scispace - formally typeset
Search or ask a question

Showing papers in "Brain Topography in 2014"


Journal ArticleDOI
TL;DR: A review focused on the means with which experimenters quantify multisensory processes and integration across a range of commonly used experimental methodologies is provided, including single- and multiunit responses, local field potentials, functional magnetic resonance imaging, and electroencephalography.
Abstract: We process information from the world through multiple senses, and the brain must decide what information belongs together and what information should be segregated. One challenge in studying such multisensory integration is how to quantify the multisensory interactions, a challenge that is amplified by the host of methods that are now used to measure neural, behavioral, and perceptual responses. Many of the measures that have been developed to quantify multisensory integration (and which have been derived from single unit analyses), have been applied to these different measures without much consideration for the nature of the process being studied. Here, we provide a review focused on the means with which experimenters quantify multisensory processes and integration across a range of commonly used experimental methodologies. We emphasize the most commonly employed measures, including single- and multiunit responses, local field potentials, functional magnetic resonance imaging, and electroencephalography, along with behavioral measures of detection, accuracy, and response times. In each section, we will discuss the different metrics commonly used to quantify multisensory interactions, including the rationale for their use, their advantages, and the drawbacks and caveats associated with them. Also discussed are possible alternatives to the most commonly used metrics.

165 citations


Journal ArticleDOI
TL;DR: It is suggested that externally desynchronizing gamma oscillations between hemispheres impairs interhemispheric motion integration and in turn biases conscious experience of bistable apparent motion.
Abstract: When viewing ambiguous stimuli, conscious perception alternates spontaneously between competing interpretations of physically unchanged stimulus information. As one possible neural mechanism underlying the perceptual switches, it has been suggested that neurons dynamically change their pattern of synchronized oscillatory activity in the gamma band (30–80 Hz). In support of this hypothesis, there is correlative evidence from human electroencephalographic (EEG) studies for gamma band modulations during ambiguous perception. To establish a causal role of gamma band oscillations in the current study, we applied transcranial alternating current stimulation (tACS) at 40 Hz over occipital–parietal areas of both hemispheres during the presentation of bistable apparent motion stimuli that can be perceived as moving either horizontally or vertically. In this paradigm, the switch between horizontal and vertical apparent motion is likely to involve a change in interhemispheric functional coupling. We examined gamma tACS effects on the durations of perceived horizontal and vertical motion as well as on interhemispheric EEG coherence and found a decreased proportion of perceived horizontal motion together with an increase of interhemispheric gamma band coherence. In a control experiment using 6 Hz tACS, we did not observe any stimulation effects on behavior or coherence. Furthermore, external stimulation at 40 Hz was only effective when applied with 180° phase difference between hemispheres (anti-phase), as compared to in-phase stimulation with 0° phase difference. These findings suggest that externally desynchronizing gamma oscillations between hemispheres impairs interhemispheric motion integration and in turn biases conscious experience of bistable apparent motion.

161 citations


Journal ArticleDOI
TL;DR: This general finding suggests that while not serving as a specific marker to any particular disorder, MMN may be useful for understanding factors of cognition in various disorders, and has potential to serve as an indicator of risk.
Abstract: Cognition is often affected in a variety of neuropsychiatric, neurological, and neurodevelopmental disorders. The neural discriminative response, reflected in mismatch negativity (MMN) and its magnetoencephalographic equivalent (MMNm), has been used as a tool to study a variety of disorders involving auditory cognition. MMN/MMNm is an involuntary brain response to auditory change or, more generally, to pattern regularity violation. For a number of disorders, MMN/MMNm amplitude to sound deviance has been shown to be attenuated or the peak-latency of the component prolonged compared to controls. This general finding suggests that while not serving as a specific marker to any particular disorder, MMN may be useful for understanding factors of cognition in various disorders, and has potential to serve as an indicator of risk. This review presents a brief history of the MMN, followed by a description of how MMN has been used to index auditory processing capability in a range of neuropsychiatric, neurological, and neurodevelopmental disorders. Finally, we suggest future directions for research to further enhance our understanding of the neural substrate of deviance detection that could lead to improvements in the use of MMN as a clinical tool.

155 citations


Journal ArticleDOI
TL;DR: The results suggest that these small extent events are spatially undersampled with standard scalp and grid inter-electrode distances, and suggest that high-density scalp electrode distributions seem necessary to obtain a solid sampling of HFOs on the scalp.
Abstract: High frequency oscillations (HFOs) are emerging as biomarkers of epileptogenicity. They have been shown to originate from small brain regions. Surprisingly, spontaneous HFOs can be recorded from the scalp. To understand how is it possible to observe these small events on the scalp, one avenue is the analysis of the cortical correlates at the time of scalp HFOs. Using simultaneous scalp and intracranial recordings of 11 patients, we studied the spatial distribution of scalp events on the cortical surface. For typical interictal epileptiform discharges the subdural distributions were, as expected, spatially extended. On the contrary, for scalp HFOs the subdural maps corresponded to focal sources, consisting of one or a few small spatial extent activations. These topographies suggest that small cortical areas generated the HFOs seen on the scalp. Similar scalp distributions corresponded to distinct distributions on a standard 1 cm subdural grid and averaging similar scalp HFOs resulted in focal subdural maps. The assumption that a subdural grid “sees” everything that contributes to the potential of nearby scalp contacts was not valid for HFOs. The results suggest that these small extent events are spatially undersampled with standard scalp and grid inter-electrode distances. High-density scalp electrode distributions seem necessary to obtain a solid sampling of HFOs on the scalp. A better understanding of the influence of spatial sampling on the observation of high frequency brain activity on the scalp is important for their clinical use as biomarkers of epilepsy.

137 citations


Journal ArticleDOI
TL;DR: How passive auditory oddball paradigms including deviant and novel sounds have proved their efficiency in assessing brain function at a higher level, without requiring the patient’s active involvement, is reviewed, thus providing an enhanced tool for the prediction of coma outcome.
Abstract: In recent decades, there has been a growing interest in the assessment of patients in altered states of consciousness. There is a need for accurate and early prediction of awakening and recovery from coma. Neurophysiological assessment of coma was once restricted to brainstem auditory and primary cortex somatosensory evoked potentials elicited in the 30 ms range, which have both shown good predictive value for poor coma outcome only. In this paper, we review how passive auditory oddball paradigms including deviant and novel sounds have proved their efficiency in assessing brain function at a higher level, without requiring the patient’s active involvement, thus providing an enhanced tool for the prediction of coma outcome. The presence of an MMN in response to deviant stimuli highlights preserved automatic sensory memory processes. Recorded during coma, MMN has shown high specificity as a predictor of recovery of consciousness. The presence of a novelty P3 in response to the subject’s own first name presented as a novel (rare) stimulus has shown a good correlation with coma awakening. There is now a growing interest in the search for markers of consciousness, if there are any, in unresponsive patients (chronic vegetative or minimally conscious states). We discuss the different ERP patterns observed in these patients. The presence of novelty P3, including parietal components and possibly followed by a late parietal positivity, raises the possibility that some awareness processes are at work in these unresponsive patients.

125 citations


Journal ArticleDOI
TL;DR: A randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data, and shows an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing, is proposed.
Abstract: Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called "atoms of thoughts", that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations.

118 citations


Journal ArticleDOI
TL;DR: A method is described that allows analyzing both the frequency of an ERO and its evolution over time and is interpreted in the context of the so-called match-and-utilization model.
Abstract: Event-related potentials (ERPs) reflect cognitive processes and are usually analyzed in the so-called time domain. Additional information on cognitive functions can be assessed when analyzing ERPs in the frequency domain and treating them as event-related oscillations (EROs). This procedure results in frequency spectra but lacks information about the temporal dynamics of EROs. Here, we describe a method—called time–frequency analysis—that allows analyzing both the frequency of an ERO and its evolution over time. In a brief tutorial, the reader will learn how to use wavelet analysis in order to compute time–frequency transforms of ERP data. Basic steps as well as potential artifacts are described. Rather than in terms of formulas, descriptions are in textual form (written text) with numerous figures illustrating the topics. Recommendations on how to present frequency and time–frequency data in journal articles are provided. Finally, we briefly review studies that have applied time–frequency analysis to mismatch negativity paradigms. The deviant stimulus of such a paradigm evokes an ERO in the theta frequency band that is stronger than for the standard stimulus. Conversely, the standard stimulus evokes a stronger gamma-band response than does the deviant. This is interpreted in the context of the so-called match-and-utilization model.

115 citations


Journal ArticleDOI
TL;DR: To redefine what the mismatch negativity (MMN) component of event-related potentials reflects in auditory scene analysis, and to provide an overview of how the MMN serves as a valuable tool in Cognitive Neuroscience research, a revised framework is provided.
Abstract: The goal of this review article is to redefine what the mismatch negativity (MMN) component of event-related potentials reflects in auditory scene analysis, and to provide an overview of how the MMN serves as a valuable tool in Cognitive Neuroscience research. In doing so, some of the old beliefs (five common ‘myths’) about MMN will be dispelled, such as the notion that MMN is a simple feature discriminator and that attention itself modulates MMN elicitation. A revised description of what MMN truly reflects will be provided, which includes a principal focus onto the highly context-dependent nature of MMN elicitation and new terminology to discuss MMN and attention. This revised framework will help clarify what has been a long line of seemingly contradictory results from studies in which behavioral ability to hear differences between sounds and passive elicitation of MMN have been inconsistent. Understanding what MMN is will also benefit clinical research efforts by providing a new picture of how to design appropriate paradigms suited to various clinical populations.

108 citations


Journal ArticleDOI
TL;DR: The results show that skull geometry simplifications have a larger effect on ESL than those of the conductivity modeling, which suggests that accurate skull modeling is important in order to achieve reliable results for ESL that are useful in a clinical environment.
Abstract: Electroencephalographic source localization (ESL) relies on an accurate model representing the human head for the computation of the forward solution. In this head model, the skull is of utmost importance due to its complex geometry and low conductivity compared to the other tissues inside the head. We investigated the influence of using different skull modeling approaches on ESL. These approaches, consisting in skull conductivity and geometry modeling simplifications, make use of X-ray computed tomography (CT) and magnetic resonance (MR) images to generate seven different head models. A head model with an accurately segmented skull from CT images, including spongy and compact bone compartments as well as some air-filled cavities, was used as the reference model. EEG simulations were performed for a configuration of 32 and 128 electrodes, and for both noiseless and noisy data. The results show that skull geometry simplifications have a larger effect on ESL than those of the conductivity modeling. This suggests that accurate skull modeling is important in order to achieve reliable results for ESL that are useful in a clinical environment. We recommend the following guidelines to be taken into account for skull modeling in the generation of subject-specific head models: (i) If CT images are available, i.e., if the geometry of the skull and its different tissue types can be accurately segmented, the conductivity should be modeled as isotropic heterogeneous. The spongy bone might be segmented as an erosion of the compact bone; (ii) when only MR images are available, the skull base should be represented as accurately as possible and the conductivity can be modeled as isotropic heterogeneous, segmenting the spongy bone directly from the MR image; (iii) a large number of EEG electrodes should be used to obtain high spatial sampling, which reduces the localization errors at realistic noise levels.

101 citations


Journal ArticleDOI
TL;DR: A selective review of studies which are relevant to the controversy between proponents of these two interpretations of the MMN are provided, including preliminary neurophysiological data from monkey auditory cortex with potential implications for the debate.
Abstract: The mismatch negativity (MMN) is a pre-attentive auditory event-related potential (ERP) component that is elicited by a change in a repetitive acoustic pattern. It is obtained by subtracting responses evoked by frequent 'standard' sounds from responses evoked by infrequent 'deviant' sounds that differ from the standards along some acoustic dimension, e.g., frequency, intensity, or duration, or abstract feature. The MMN has been attributed to neural generators within the temporal and frontal lobes. The mechanisms and meaning of the MMN continue to be debated. Two dominant explanations for the MMN have been proposed. According to the "neural adaptation" hypothesis, repeated presentation of the standards results in adapted (i.e., attenuated) responses of feature-selective neurons in auditory cortex. Rare deviant sounds activate neurons that are less adapted than those stimulated by the frequent standard sounds, and thus elicit a larger 'obligatory' response, which yields the MMN following the subtraction procedure. In contrast, according to the "sensory memory" hypothesis, the MMN is a 'novel' (non-obligatory) ERP component that reflects a deviation between properties of an incoming sound and those of a neural 'memory trace' established by the preceding standard sounds. Here, we provide a selective review of studies which are relevant to the controversy between proponents of these two interpretations of the MMN. We also present preliminary neurophysiological data from monkey auditory cortex with potential implications for the debate. We conclude that the mechanisms and meaning of the MMN are still unresolved and offer remarks on how to make progress on these important issues.

90 citations


Journal ArticleDOI
TL;DR: A task that trained participants to down-regulate activity of the right amygdala while being confronted with amygdala stimulation supports the concept of using rtfMRI neurofeedback training to control brain activity during relevant stimulation, specifically in the case of emotion, and has implications towards clinical treatment of emotional disorders.
Abstract: The amygdala is a central target of emotion regulation It is overactive and dysregulated in affective and anxiety disorders and amygdala activity normalizes with successful therapy of the symptoms However, a considerable percentage of patients do not reach remission within acceptable duration of treatment The amygdala could therefore represent a promising target for real-time functional magnetic resonance imaging (rtfMRI) neurofeedback rtfMRI neurofeedback directly improves the voluntary regulation of localized brain activity At present, most rtfMRI neurofeedback studies have trained participants to increase activity of a target, ie up-regulation However, in the case of the amygdala, down-regulation is supposedly more clinically relevant Therefore, we developed a task that trained participants to down-regulate activity of the right amygdala while being confronted with amygdala stimulation, ie negative emotional faces The activity in the functionally-defined region was used as online visual feedback in six healthy subjects instructed to minimize this signal using reality checking as emotion regulation strategy Over a period of four training sessions, participants significantly increased down-regulation of the right amygdala compared to a passive viewing condition to control for habilitation effects This result supports the concept of using rtfMRI neurofeedback training to control brain activity during relevant stimulation, specifically in the case of emotion, and has implications towards clinical treatment of emotional disorders

Journal ArticleDOI
TL;DR: A psychological conceptual framework called the Auditory Event Representation System (AERS), which is based on the assumption that auditory regularity violation detection and the formation of auditory perceptual objects arebased on the same predictive regularity representations, is proposed.
Abstract: Predictive accounts of perception have received increasing attention in the past 20 years. Detecting violations of auditory regularities, as reflected by the Mismatch Negativity (MMN) auditory event-related potential, is amongst the phenomena seamlessly fitting this approach. Largely based on the MMN literature, we propose a psychological conceptual framework called the Auditory Event Representation System (AERS), which is based on the assumption that auditory regularity violation detection and the formation of auditory perceptual objects are based on the same predictive regularity representations. Based on this notion, a computational model of auditory stream segregation, called CHAINS, has been developed. In CHAINS, the auditory sensory event representation of each incoming sound is considered for being the continuation of likely combinations of the preceding sounds in the sequence, thus providing alternative interpretations of the auditory input. Detecting repeating patterns allows predicting upcoming sound events, thus providing a test and potential support for the corresponding interpretation. Alternative interpretations continuously compete for perceptual dominance. In this paper, we briefly describe AERS and deduce some general constraints from this conceptual model. We then go on to illustrate how these constraints are computationally specified in CHAINS.

Journal ArticleDOI
TL;DR: Despite a number of open questions concerning core mechanisms, moderators and mediators, NF (theta/beta and SCP) training seems to be on its way to become a valuable and ethically acceptable module in the treatment of children with ADHD.
Abstract: Among the different neuromodulation techniques, neurofeedback (NF) is gaining increasing interest in the treatment of children with attention-deficit/hyperactivity disorder (ADHD). In this article, a methodological framework is summarised considering the training as a neuro-behavioural treatment. Randomised controlled trials are selectively reviewed. Results from two smaller-scale studies are presented with the first study comprising a tomographic analysis over the course of a slow cortical potential (SCP) training and a correlational analysis of regulation skills and clinical outcome in children with ADHD. In the second study, ADHD-related behaviour was studied in children with tic disorder who either conducted a SCP training or a theta/low-beta (12–15 Hz) training (single-blind, randomised design). Both studies provide further evidence for the specificity of NF effects in ADHD. Based on these findings, a refined model of the mechanisms contributing to the efficacy of SCP training is developed. Despite a number of open questions concerning core mechanisms, moderators and mediators, NF (theta/beta and SCP) training seems to be on its way to become a valuable and ethically acceptable module in the treatment of children with ADHD.

Journal ArticleDOI
TL;DR: Findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviances detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.
Abstract: Detection of changes in the acoustic environ- ment is critical for survival, as it prevents missing poten- tially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrat- ing that human auditory deviance detection based on reg- ularity encoding—rather than on refractoriness—occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.

Journal ArticleDOI
TL;DR: Current work involving deep brain stimulation, transcranial magnetic stimulation and transcranially direct current stimulation is surveyed, and some potentially problematic issues that may arise within the framework of established principles of medical ethics are considered.
Abstract: In recent years, non-pharmacologic approaches to modifying human neural activity have gained increasing attention. One of these approaches is brain stimulation, which involves either the direct application of electrical current to structures in the nervous system or the indirect application of current by means of electromagnetic induction. Interventions that manipulate the brain have generally been regarded as having both the potential to alleviate devastating brain-related conditions and the capacity to create unforeseen and unwanted consequences. Hence, although brain stimulation techniques offer considerable benefits to society, they also raise a number of ethical concerns. In this paper we will address various dilemmas related to brain stimulation in the context of clinical practice and biomedical research. We will survey current work involving deep brain stimulation, transcranial magnetic stimulation and transcranial direct current stimulation. We will reflect upon relevant similarities and differences between them, and consider some potentially problematic issues that may arise within the framework of established principles of medical ethics: nonmaleficence and beneficence, autonomy, and justice.

Journal ArticleDOI
TL;DR: This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback, and is a promising approach to renormalize the excitatory–inhibitory imbalance putatively underlying tinnitis.
Abstract: Although widely used, no proof exists for the feasibility of neurofeedback for reinstating the disordered excitatory–inhibitory balance, marked by a decrease in auditory alpha power, in tinnitus patients. The current study scrutinizes the ability of neurofeedback to focally increase alpha power in auditory areas in comparison to the more common rTMS. Resting-state MEG was measured before and after neurofeedback (n = 8) and rTMS (n = 9) intervention respectively. Source level power and functional connectivity were analyzed with a focus on the alpha band. Only neurofeedback produced a significant decrease in tinnitus symptoms and—more important for the context of the study—a spatially circumscribed increase in alpha power in right auditory regions. Connectivity analysis revealed higher outgoing connectivity in a region ultimately neighboring the area in which power increases were observed. Neurofeedback decreases tinnitus symptoms and increases alpha power in a spatially circumscribed manner. In addition, compared to a more established brain stimulation-based intervention, neurofeedback is a promising approach to renormalize the excitatory–inhibitory imbalance putatively underlying tinnitus. This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback.

Journal ArticleDOI
TL;DR: In this paper, the authors used a matched perception paradigm to measure subjective pain, nociceptive flexion reflexes, and, somatosensory evoked brain potentials.
Abstract: Although humans differ widely in how sensitive they are to painful stimuli, the neural correlates underlying such variability remains poorly understood. A better understanding of this is important given that baseline pain sensitivity scores relate closely to the risk of developing refractory, chronic pain. To address this, we used a matched perception paradigm which allowed us to control for individual variations in subjective experience. By measuring subjective pain, nociceptive flexion reflexes, and, somatosensory evoked brain potentials (with source localization analysis), we were able to map the brain's sequential response to pain while also investigating its relationship to pain sensitivity (i.e. change in the stimulation strength necessary to experience pain) and spinal cord activity. We found that pain sensitivity in healthy adults was closely tied to pain-evoked responses in the contralateral precuneus. Importantly, the precuneus did not contribute to the actual representation of pain in the brain, suggesting that pain sensitivity and pain representation depend on separate neuronal sub-systems.

Journal ArticleDOI
TL;DR: An integrative model of auditory plasticity is posited, which argues for a continuous, online modulation of bottom-up signals via corticofugal pathways, based on an algorithm that anticipates and updates incoming stimulus regularities.
Abstract: In direct conflict with the concept of auditory brainstem nuclei as passive relay stations for behaviorally-relevant signals, recent studies have demonstrated plasticity of the auditory signal in the brainstem. In this paper we provide an overview of the forms of plasticity evidenced in subcortical auditory regions. We posit an integrative model of auditory plasticity, which argues for a continuous, online modulation of bottom-up signals via corticofugal pathways, based on an algorithm that anticipates and updates incoming stimulus regularities. We discuss the negative implications of plasticity in clinical dysfunction and propose novel methods of eliciting brainstem responses that could specify the biological nature of auditory processing deficits.

Journal ArticleDOI
TL;DR: As results on category-related vMMN show, stimulus representation in the non-conscious change detection system is fairly complex, and it is not restricted to the registration of elementary perceptual regularities.
Abstract: Visual mismatch negativity (vMMN) component of event-related potentials is elicited by stimuli violating the category rule of stimulus sequences, even if such stimuli are outside the focus of attention. Category-related vMMN emerges to colors, and color-related vMMN is sensitive to language-related effects. A higher-order perceptual category, bilateral symmetry is also represented in the memory processes underlying vMMN. As a relatively large body of research shows, violating the emotional category of human faces elicits vMMN. Another face-related category sensitive to the violation of regular presentation is gender. Finally, vMMN was elicited to the laterality of hands. As results on category-related vMMN show, stimulus representation in the non-conscious change detection system is fairly complex, and it is not restricted to the registration of elementary perceptual regularities.

Journal ArticleDOI
TL;DR: A novel method based on multivariate time–frequency interdependence to reconstruct the principal resting-state network dynamics in human EEG data is provided, finding the presence of seven robust networks, with distinct topographic organizations and high frequency fingerprints, nested within slow temporal sequences that build up and decay over several orders of magnitude.
Abstract: Endogenous brain activity supports spontaneous human thought and shapes perception and behavior. Connectivity-based analyses of endogenous, or resting-state, functional magnetic resonance imaging (fMRI) data have revealed the existence of a small number of robust networks which have a rich spatial structure. Yet the temporal information within fMRI data is limited, motivating the complementary analysis of electrophysiological recordings such as electroencephalography (EEG). Here we provide a novel method based on multivariate time–frequency interdependence to reconstruct the principal resting-state network dynamics in human EEG data. The stability of network expression across subjects is assessed using resampling techniques. We report the presence of seven robust networks, with distinct topographic organizations and high frequency (∼5–45 Hz) fingerprints, nested within slow temporal sequences that build up and decay over several orders of magnitude. Interestingly, all seven networks are expressed concurrently during these slow dynamics, although there is a temporal asymmetry in the pattern of their formation and dissolution. These analyses uncover the complex temporal character of endogenous cortical fluctuations and, in particular, offer an opportunity to reconstruct the low dimensional linear subspace in which they unfold.

Journal ArticleDOI
TL;DR: cTBS produces widespread alterations in cortical functional connectivity, with resulting shifts in cortical network topology, and the analysis of the undirected graphs reveals that interhemispheric and interregional connections are more likely to be modulated after cTBS than local connections.
Abstract: Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that utilizes magnetic fluxes to alter cortical activity. Continuous theta-burst repetitive TMS (cTBS) results in long-lasting decreases in indices of cortical excitability, and alterations in performance of behavioral tasks. We investigated the effects of cTBS on cortical function via functional connectivity and graph theoretical analysis of EEG data. Thirty-one channel resting-state EEG recordings were obtained before and after 40 s of cTBS stimulation to the left primary motor cortex. Functional connectivity between nodes was assessed in multiple frequency bands using lagged max-covariance, and subsequently thresholded to construct undirected graphs. After cTBS, we find widespread decreases in functional connectivity in the alpha band. There are also simultaneous increases in functional connectivity in the high-beta bands, especially amongst anterior and interhemispheric connections. The analysis of the undirected graphs reveals that interhemispheric and interregional connections are more likely to be modulated after cTBS than local connections. There is also a shift in the topology of network connectivity, with an increase in the clustering coefficient after cTBS in the beta bands, and a decrease in clustering and increase in path length in the alpha band, with the alpha-band connectivity primarily decreased near the site of stimulation. cTBS produces widespread alterations in cortical functional connectivity, with resulting shifts in cortical network topology.

Journal ArticleDOI
TL;DR: Investigating the inter- and intra-subject variability of three MEG RSNs using seed-based source space envelope correlation analysis applied to 5 min of resting state MEG data acquired from a 306-channel whole-scalp neuromagnetometer and source projected with minimum norm estimation finds that they exhibit substantial variability at the single-subject level across and within individuals.
Abstract: Functional connectivity studies conducted at the group level using magnetoencephalography (MEG) suggest that resting state networks (RSNs) emerge from the large-scale envelope correlation structure within spontaneous oscillatory brain activity. However, little is known about the consistency of MEG RSNs at the individual level. This paper investigates the inter- and intra-subject variability of three MEG RSNs (sensorimotor, auditory and visual) using seed-based source space envelope correlation analysis applied to 5 min of resting state MEG data acquired from a 306-channel whole-scalp neuromagnetometer (Elekta Oy, Helsinki, Finland) and source projected with minimum norm estimation. The main finding is that these three MEG RSNs exhibit substantial variability at the single-subject level across and within individuals, which depends on the RSN type, but can be reduced after averaging over subjects or sessions. Over- and under-estimations of true RSNs variability are respectively obtained using template seeds, which are potentially mislocated due to inter-subject variations, and a seed optimization method minimizing variability. In particular, bounds on the minimal number of subjects or sessions required to obtain highly consistent between- or within-subject averages of MEG RSNs are derived. Furthermore, MEG RSN topography positively correlates with their mean connectivity at the inter-subject level. These results indicate that MEG RSNs associated with primary cortices can be robustly extracted from seed-based envelope correlation and adequate averaging. MEG thus appears to be a valid technique to compare RSNs across subjects or conditions, at least when using the current methods.

Journal ArticleDOI
TL;DR: Current state and availability of BCI/BMI systems urge a broader societal discourse on the pressing ethical challenges associated with the advancements in neurotechnology and BCI-BMI research.
Abstract: Despite considerable growth in the field of brain-computer or brain-machine interface (BCI/BMI) research reflected in several hundred publications each year, little progress was made to enable patients in complete locked-in state (CLIS) to reliably communicate using their brain activity. Independent of the invasiveness of the BCI systems tested, no sustained direct brain control and communication was demonstrated in a patient in CLIS so far. This suggested a more fundamental theoretical problem of learning and attention in brain communication with BCI/BMI, formulated in the extinction-of-thought hypothesis. While operant conditioning and goal-directed thinking seems impaired in complete paralysis, classical conditioning of brain responses might represent the only alternative. First experimental studies in CLIS using semantic conditioning support this assumption. Evidence that quality-of-life in locked-in-state is not as limited and poor as generally believed draise doubts that "patient wills" or "advanced directives"signed long-before the locked-in-state are useful. On the contrary, they might be used as an excuse to shorten anticipated long periods of care for these patients avoiding associated financial and social burdens. Current state and availability of BCI/BMI systems urge a broader societal discourse on the pressing ethical challenges associated with the advancements in neurotechnology and BCI/BMI research.

Journal ArticleDOI
TL;DR: This account reviews the state of the art of SSA research in the MGB, highlighting the importance of this auditory centre in detecting sounds that may be relevant for survival.
Abstract: In the auditory brain, some populations of neurons exhibit stimulus-specific adaptation (SSA), whereby they adapt to frequently occurring stimuli but retain sensitivity to stimuli that are rare. SA has been observed in auditory structures from the midbrain to the primary auditory cortex (A1) and has been proposed to be a precursor to the generation of deviance detection. SSA is strongly expressed in non-lemniscal regions of the medial geniculate body (MGB), the principal nucleus of the auditory thalamus. In this account we review the state of the art of SSA research in the MGB, highlighting the importance of this auditory centre in detecting sounds that may be relevant for survival.

Journal ArticleDOI
TL;DR: Investigation of integrity of cingulum bundle in patients with mild cognitive impairment and early Alzheimer’s disease using DSI tractography found that GFA values of the posterior segment of the left CB were significantly negatively associated with the time used to complete Color Trails Test Part II and positively correlated with performance of the logical memory and visual reproduction.
Abstract: Diffusion spectrum imaging (DSI) of MRI can detect neural fiber tract changes. We investigated integrity of cingulum bundle (CB) in patients with mild cognitive impairment (MCI) and early Alzheimer's disease (EAD) using DSI tractography and explored its relationship with cognitive functions. We recruited 8 patients with MCI, 9 with EAD and 15 healthy controls (HC). All subjects received a battery of neuropsychological tests to access their executive, memory and language functions. We used a 3.0-tesla MRI scanner to obtain T1- and T2-weighted images for anatomy and used a pulsed gradient twice-refocused spin-echo diffusion echo-planar imaging sequence to acquire DSI. Patients with EAD performed significantly poorer than the HC on most tests in executive and memory functions. Significantly smaller general fractional anisotropy (GFA) values were found in the posterior and inferior segments of left CB and of the anterior segment of right CB of the EAD compared with those of the HC. Spearman's correlation on the patient groups showed that GFA values of the posterior segment of the left CB were significantly negatively associated with the time used to complete Color Trails Test Part II and positively correlated with performance of the logical memory and visual reproduction. GFA values of inferior segment of bilateral CB were positively associated with the performance of visual recognition. DSI tractography demonstrates significant preferential degeneration of the CB on the left side in patients with EAD. The location-specific degeneration is associated with corresponding declines in both executive and memory functions.

Journal ArticleDOI
TL;DR: This paper used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts.
Abstract: The neurobiological basis and temporal dynamics of communicative language processing pose important yet unresolved questions. It has previously been suggested that comprehension of the communicative function of an utterance, i.e. the so-called speech act, is supported by an ensemble of neural networks, comprising lexico-semantic, action and mirror neuron as well as theory of mind circuits, all activated in concert. It has also been demonstrated that recognition of the speech act type occurs extremely rapidly. These findings however, were obtained in experiments with insufficient spatio-temporal resolution, thus possibly concealing important facets of the neural dynamics of the speech act comprehension process. Here, we used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts. The results show that different communicative actions are underpinned by a dynamic neural network, which differentiates between speech act types very early after the speech act onset. Within 50–90 ms, Requests engaged mirror-neuron action-comprehension systems in sensorimotor cortex, possibly for processing action knowledge and intentions. Still, within the first 200 ms of stimulus onset (100–150 ms), Naming activated brain areas involved in referential semantic retrieval. Subsequently (200–300 ms), theory of mind and mentalising circuits were activated in medial prefrontal and temporo-parietal areas, possibly indexing processing of intentions and assumptions of both communication partners. This cascade of stages of processing information about actions and intentions, referential semantics, and theory of mind may underlie dynamic and interactive speech act comprehension.

Journal ArticleDOI
TL;DR: Neuromodulation consists in altering brain activity to restore mental and physical functions in individuals with neuropsychiatric disorders and brain and spinal cord injuries and involves neurophysiological, psychological and social factors.
Abstract: Neuromodulation consists in altering brain activity to restore mental and physical functions in individuals with neuropsychiatric disorders and brain and spinal cord injuries. This can be achieved by delivering electrical stimulation that excites or inhibits neural tissue, by using electrical signals in the brain to move computer cursors or robotic arms, or by displaying brain activity to subjects who regulate that activity by their own responses to it. As enabling prostheses, deep-brain stimulation and brain-computer interfaces (BCIs) are forms of extended embodiment that become integrated into the individual's conception of himself as an autonomous agent. In BCIs and neurofeedback, the success or failure of the techniques depends on the interaction between the learner and the trainer. The restoration of agency and autonomy through neuromodulation thus involves neurophysiological, psychological and social factors.

Journal ArticleDOI
TL;DR: Investigation of cortical thickness in patients with recent-onset schizophrenia confirmed the hypothesis of a significant relationship between cortical thickness changes and the extent of NSS in schizophrenia.
Abstract: Motor symptoms such as neurological soft signs (NSS) are characteristic phenomena of schizophrenia at any stage of the illness. Neuroimaging studies in schizophrenia patients have shown regional thinning of the cortical mantle, but it is unknown at present whether NSS are related to cortical thickness changes. Whole brain high-resolution magnetic resonance imaging at 3 Tesla was used to investigate cortical thickness in 28 patients with recent-onset schizophrenia. Cortical reconstruction was performed with the Freesurfer image analysis suite. NSS were examined on the Heidelberg Scale and related to cortical thickness. Age, education, and medication were considered as potential confounders. Higher NSS scores were associated with morphological changes of cortical thickness in multiple areas comprising paracentral gyrus, postcentral lobule, precuneus, inferior parietal lobule and temporal lobe. Our results confirm the hypothesis of a significant relationship between cortical thickness changes and the extent of NSS in schizophrenia. Investigation of cortical thickness may help to explain subtle motor symptoms such as NSS in schizophrenia.

Journal ArticleDOI
TL;DR: The study has demonstrated that the oxygenation increased over the PFC while the subject was performing an ITBBT in a semi-immersive VR environment, suggesting that the P FC is bilaterally involved in attention-demanding tasks.
Abstract: The aim of this study was to assess the prefrontal cortex (PFC) oxygenation response to a 5-min incremental tilt board balance task (ITBBT) in a semi-immersive virtual reality (VR) environment driven by a depth-sensing camera. It was hypothesized that the PFC would be bilaterally activated in response to the increase of the ITBBT difficulty, given the PFC involvement in the allocation of the attentional resources to maintain postural control. Twenty-two healthy male subjects were asked to use medial–lateral postural sways to maintain their equilibrium on a virtual tilt board (VTB) balancing over a pivot. When the subject was unable to maintain the VTB angle within ±35° the VTB became red (error). An eight-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb-HHb, respectively). Results revealed that the number of the performed board sways and errors augmented with the increasing of the ITBBT difficulty. A PFC activation was observed with a tendency to plateau for both O2Hb-HHb changes within the last 2 min of the task. A significant main effect of the level of difficulty was found in O2Hb and HHb (p < 0.001). The study has demonstrated that the oxygenation increased over the PFC while the subject was performing an ITBBT in a semi-immersive VR environment. This increase was modulated by the task difficulty, suggesting that the PFC is bilaterally involved in attention-demanding tasks. This task could be considered useful for diagnostic testing and functional neurorehabilitation given its adaptability in elderly and in patients with movement disorders.

Journal ArticleDOI
TL;DR: The state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve are reviewed.
Abstract: Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.