia, accompanied by characteristic white matter abnormalities on MRI The neuropathological hallmark of FXTAS is an intranuclear inclusion, present in both neurons and astrocytes throughout the CNS Prior to the current work, the nature of the associations between inclusion loads and molecular measures (eg CGG repeat) was not defined Post-mortem brain and spinal cord tissue has been examined for gross and microscopic pathology in a series of 11 FXTAS cases (males, age 67-87 years at the time of death) Quantitative counts of inclusion numbers were performed in various brain regions in both neurons and astrocytes Inclusion counts were compared with specific molecular (CGG repeat, FMR1 mRNA level) and clinical (age of onset, age of death) parameters In the current series, the three most prominent neuropathological characteristics are (i) significant cerebral and cerebellar white matter disease, (ii) associated astrocytic pathology with dramatically enlarged inclusion-bearing astrocytes prominent in cerebral white matter and (iii) the presence of intranuclear inclusions in both brain and spinal cord The pattern of white matter pathology is distinct from that associated with hypertensive vascular disease and other diseases of white matter Spongiosis was present in the middle cerebellar peduncles in seven of the eight cases in which those tissues were available for study There is inclusion formation in cranial nerve nucleus XII and in autonomic neurons of the spinal cord The most striking finding is the highly significant association between the number of CGG repeats and the numbers of intranuclear inclusions in both neurons and astrocytes, indicating that the CGG repeat is a powerful predictor of neurological involvement in males, both clinically (age of death) and neuropathologically (number of inclusions)

Journal ArticleDOI
21 Nov 2006-Brain
TL;DR: This paper addresses the idea that brain plasticity cannot be fully understood and fruitfully studied without considering the temporal pattern of the injury inflicted to the brain and shows that functional recovery is considerably better in the context of slow-growing injuries than after acute lesions.
Abstract: The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated 'eloquent' areas and (ii) that a lesion within the eloquent area gives rise to major irrevocable deficits. However, in sharp contrast with these observations, it was recently found that patients with low-grade gliomas were able to undergo massive cerebral resections without detectable functional consequence. In this paper, we tackle this puzzling observation and address the idea that brain plasticity cannot be fully understood and fruitfully studied without considering the temporal pattern of the injury inflicted to the brain. To achieve this goal, we first review experimental evidence showing that functional recovery is considerably better in the context of slow-growing injuries than after acute lesions. Both human and animal data are considered. In a second step, we emphasize that slow and acute lesions involve very different patterns of reorganization. In agreement with this idea, we show that the recruitment of remote brain areas in the ipsi- and contralesional hemispheres is much more efficient in slow growing than acute lesions. Finally in a last section, we briefly discuss the main implications of these results.

Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: Properties of prognosis in multiple sclerosis appears, at least to some extent, as age-dependent and not substantially affected by the initial course, be it exacerbating-remitting or progressive.
Abstract: Many efforts have been devoted to the description of the prognosis of multiple sclerosis and its possible influential factors in terms of time to reach disability milestones. By contrast, the age at which patients with multiple sclerosis reach these milestones has not yet stirred much interest. We have tested the hypothesis whether the prognosis of multiple sclerosis depends on the current age of patients and the initial course of the disease. We have assessed disease onset and course, and assignment of scores of irreversible disability in 1844 patients with multiple sclerosis. We have used three scores on the Kurtzke Disability Status Scale as benchmarks of disability accumulation: DSS 4 (limited walking but without aid), DSS 6 (walking with unilateral aid) and DSS 7 (wheelchair-bound). We used Kaplan-Meier analyses to estimate the age of the patients at assignment of disability milestones. The possible influence of the initial course of multiple sclerosis and of other clinical variables early assessable in the disease on these outcome measures was also studied, using the Kaplan-Meier curves for univariate analyses and Cox models for multivariate analyses. For the 1844 patients, median ages at time of assignment of irreversible disability were 44.3 years (95% CI 43.3-45.2) for a score of DSS 4, 54.7 years (95% CI 53.5-55.8) for DSS 6 and 63.1 years (95% CI 61.0-65.1) for DSS 7. These results were essentially similar whether the initial course of multiple sclerosis was exacerbating-remitting or progressive, and whatever the initial symptomatology. Females reached disability milestones at an older age than males. The most influential clinical factor was age at clinical onset of multiple sclerosis: the younger the onset, the younger the age at assignment of disability milestones. Therefore, prognosis in multiple sclerosis appears, at least to some extent, as age-dependent and not substantially affected by the initial course, be it exacerbating-remitting or progressive. Aside acute focal recurrent inflammation and diffuse chronic neurodegeneration, accelerated ageing-related mechanisms may operate in the central nervous system of multiple sclerosis patients.

Journal ArticleDOI
01 Nov 2006-Brain
TL;DR: The results suggest that the right anterior temporal and medial frontal regions are essential for real-life empathic behaviour, consistent with previous research suggesting that a primarily right frontotemporal network of brain regions is involved in emotion processing.
Abstract: Empathy is a complex social behaviour mediated by a network of brain structures. Recently, several functional imaging studies have investigated the neural basis of empathy, but few corroborative human lesion studies exist. Severe empathy loss is a common feature of frontotemporal lobar degeneration (FTLD), and is also seen in other neurodegenerative diseases. In this study, the neuroanatomic basis of empathy was investigated in 123 patients with FTLD, Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy using the Interpersonal Reactivity Index (IRI). IRI Empathic Concern and Perspective taking scores were correlated with structural MRI brain volume using voxel-based morphometry. Voxels in the right temporal pole, the right fusiform gyrus, the right caudate and right subcallosal gyrus correlated significantly with total empathy score (P < 0.05 after whole-brain correction for multiple comparisons). Empathy score correlated positively with the volume of right temporal structures in semantic dementia, and with subcallosal gyrus volume in frontotemporal dementia. These findings are consistent with previous research suggesting that a primarily right frontotemporal network of brain regions is involved in emotion processing, and highlights the roles of the right temporal pole and inferior frontal/striatal regions in regulating complex social interactions. This is the first large-scale lesion study to investigate the neural basis of empathy using correlational analytic methods. The results suggest that the right anterior temporal and medial frontal regions are essential for real-life empathic behaviour.

Journal ArticleDOI
01 Nov 2006-Brain
TL;DR: It is suggested that blood may be a rich source for biomarkers of Alzheimer's disease and that complement factor H, together with other proteins such as alpha-2M, May be a specific markers of this illness.
Abstract: Alzheimer's disease is a common and devastating disease for which there is no readily available biomarker to aid diagnosis or to monitor disease progression. Biomarkers have been sought in CSF but no previous study has used two-dimensional gel electrophoresis coupled with mass spectrometry to seek biomarkers in peripheral tissue. We performed a case-control study of plasma using this proteomics approach to identify proteins that differ in the disease state relative to aged controls. For discovery-phase proteomics analysis, 50 people with Alzheimer's dementia were recruited through secondary services and 50 normal elderly controls through primary care. For validation purposes a total of 511 subjects with Alzheimer's disease and other neurodegenerative diseases and normal elderly controls were examined. Image analysis of the protein distribution of the gels alone identifies disease cases with 56% sensitivity and 80% specificity. Mass spectrometric analysis of the changes observed in two-dimensional electrophoresis identified a number of proteins previously implicated in the disease pathology, including complement factor H (CFH) precursor and alpha-2-macroglobulin (alpha-2M). Using semi-quantitative immunoblotting, the elevation of CFH and alpha-2M was shown to be specific for Alzheimer's disease and to correlate with disease severity although alternative assays would be necessary to improve sensitivity and specificity. These findings suggest that blood may be a rich source for biomarkers of Alzheimer's disease and that CFH, together with other proteins such as alpha-2M may be a specific markers of this illness.

Journal ArticleDOI
01 Feb 2006-Brain
TL;DR: Overall recovery was less favourable than usually assumed, with persisting pain and paresis in approximately two-thirds of the patients who were followed for 3 years or more, and the potential differences between the hereditary and idiopathic phenotypes and between males and females were explored.
Abstract: We investigated the symptoms, course and prognosis of neuralgic amyotrophy (NA) in a large group of patients with idiopathic neuralgic amyotrophy (INA, n = 199) and hereditary neuralgic amyotrophy (HNA, n = 47) to gain more insight into the broad clinical spectrum of the disorder. Several findings from earlier smaller-scale studies were tested, and for the first time the potential differences between the hereditary and idiopathic phenotypes and between males and females were explored. Generally, the course of the pain manifests itself in three consecutive phases with an initial severe, continuous pain lasting for approximately 4 weeks on average. Sensory involvement was quite common and found in 78.4% of patients but was clinically less impairing than the initial pain and subsequent paresis. As a typically patchy disorder NA can affect almost any nerve in the brachial plexus, although damage in the upper and middle trunk distribution with involvement of the long thoracic and/or suprascapular nerve occurred most frequently (71.1%). We found no correlation between the distribution of motor and sensory symptoms. In INA recurrent attacks were found in 26.1% of the patients during an average 6 year follow-up. HNA patients had an earlier onset (28.4 versus 41.3 years), more attacks (mean 3.5 versus 1.5) and more frequent involvement of nerves outside the brachial plexus (55.8 versus 17.3%) than INA patients, and a more severe maximum paresis, with a subsequent poorer functional outcome. In males the initial pain tended to last longer than it did in females (45 versus 23 days). In females the middle or lower parts of the brachial plexus were involved more frequently (23.1 versus 10.5% in males), and their functional outcome was worse. Overall recovery was less favourable than usually assumed, with persisting pain and paresis in approximately two-thirds of the patients who were followed for 3 years or more.

Journal ArticleDOI
21 Nov 2006-Brain
TL;DR: Measurement of cortical thickness was similar to that of cortical volume in differentiating between normal ageing, Alzheimer's disease and FTD, suggesting that cortical thickness may be a useful surrogate marker for these types of dementia.
Abstract: Alzheimer's disease and frontotemporal dementia (FTD) can be difficult to differentiate clinically because of overlapping symptoms. Distinguishing the two dementias based on volumetric measurements of brain atrophy with MRI has been only partially successful. Whether MRI measurements of cortical thinning improve the differentiation between Alzheimer's disease and FTD is unclear. In this study, we measured cortical thick- ness using a set of automated tools (Freesurfer) to reconstruct the brain's cortical surface from T1-weighted structural MRI data in 22 patients with Alzheimer's disease, 19 patients with FTD and 23 cognitively normal subjects.The goals were to detect the characteristic patterns of cortical thinning in these two types of dementia, to test the relationship between cortical thickness and cognitive impairment, to determine if measurement of cortical thickness is better than that of cortical volume for differentiating between these dementias and normal ageing and improving the classification of Alzheimer's disease and FTD based on neuropsychological scores alone. Compared to cognitively normal subjects, Alzheimer's disease patients had a thinner cortex primarily in bilateral, frontal, parietal, temporal and occipital lobes (P50.001), while FTD patients had a thinner cortex in bilateral, frontal and temporal regions and some thinning in inferior parietal regions and the posterior cingu- late (P50.001). Compared to FTD patients, Alzheimer's disease patients had a thinner cortex (P50.001) in parts of bilateral parietal and precuneus regions. Cognitive impairment was negatively correlated with cortical thick- ness of frontal, parietal and temporal lobes in Alzheimer's disease, while similar correlations were not signifi- cant in FTD. Measurement of cortical thickness was similar to that of cortical volume in differentiating between normal ageing, Alzheimer's disease and FTD. Furthermore, cortical thickness measurements significantly improved the classification between Alzheimer's disease and FTD based on neuropsychological scores alone, including the Mini-Mental State Examination and a modified version of the Trail-Making Test. In conclusion, the characteristic patterns of cortical thinning in Alzheimer's disease and FTD suggest that cortical thickness may be a useful surrogate marker for these types of dementia.

Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: Effective recovery is based on enhanced utilization of ipsi- and contralesional resources, basic corticospinal commands arise from the lesioned hemisphere without recruitment of ('latent') uncrossed corticOSPinal tract fibres and increased contralsional activity probably facilitates control of recovered motor function by operating at a higher-order processing level, similar to but not identical with the extended network concerned with complex movements in healthy subjects.
Abstract: Clinical recovery after stroke can be significant and has been attributed to plastic reorganization and recruitment of novel areas previously not engaged in a given task. As equivocal results have been reported in studies using single imaging or electrophysiological methods, here we applied an integrative multimodal approach to a group of well-recovered chronic stroke patients (n = 11; aged 50-81 years) with left capsular lesions. Focal activation during recovered hand movements was assessed with EEG spectral analysis and H2(15)O-PET with EMG monitoring, cortico-cortical connectivity with EEG coherence analysis (cortico-cortical coherence) and corticospinal connectivity with transcranial magnetic stimulation (TMS). As seen from comparisons with age-matched controls, our patients showed enhanced recruitment of the lateral premotor cortex of the lesioned hemisphere [Brodmann area (BA) 6], lateral premotor and to a lesser extent primary sensorimotor and parietal cortex of the contralesional hemisphere (CON-H; BA 4 and superior parietal lobule) and left cerebellum (patients versus controls, Z > 3.09). EEG coherence analysis showed that after stroke cortico-cortical connections were reduced in the stroke hemisphere but relatively increased in the CON-H (ANOVA, contrast analysis, P < 0.05), suggesting a shift of functional connectivity towards the CON-H. Nevertheless, fast conducting corticospinal transmission originated exclusively from the lesioned hemisphere. No direct ipsilateral motor evoked potentials (MEPs) could be elicited with TMS over the contralesional primary motor cortex (iM1) in stroke patients. We conclude that (i) effective recovery is based on enhanced utilization of ipsi- and contralesional resources, (ii) basic corticospinal commands arise from the lesioned hemisphere without recruitment of ('latent') uncrossed corticospinal tract fibres and (iii) increased contralesional activity probably facilitates control of recovered motor function by operating at a higher-order processing level, similar to but not identical with the extended network concerned with complex movements in healthy subjects.