scispace - formally typeset
Search or ask a question

Showing papers in "Breast Cancer Research in 2012"


Journal ArticleDOI
TL;DR: The presence of intratumoral tumor-infiltrating lymphocytes was significantly correlated with young age, high grade, estrogen receptor negativity, human epidermal growth factor receptor-2 positivity and core basal intrinsic subtype, and was associated with superior breast cancer specific survival.
Abstract: Tumor infiltrating lymphocytes may indicate an immune response to cancer development, but their significance remains controversial in breast cancer. We conducted this study to assess CD8+ (cytotoxic T) lymphocyte infiltration in a large cohort of invasive early stage breast cancers, and to evaluate its prognostic effect in different breast cancer intrinsic subtypes. Immunohistochemistry for CD8 staining was performed on tissue microarrays from 3992 breast cancer patients. CD8+ tumor infiltrating lymphocytes were counted as intratumoral when in direct contact with tumor cells, and as stromal in adjacent locations. Kaplan-Meier functions and Cox proportional hazards regression models were applied to examine the associations between tumor infiltrating lymphocytes and breast cancer specific survival. Among 3403 cases for which immunohistochemical results were obtained, CD8+ tumor infiltrating lymphocytes were identified in an intratumoral pattern in 32% and stromal pattern in 61% of the cases. In the whole cohort, the presence of intratumoral tumor-infiltrating lymphocytes was significantly correlated with young age, high grade, estrogen receptor negativity, human epidermal growth factor receptor-2 positivity and core basal intrinsic subtype, and was associated with superior breast cancer specific survival. Multivariate analysis indicated that the favorable prognostic effect of CD8+ tumor infiltrating lymphocytes was significant only in the core basal intrinsic subgroup (Hazard ratio, HR = 0.35, 95% CI = 0.23-0.54). No association with improved survival was present in those triple negative breast cancers that lack expression of basal markers (HR = 0.99, 95% CI = 0.48-2.04) nor in the other intrinsic subtypes. CD8+ tumor infiltrating lymphocytes are an independent prognostic factor associated with better patient survival in basal-like breast cancer, but not in non-basal triple negative breast cancers nor in other intrinsic molecular subtypes.

358 citations


Journal ArticleDOI
TL;DR: The Luminal cell compartment in the mammary epithelium is more heterogeneous than initially perceived since progenitors of varying levels of luminal cell differentiation and proliferative capacities can be identified.
Abstract: The organisation of the mammary epithelial hierarchy is poorly understood. Our hypothesis is that the luminal cell compartment is more complex than initially described, and that an understanding of the developmental relationships within this lineage will help in understanding the cellular context in which breast tumours occur. We used fluorescence-activated cell sorting along with in vitro and in vivo functional assays to examine the growth and differentiation properties of distinct subsets of human and mouse mammary epithelial cells. We also examined how loss of steroid hormones influenced these populations in vivo. Gene expression profiles were also obtained for all the purified cell populations and correlated to those obtained from breast tumours. The luminal cell compartment of the mouse mammary gland can be resolved into nonclonogenic oestrogen receptor-positive (ER+) luminal cells, ER+ luminal progenitors and oestrogen receptor-negative (ER-) luminal progenitors. The ER+ luminal progenitors are unique in regard to cell survival, as they are relatively insensitive to loss of oestrogen and progesterone when compared with the other types of mammary epithelial cells. Analysis of normal human breast tissue reveals a similar hierarchical organisation composed of nonclonogenic luminal cells, and relatively differentiated (EpCAM+CD49f+ALDH-) and undifferentiated (EpCAM+CD49f+ALDH+) luminal progenitors. In addition, approximately one-quarter of human breast samples examined contained an additional population that had a distinct luminal progenitor phenotype, characterised by low expression of ERBB3 and low proliferative potential. Parent-progeny relationship experiments demonstrated that all luminal progenitor populations in both species are highly plastic and, at low frequencies, can generate progeny representing all mammary cell types. The ER- luminal progenitors in the mouse and the ALDH+ luminal progenitors in the human appear to be analogous populations since they both have gene signatures that are associated with alveolar differentiation and resemble those obtained from basal-like breast tumours. The luminal cell compartment in the mammary epithelium is more heterogeneous than initially perceived since progenitors of varying levels of luminal cell differentiation and proliferative capacities can be identified. An understanding of these cells will be essential for understanding the origins and the cellular context of human breast tumours.

285 citations


Journal ArticleDOI
TL;DR: The data indicate that a subset of primary breast cancer patients shows EMT and stem cell characteristics and that the currently used detection methods for CTC are not efficient to identify a subtype of CTC which underwent EMT.
Abstract: The presence of circulating tumor cells (CTC) in breast cancer might be associated with stem cell-like tumor cells which have been suggested to be the active source of metastatic spread in primary tumors. Furthermore, to be able to disseminate and metastasize, CTC must be able to perform epithelial-mesenchymal transition (EMT). We studied the expression of three EMT markers and the stem cell marker ALDH1 in CTC from 502 primary breast cancer patients. Data were correlated with the presence of disseminated tumor cells (DTC) in the bone marrow (BM) and with clinicopathological data of the patients. A total of 2 × 5 ml of blood was analyzed for CTC with the AdnaTest BreastCancer (AdnaGen AG) for the detection of EpCAM, MUC-1, HER2 and beta-Actin transcripts. The recovered c-DNA was additionally multiplex tested for three EMT markers [TWIST1, Akt2, phosphoinositide kinase-3 (PI3Kα)] and separately for the tumor stem cell marker ALDH1. The identification of EMT markers was considered positive if at least one marker was detected in the sample. Two BM aspirates from all patients were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Ninety-seven percent of 30 healthy donor samples investigated were negative for EMT and 95% for ALDH1 transcripts, respectively. CTC were detected in 97/502 (19%) patients. At least one of the EMT markers was expressed in 29% and ALDH1 was present in 14% of the samples, respectively. Interestingly, 5% of the ALDH1-positive and 18% of the EMT-positive patients were CTC-negative based on the cut-off level determined for CTC-positivity applying the AdnaTest BreastCancer. DTC in the BM were detected in 107/502 (21%) patients and no correlation was found between BM status and CTC positivity (P = 0.41). The presence of CTC, EMT and ALDH1 expression was not correlated to any of the prognostic clinical markers. Our data indicate that (1) a subset of primary breast cancer patients shows EMT and stem cell characteristics and (2) the currently used detection methods for CTC are not efficient to identify a subtype of CTC which underwent EMT. (3) The clinical relevance on prognosis and therapy response has to be further evaluated in a prospective trial.

270 citations


Journal ArticleDOI
TL;DR: Panobinostat treatment increased histone acetylation, decreased cell proliferation and survival, and blocked cell cycle progression at G2/M with a concurrent decrease in S phase in all TNBC cell lines, demonstrating a potential therapeutic role of panobinostats in targeting aggressive triple-negative breast cancer cell types.
Abstract: Of the more than one million global cases of breast cancer diagnosed each year, approximately fifteen percent are characterized as triple-negative, lacking the estrogen, progesterone, and Her2/neu receptors. Lack of effective therapies, younger age at onset, and early metastatic spread have contributed to the poor prognoses and outcomes associated with these malignancies. Here, we investigate the ability of the histone deacetylase inhibitor panobinostat (LBH589) to selectively target triple-negative breast cancer (TNBC) cell proliferation and survival in vitro and tumorigenesis in vivo. TNBC cell lines MDA-MB-157, MDA-MB-231, MDA-MB-468, and BT-549 were treated with nanomolar (nM) quantities of panobinostat. Relevant histone acetylation was verified by flow cytometry and immunofluorescent imaging. Assays for trypan blue viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation, and DNA fragmentation were used to evaluate overall cellular toxicity. Changes in cell cycle progression were assessed with propidium iodide flow cytometry. Additionally, qPCR arrays were used to probe MDA-MB-231 cells for panobinostat-induced changes in cancer biomarkers and signaling pathways. Orthotopic MDA-MB-231 and BT-549 mouse xenograft models were used to assess the effects of panobinostat on tumorigenesis. Lastly, flow cytometry, ELISA, and immunohistochemical staining were applied to detect changes in cadherin-1, E-cadherin (CDH1) protein expression and the results paired with confocal microscopy in order to examine changes in cell morphology. Panobinostat treatment increased histone acetylation, decreased cell proliferation and survival, and blocked cell cycle progression at G2/M with a concurrent decrease in S phase in all TNBC cell lines. Treatment also resulted in apoptosis induction at 24 hours in all lines except the MDA-MB-468 cell line. MDA-MB-231 and BT-549 tumor formation was significantly inhibited by panobinostat (10 mg/kg/day) in mice. Additionally, panobinostat up-regulated CDH1 protein in vitro and in vivo and induced cell morphology changes in MDA-MB-231 cells consistent with reversal of the mesenchymal phenotype. This study revealed that panobinostat is overtly toxic to TNBC cells in vitro and decreases tumorigenesis in vivo. Additionally, treatment up-regulated anti-proliferative, tumor suppressor, and epithelial marker genes in MDA-MB-231 cells and initiated a partial reversal of the epithelial-to-mesenchymal transition. Our results demonstrate a potential therapeutic role of panobinostat in targeting aggressive triple-negative breast cancer cell types.

234 citations


Journal ArticleDOI
TL;DR: This review will focus on the link between EMT, CSCs and treatment resistance, since a better understanding of these interactions will allow us to effectively target the residual population after therapy.
Abstract: Breast cancer relapse, in a large number of patients, after initial response to standard of care therapy warrants development of novel therapies against recurrent and metastatic cancer. Cancer stem cells (CSCs), present in breast tumors while being intrinsically resistant to conventional therapy, have the ability to self renew and cause tumor recurrence. The residual tumors after therapy, with dramatic enrichment of the CSCs, have all the hallmarks of epithelial- mesenchymal transition (EMT). This review will focus on the link between EMT, CSCs and treatment resistance, since a better understanding of these interactions will allow us to effectively target the residual population after therapy.

225 citations


Journal ArticleDOI
TL;DR: The distribution of breast cancer subtypes among AYAs varies from that observed in older women, and varies further by race/ethnicity.
Abstract: Breast cancers are increasingly recognized as heterogeneous based on expression of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2). Triple-negative tumors (ER-/PR-/HER2-) have been reported to be more common among younger women, but occurrence of the spectrum of breast cancer subtypes in adolescent and young adult (AYA) women aged between 15 and 39 years is otherwise poorly understood. Data regarding all 5,605 AYA breast cancers diagnosed in California during the period 2005 to 2009, including ER and PR status (referred to jointly as hormone receptor (HR) status) and HER2 status, was obtained from the population-based California Cancer Registry. Incidence rates were calculated by subtype (triple-negative; HR+/HER2-; HR+/HER2+; HR-/HER2+), and logistic regression was used to evaluate differences in subtype characteristics by age group. AYAs had higher proportions of HR+/HER2+, triple-negative and HR-/HER2+ breast cancer subtypes and higher proportions of patients of non-White race/ethnicity than did older women. AYAs also were more likely to be diagnosed with stage III/IV disease and high-grade tumors than were older women. Rates of HR+/HER2- and triple-negative subtypes in AYAs varied substantially by race/ethnicity. The distribution of breast cancer subtypes among AYAs varies from that observed in older women, and varies further by race/ethnicity. Observed subtype distributions may explain the poorer breast cancer survival previously observed among AYAs.

208 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that HIF-1α directly regulates breast TIC activity in vivo, and results suggest that CD133, which has not been profiled extensively in breast cancer, may be a useful marker of TICs in the PyMT mouse model.
Abstract: Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although no differences in primary tumor end point size were observed. Using a refined model system, we investigated whether HIF-1α is directly implicated in the regulation of tumor-initiating cells (TICs) in breast cancer. Mammary tumor epithelial cells were created from MMTV-PyMT mice harboring conditional alleles of Hif1a, followed by transduction ex vivo with either adenovirus β-galactosidase or adenovirus Cre to generate wild-type (WT) and HIF-1α-null (KO) cells, respectively. The impact of HIF-1α deletion on tumor-initiating potential was investigated using tumorsphere assays, limiting dilution transplantation and gene expression analysis. Efficient deletion of HIF-1α reduced primary tumor growth and suppressed lung metastases, prolonging survival. Loss of HIF-1α led to reduced expression of markers of the basal lineage (K5/K14) in cells and tumors and of multiple genes involved in the epithelial-to-mesenchymal transition. HIF-1α also enhanced tumorsphere formation at normoxia and hypoxia. Decreased expression of several genes in the Notch pathway as well as Vegf and Prominin-1 (CD133)was observed in response to Hif1a deletion. Immunohistochemistry confirmed that CD133 expression was reduced in KO cells and in tumorspheres. Tumorsphere formation was enhanced in CD133hi versus CD133neg cells sorted from PyMT tumors. Limiting dilution transplantation of WT and KO tumor cells into immunocompetent recipients revealed > 30-fold enrichment of TICs in WT cells. These results demonstrate that HIF-1α plays a key role in promoting primary mammary tumor growth and metastasis, in part through regulation of TICs. HIF-1α regulates expression of several members of the Notch pathway, CD133 and markers of the basal lineage in mammary tumors. Our results suggest that CD133, which has not been profiled extensively in breast cancer, may be a useful marker of TICs in the PyMT mouse model. These data reveal for the first time that HIF-1α directly regulates breast TIC activity in vivo.

190 citations


Journal ArticleDOI
TL;DR: This study identified and tested a set of putative biomarkers of breast cancer and demonstrated that altered levels of these miRNAs in serum from patients with breast cancer are particularly associated with the presence of metastatic disease.
Abstract: MicroRNAs (miRNAs) are a group of small noncoding RNAs involved in the regulation of gene expression. As such, they regulate a large number of cellular pathways, and deregulation or altered expression of miRNAs is associated with tumorigenesis. In the current study, we evaluated the feasibility and clinical utility of circulating miRNAs as biomarkers for the detection and staging of breast cancer. miRNAs were extracted from a set of 84 tissue samples from patients with breast cancer and eight normal tissue samples obtained after breast-reductive surgery. After reverse transcription and preamplification, 768 miRNAs were profiled by using the TaqMan low-density arrays. After data normalization, unsupervised hierarchical cluster analysis (UHCA) was used to investigate global differences in miRNA expression between cancerous and normal samples. With fold-change analysis, the most discriminating miRNAs between both tissue types were selected, and their expression was analyzed on serum samples from 20 healthy volunteers and 75 patients with breast cancer, including 16 patients with untreated metastatic breast cancer. miRNAs were extracted from 200 μl of serum, reverse transcribed, and analyzed in duplicate by using polymerase chain reaction (qRT-PCR). UHCA showed major differences in miRNA expression between tissue samples from patients with breast cancer and tissue samples from breast-reductive surgery (P < 0.0001). Generally, miRNA expression in cancerous samples tends to be repressed when compared with miRNA expression in healthy controls (P = 0.0685). The four most discriminating miRNAs by fold-change (miR-215, miR-299-5p, miR-411, and miR-452) were selected for further analysis on serum samples. All miRNAs at least tended to be differentially expressed between serum samples from patients with cancer and serum samples from healthy controls (miR-215, P = 0.094; miR-299-5P, P = 0.019; miR-411, P = 0.002; and miR-452, P = 0.092). For all these miRNAs, except for miR-452, the greatest difference in expression was observed between serum samples from healthy volunteers and serum samples from untreated patients with metastatic breast cancer. Our study provides a basis for the establishment of miRNAs as biomarkers for the detection and eventually staging of breast cancer through blood-borne testing. We identified and tested a set of putative biomarkers of breast cancer and demonstrated that altered levels of these miRNAs in serum from patients with breast cancer are particularly associated with the presence of metastatic disease.

190 citations


Journal ArticleDOI
TL;DR: Dual-energy contrast-enhanced digital mammography as an adjunct to MX ± US improves diagnostic accuracy compared toMX ± US alone and adds iodinated contrast agent to MX facilitates the visualization of breast lesions.
Abstract: The purpose of this study was to compare the diagnostic accuracy of dual-energy contrast-enhanced digital mammography (CEDM) as an adjunct to mammography (MX) ± ultrasonography (US) with the diagnostic accuracy of MX ± US alone. One hundred ten consenting women with 148 breast lesions (84 malignant, 64 benign) underwent two-view dual-energy CEDM in addition to MX and US using a specially modified digital mammography system (Senographe DS, GE Healthcare). Reference standard was histology for 138 lesions and follow-up for 12 lesions. Six radiologists from 4 institutions interpreted the images using high-resolution softcopy workstations. Confidence of presence (5-point scale), probability of cancer (7-point scale), and BI-RADS scores were evaluated for each finding. Sensitivity, specificity and ROC curve areas were estimated for each reader and overall. Visibility of findings on MX ± CEDM and MX ± US was evaluated with a Likert scale. The average per-lesion sensitivity across all readers was significantly higher for MX ± US ± CEDM than for MX ± US (0.78 vs. 0.71 using BIRADS, p = 0.006). All readers improved their clinical performance and the average area under the ROC curve was significantly superior for MX ± US ± CEDM than for MX ± US ((0.87 vs 0.83, p = 0.045). Finding visibility was similar or better on MX ± CEDM than MX ± US in 80% of cases. Dual-energy contrast-enhanced digital mammography as an adjunct to MX ± US improves diagnostic accuracy compared to MX ± US alone. Addition of iodinated contrast agent to MX facilitates the visualization of breast lesions.

187 citations


Journal ArticleDOI
TL;DR: This phase II study demonstrates that cisplatin chemotherapy has high activity in women with a BRCA1 mutation and metastatic breast cancer and is generally well tolerated.
Abstract: The purpose of this investigation was to evaluate the efficacy of cisplatin chemotherapy in BRCA1 mutation carriers with metastatic breast cancer. In a phase II, open-label study, 20 patients with metastatic breast cancer who carried a mutation in BRCA1 were treated with cisplatin 75 mg/m2 intravenously every 3 weeks as part of a 21-day cycle for 6 cycles. Restaging studies to assess response were performed after cycles 2 and 6, and every three months thereafter. Between July 2007 and January 2009, 20 patients were enrolled. Baseline characteristics were as follows: 65% had prior adjuvant chemotherapy, 55% had prior chemotherapy for metastatic breast cancer; mean age was 48 years (ranges 32 to 70); 30% estrogen receptor (ER) or progesterone receptor (PR)+, 70% ER/PR/Human Epidermal Growth Factor Receptor 2 (HER2)- and 0% HER2+. Overall response rate was 80%; nine patients experienced a complete clinical response (45%) and seven experienced a partial response (35%). Overall survival was 80% at one year, 60% at two years and 25% at three years. Four of the 20 patients are alive four years after initiating treatment. The median time to progression was 12 months. The median survival from the start of cisplatinum treatment was 30 months. Cisplatin-related adverse events, including nausea (50%), anemia (5%) and neutropenia (35%) were mostly mild to moderate in severity. This phase II study demonstrates that cisplatin chemotherapy has high activity in women with a BRCA1 mutation and metastatic breast cancer and is generally well tolerated. This trial is registered retrospectively on the clinical trials website ClinicalTrials.gov. The identifier is NCT01611727 .

178 citations


Journal ArticleDOI
TL;DR: The DETECT trial for metastatic breast cancer patients was designed to directly compare the prognostic impact of two commercially available CTC assays that are prominent representatives of immunocytochemical and RT-PCR based technologies and indicates that the CellSearch system is superior to the Adna test in predicting clinical outcome in advanced breast cancer.
Abstract: There is a multitude of assays for the detection of circulating tumor cells (CTCs) but a very limited number of studies comparing the clinical relevance of results obtained with different test methods. The DETECT trial for metastatic breast cancer patients was designed to directly compare the prognostic impact of two commercially available CTC assays that are prominent representatives of immunocytochemical and RT-PCR based technologies. In total, 254 metastatic breast cancer patients were enrolled in this prospective multicenter trial. CTCs were assessed using both the AdnaTest Breast Cancer and the CellSearch system according to the manufacturers' instructions. With the CellSearch system, 116 of 221 (50%) evaluable patients were CTC-positive based on a cut-off level at 5 or more CTCs. The median overall survival (OS) was 18.1 months in CTC-positive patients. (95%-CI: 15.1-22.1 months) compared to 27 months in CTC-negative patients (23.5-30.7 months; p<0.001). This prognostic impact for OS was also significant in the subgroups of patients with triple negative, HER2-positive and hormone receptor-positive/HER2-negative primary tumors. The progression free survival (PFS) was not correlated with CTC status in our cohort receiving different types and lines of systemic treatment (p = 0.197). In multivariate analysis, the presence of CTCs was an independent predictor for OS (HR: 2.7, 95%-CI: 1.6-4.2). When the AdnaTest Breast was performed, 88 of 221 (40%) patients were CTC-positive. CTC-positivity assessed by the AdnaTest Breast had no association with PFS or OS. The prognostic relevance of CTC detection in metastatic breast cancer patients depends on the test method. The present results indicate that the CellSearch system is superior to the AdnaTest Breast Cancer in predicting clinical outcome in advanced breast cancer. Current Controlled Trials Registry number ISRCTN59722891 .

Journal ArticleDOI
TL;DR: This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations, suggesting genetic stability of these models over time.
Abstract: Introduction: Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. Methods: Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. Results: Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. Conclusions: This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents.

Journal ArticleDOI
TL;DR: PIK3CA mutation is an emerging tumor marker which might become used in treatment-choosing process and should be now confirmed in larger series of patients included in randomized prospective ERBB2-positive breast cancer patients.
Abstract: PIK3CA is the oncogene showing the highest frequency of gain-of-function mutations in breast cancer, but the prognostic value of PIK3CA mutation status is controversial. We investigated the prognostic significance of PIK3CA mutation status in a series of 452 patients with unilateral invasive primary breast cancer and known long-term outcome (median follow-up 10 years). PIK3CA mutations were identified in 151 tumors (33.4%). The frequency of PIK3CA mutations differed markedly according to hormone receptor (estrogen receptor alpha [ERα] and progesterone receptor [PR]) and ERBB2 status, ranging from 12.5% in the triple-negative subgroup (ER-/PR-/ERBB2-) to 41.1% in the HR+/ERBB2- subgroup. PIK3CA mutation was associated with significantly longer metastasis-free survival in the overall population (P = 0.0056), and especially in the PR-positive and ERBB2-positive subgroups. In Cox multivariate regression analysis, the prognostic significance of PIK3CA mutation status persisted only in the ERBB2-positive subgroup. This study confirms the high prevalence of PIK3CA mutations in breast cancer. PIK3CA mutation is an emerging tumor marker which might become used in treatment-choosing process. The independent prognostic value of PIK3CA mutation status in ERBB2-positive breast cancer patients should be now confirmed in larger series of patients included in randomized prospective ERBB2-based clinical trials.

Journal ArticleDOI
TL;DR: Presence of CTC in breast cancer patients before undergoing surgery with curative intent is associated with an increased risk for breast cancer-related death, and CTC, progesterone receptor and N-stage were independent predictors of BRD in multivariate analysis.
Abstract: The presence of circulating tumor cells (CTC) is an independent prognostic factor for progression-free survival and breast cancer-related death (BRD) for patients with metastatic breast cancer beginning a new line of systemic therapy. The current study was undertaken to explore whether the presence of CTC at the time of diagnosis was associated with recurrence-free survival (RFS) and BRD. In a prospective single center study, CTC were enumerated with the CellSearch system in 30 ml of peripheral blood of 602 patients before undergoing surgery for breast cancer. There were 97 patients with a benign tumor, 101 did not meet the inclusion criteria of which there were 48 patients with DCIS, leaving 404 stage I to III patients. Patients were stratified into unfavorable (CTC ≥1) and favorable (CTC = 0) prognostic groups. ≥1 CTC in 30 ml blood was detected in 15 (15%) benign tumors, in 9 DCIS (19%), in 28 (16%) stage I, 32 (18%) stage II and in 16 (31%) patients with stage III. In stage I to III patients 76 (19%) had ≥1 CTC of whom 16 (21.1%) developed a recurrence. In 328 patients with 0 CTC 38 (11.6%) developed a recurrence. Four-year RFS was 88.4% for favorable CTC and 78.9% for unfavorable CTC (P = 0.038). A total of 25 patients died of breast cancer-related causes and 11 (44%) had ≥1 CTC. BRD was 4.3% for favorable and 14.5% for unfavorable CTC (P = 0.001). In multivariate analysis ≥1 CTC was associated with distant disease-free survival, but not for overall recurrence-free survival. CTC, progesterone receptor and N-stage were independent predictors of BRD in multivariate analysis. Presence of CTC in breast cancer patients before undergoing surgery with curative intent is associated with an increased risk for breast cancer-related death.

Journal ArticleDOI
TL;DR: Spontaneous mammary tumors that develop in STAT1-/- mice closely recapitulate the progression, ovarian hormone responsiveness, and molecular characteristics of human luminal breast cancer, the most common subtype of human breast neoplasms, and thus represent a valuable platform for testing novel treatments and detection modalities.
Abstract: Although breast cancers expressing estrogen receptor-α (ERα) and progesterone receptors (PR) are the most common form of mammary malignancy in humans, it has been difficult to develop a suitable mouse model showing similar steroid hormone responsiveness. STAT transcription factors play critical roles in mammary gland tumorigenesis, but the precise role of STAT1 remains unclear. Herein, we show that a subset of human breast cancers display reduced STAT1 expression and that mice lacking STAT1 surprisingly develop ERα+/PR+ mammary tumors. We used a combination of approaches, including histological examination, gene targeted mice, gene expression analysis, tumor transplantaion, and immunophenotyping, to pursue this study. Forty-five percent (37/83) of human ERα+ and 22% (17/78) of ERα- breast cancers display undetectable or low levels of STAT1 expression in neoplastic cells. In contrast, STAT1 expression is elevated in epithelial cells of normal breast tissues adjacent to the malignant lesions, suggesting that STAT1 is selectively downregulated in the tumor cells during tumor progression. Interestingly, the expression levels of STAT1 in the tumor-infiltrating stromal cells remain elevated, indicating that single-cell resolution analysis of STAT1 level in primary breast cancer biopsies is necessary for accurate assessment. Female mice lacking functional STAT1 spontaneously develop mammary adenocarcinomas that comprise > 90% ERα+/PR+ tumor cells, and depend on estrogen for tumor engraftment and progression. Phenotypic marker analyses demonstrate that STAT1-/- mammary tumors arise from luminal epithelial cells, but not myoepithelial cells. In addition, the molecular signature of the STAT1-/- mammary tumors overlaps closely to that of human luminal breast cancers. Finally, introduction of wildtype STAT1, but not a STAT1 mutant lacking the critical Tyr701 residue, into STAT1-/- mammary tumor cells results in apoptosis, demonstrating that the tumor suppressor function of STAT1 is cell-autonomous and requires its transcriptional activity. Our findings demonstrate that STAT1 suppresses mammary tumor formation and its expression is frequently lost during breast cancer progression. Spontaneous mammary tumors that develop in STAT1-/- mice closely recapitulate the progression, ovarian hormone responsiveness, and molecular characteristics of human luminal breast cancer, the most common subtype of human breast neoplasms, and thus represent a valuable platform for testing novel treatments and detection modalities.

Journal ArticleDOI
TL;DR: The Human Invasion Signature is derived, a gene signature specific to breast cancer migration and invasion that can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters.
Abstract: Introduction: Metastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation. Methods: In the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDAMB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for geneexpression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS). Results: Unsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters. Conclusions: Our data provide novel insights into, and reveal previously unknown mediators of, the metastatic steps of invasion and dissemination in human breast tumors in vivo. Because migration and invasion are the early steps of metastatic progression, the novel markers that we identified here might become valuable prognostic tools or therapeutic targets in breast cancer.

Journal ArticleDOI
TL;DR: Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis, and Targeting breast cancer with up-regulatedHSP90 may potentially improve the effectiveness of clinical intervention in this disease.
Abstract: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease.

Journal ArticleDOI
TL;DR: The results from the present study suggest that targeting of CCL21-CCR7 signaling is a valid approach for breast cancer therapy and that let-7a directly binds to the 3'UTR of CCR7 and blocks its protein expression, thereby suppressing migration and invasion of human breast cancer cells.
Abstract: C-C chemokine receptor type 7 (CCR7) plays an important role in chemotactic and metastatic responses in various cancers, including breast cancer. In the present study, the authors demonstrated that microRNA (miRNA) let-7a downregulates CCR7 expression and directly influences the migration and invasion of breast cancer cells. The expression of CCR7, its ligand CCL21, and let-7a was detected in breast cancer cell lines and in breast cancer patient tissues. Synthetic let-7a and an inhibitor of let-7a were transfected into MDA-MB-231 and MCF-7 breast cancer cells, respectively, and cell proliferation, cell migration, and invasion assays were performed. To confirm the fact that 3'UTR of CCR7 is a direct target of let-7a, a luciferase assay for the reporter gene expressing the let-7a binding sites of CCR7 3'UTR was used. An in vivo invasion animal model system using transparent zebrafish embryos was also established to determine the let-7a effect on breast cancer cell invasion. First, a higher expression of both CCR7 and CCL21 in malignant tissues than in their normal counterparts from breast cancer patients was observed. In addition, a reverse correlation in the expression of CCR7 and let-7a in breast cancer cell lines and breast cancer patient tissues was detected. Synthetic let-7a decreased breast cancer cell proliferation, migration, and invasion, as well as CCR7 protein expression in MDA-MB-231 cells. The let-7a inhibitor reversed the let-7a effects on the MCF-7 cells. The 3'UTR of CCR7 was confirmed as a direct target of let-7a by using the luciferase assay for the reporter gene expressing let-7a CCR7 3'UTR binding sites. Notably, when analyzing in vivo invasion, MDA-MB 231 cells after synthetic let-7a transfection were unable to invade the vessels in zebrafish embryos. The results from the present study suggest that targeting of CCL21-CCR7 signaling is a valid approach for breast cancer therapy and that let-7a directly binds to the 3'UTR of CCR7 and blocks its protein expression, thereby suppressing migration and invasion of human breast cancer cells. Furthermore, the present study underscores the therapeutic potential of let-7a as an antitumor and antimetastatic manager in breast cancer patients.

Journal ArticleDOI
TL;DR: Kim et al. as discussed by the authors showed that seven breast cancer susceptibility loci, which were previously identified in European and/or Chinese populations, could be directly replicated in Korean women and provided strong evidence implicating rs13393577 at 2q34 as a new risk variant for breast cancer.
Abstract: Although approximately 25 common genetic susceptibility loci have been identified to be independently associated with breast cancer risk through genome-wide association studies (GWAS), the genetic risk variants reported to date only explain a small fraction of the heritability of breast cancer. Furthermore, GWAS-identified loci were primarily identified in women of European descent. To evaluate previously identified loci in Korean women and to identify additional novel breast cancer susceptibility variants, we conducted a three-stage GWAS that included 6,322 cases and 5,897 controls. In the validation study using Stage I of the 2,273 cases and 2,052 controls, seven GWAS-identified loci [5q11.2/MAP3K1 (rs889312 and rs16886165), 5p15.2/ROPN1L (rs1092913), 5q12/MRPS30 (rs7716600), 6q25.1/ESR1 (rs2046210 and rs3734802), 8q24.21 (rs1562430), 10q26.13/FGFR2 (rs10736303), and 16q12.1/TOX3 (rs4784227 and rs3803662)] were significantly associated with breast cancer risk in Korean women (Ptrend < 0.05). To identify additional genetic risk variants, we selected the most promising 17 SNPs in Stage I and replicated these SNPs in 2,052 cases and 2,169 controls (Stage II). Four SNPs were further evaluated in 1,997 cases and 1,676 controls (Stage III). SNP rs13393577 at chromosome 2q34, located in the Epidermal Growth Factor Receptor 4 (ERBB4) gene, showed a consistent association with breast cancer risk with combined odds ratios (95% CI) of 1.53 (1.37-1.70) (combined P for trend = 8.8 × 10-14). This study shows that seven breast cancer susceptibility loci, which were previously identified in European and/or Chinese populations, could be directly replicated in Korean women. Furthermore, this study provides strong evidence implicating rs13393577 at 2q34 as a new risk variant for breast cancer.

Journal ArticleDOI
TL;DR: Presenting features, patterns of recurrence and survival of HER2-positive breast cancer differed by HR status and these differences should be further explored and integrated in the design of clinical trials.
Abstract: Introduction: In gene expression experiments, hormone receptor (HR)-positive/human epidermal growth factor-2 (HER2)-positive tumors generally cluster within the luminal B subset; whereas HR-negative/HER2-positive tumors reside in the HER2-enriched subset. We investigated whether the clinical behavior of HER2-positive tumors differs by HR status. Methods: We evaluated 3,394 patients who presented to National Comprehensive Cancer Network (NCCN) centers with stage I to III HER2-positive breast cancer between 2000 and 2007. Tumors were grouped as HR-positive/HER2positive (HR+/HER2+) or HR-negative/HER2-positive (HR-/HER2+). Chi-square, logistic regression and Cox hazard proportional regression were used to compare groups. Results: Median follow-up was four years. Patients with HR-/HER2+ tumors (n = 1,379, 41% of total) were more likely than those with HR+/HER-2+ disease (n = 2,015, 59% of total) to present with high histologic grade and higher stages (P <0.001). Recurrences were recorded for 458 patients. HR-/HER2+ patients were less likely to experience first recurrence in bone (univariate Odds Ratio (OR) = 0.53, 95% Confidence Interval (CI): 0.34 to 0.82, P = 0.005) and more likely to recur in brain (univariate OR = 1.75, 95% CI: 1.05 to 2.93, P = 0.033). A lower risk of recurrence in bone persisted after adjusting for age, stage and adjuvant trastuzumab therapy (OR = 0.53, 95% CI: 0.34 to 0.83, P = 0.005) and when first and subsequent sites of recurrence were both considered (multivariable OR = 0.55, 95% CI: 0.37 to 0.80, P = 0.002). As compared with patients with HR+/HER2+ disease, those with HR-/HER2+ disease had significantly increased hazard of early, but not late, death (hazard ratio of death zero to two years after diagnosis = 1.92, 95% CI: 1.28 to 2.86, P = 0.002, hazard ratio of death two to five years after diagnosis = 1.55, 95% CI: 1.19 to 2.00, P = 0.001; hazard ratio of death more than five years after diagnosis = 0.81, 95% CI: 0.55 to 1.19, P = 0.285, adjusting for age, race/ ethnicity, stage at diagnosis, grade and year of diagnosis). Conclusions: Presenting features, patterns of recurrence and survival of HER2-positive breast cancer differed by HR status. These differences should be further explored and integrated in the design of clinical trials.

Journal ArticleDOI
TL;DR: The data suggest that patients with HR-/HER2- subtype tumors not achieving pCR may benefit from novel strategies to improve local-regional control and trastuzumab on local-Regional control in HER2+ tumors.
Abstract: Breast cancers of different molecular subtypes have different survival rates. The goal of this study was to identify patients at high risk for local-regional recurrence according to response to neoadjuvant chemotherapy and surrogate markers of molecular subtypes in patients undergoing breast conserving therapy (BCT). Clinicopathologic data from 595 breast cancer patients who received neoadjuvant chemotherapy and BCT from 1997 to 2005 were identified. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) expression determined by immunohistochemistry were used to construct the following subtypes: ER+ or PR+ and HER2- (hormone receptor (HR)+/HER2-; 52%), ER+ or PR+ and HER2+ (HR+/HER2+; 9%), ER- and PR- and HER2+ (HR-/HER2+; 7%) and ER- and PR- and HER2- (HR-/HER2-; 32%). Actuarial rates were calculated using the Kaplan-Meier method and compared using the log-rank test. Cox proportional hazards models were used for multivariate analysis (MVA). After a median follow-up of 64 months, the five-year local-regional recurrence (LRR)-free survival rate for all patients was 93.8%. The five-year LRR-free survival rates varied by subtype: HR+/HER2- 97.0%, HR+/HER2+ 95.9%, HR-/HER2+ 86.5% and HR-/HER2- 89.5% (P = 0.001). In addition to subtype, clinical stage III disease (90% vs. 95% for I/II, P = 0.05), high nuclear grade (92% vs. 97% with low/intermediate grade, P = 0.03), presence of lymphovascular invasion (LVI) (89% vs. 95% in those without LVI, P = 0.02) and four or more positive lymph nodes on pathologic examination (87% vs. 95% with zero to three positive lymph nodes, P = 0.03) were associated with lower five-year LRR-free survival on univariate analysis. On MVA, HR-/HER2+ and HR-/HER2- subtypes and disease in four or more lymph nodes were associated with decreased LRR-free survival. A pathologic complete response (pCR) was associated with improved LRR-free survival. Patients with HR+/HER2- and HR+/HER2+ subtypes had excellent LRR-free survival regardless of tumor response to neoadjuvant chemotherapy. Patients with HR-/HER2+ and HR-/HER2- subtypes with poor response to neoadjuvant chemotherapy had worse LRR-free survival after BCT. Additional study is needed to determine the impact of trastuzumab on local-regional control in HER2+ tumors. Our data suggest that patients with HR-/HER2- subtype tumors not achieving pCR may benefit from novel strategies to improve local-regional control.

Journal ArticleDOI
TL;DR: This work uses a public domain image-processing software for the fully automated analysis of MD and penalized regression to construct a measure that mimics a well-established semiautomated measure (Cumulus), which has the potential to facilitate the integration of mammographic density measurements into large-scale research studies and subsequently into clinical practice.
Abstract: Mammographic density (MD) is a strong, independent risk factor for breast cancer, but measuring MD is time consuming and reader dependent. Objective MD measurement in a high-throughput fashion would enable its wider use as a biomarker for breast cancer. We use a public domain image-processing software for the fully automated analysis of MD and penalized regression to construct a measure that mimics a well-established semiautomated measure (Cumulus). We also describe measures that incorporate additional features of mammographic images for improving the risk associations of MD and breast cancer risk. We randomly partitioned our dataset into a training set for model building (733 cases, 748 controls) and a test set for model assessment (765 cases, 747 controls). The Pearson product-moment correlation coefficient (r) was used to compare the MD measurements by Cumulus and our automated measure, which mimics Cumulus. The likelihood ratio test was used to validate the performance of logistic regression models for breast cancer risk, which included our measure capturing additional information in mammographic images. We observed a high correlation between the Cumulus measure and our measure mimicking Cumulus (r = 0.884; 95% CI, 0.872 to 0.894) in an external test set. Adding a variable, which includes extra information to percentage density, significantly improved the fit of the logistic regression model of breast cancer risk (P = 0.0002). Our results demonstrate the potential to facilitate the integration of mammographic density measurements into large-scale research studies and subsequently into clinical practice.

Journal ArticleDOI
TL;DR: Contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations is similar to therisk in patients with sporadic breast cancer, and the mutation status should guide decision making for contralateral mastectomy.
Abstract: While it has been reported that the risk of contralateral breast cancer in patients from BRCA1 or BRCA2 positive families is elevated, little is known about contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations. A retrospective, multicenter cohort study was performed from 1996 to 2011 and comprised 6,235 women with unilateral breast cancer from 6,230 high risk families that had tested positive for BRCA1 (n = 1,154) or BRCA2 (n = 575) mutations or tested negative (n = 4,501). Cumulative contralateral breast cancer risks were calculated using the Kaplan-Meier product-limit method and were compared between groups using the log-rank test. Cox regression analysis was applied to assess the impact of the age at first breast cancer and the familial history stratified by mutation status. The cumulative risk of contralateral breast cancer 25 years after first breast cancer was 44.1% (95%CI, 37.6% to 50.6%) for patients from BRCA1 positive families, 33.5% (95%CI, 22.4% to 44.7%) for patients from BRCA2 positive families and 17.2% (95%CI, 14.5% to 19.9%) for patients from families that tested negative for BRCA1/2 mutations. Younger age at first breast cancer was associated with a higher risk of contralateral breast cancer. For women who had their first breast cancer before the age of 40 years, the cumulative risk of contralateral breast cancer after 25 years was 55.1% for BRCA1, 38.4% for BRCA2, and 28.4% for patients from BRCA1/2 negative families. If the first breast cancer was diagnosed at the age of 50 or later, 25-year cumulative risks were 21.6% for BRCA1, 15.5% for BRCA2, and 12.9% for BRCA1/2 negative families. Contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations is similar to the risk in patients with sporadic breast cancer. Thus, the mutation status should guide decision making for contralateral mastectomy.

Journal ArticleDOI
TL;DR: Assessment of proliferation by using Ki-67LI and MS can distinguish subgroups of patients within luminal/hormone receptor-positive breast cancer significantly different in clinical outcomes, and could provide a cost-effective method for prognostic subclassification of luminal-horm one receptor- positive breast cancer in routine clinical practice.
Abstract: Although the prognostic significance of proliferation in early invasive breast cancer has been recognized for a long time, recent gene-expression profiling studies have reemphasized its biologic and prognostic value and the potential application of its assessment in routine practice, particularly to define prognostic subgroups of luminal/hormone receptor-positive (HR+) tumors. This study aimed to assess the prognostic value of a proliferation assay by using Ki-67 immunohistochemistry as compared with mitotic count scores. Proliferation was assessed by using Ki-67 labeling index (Ki-67LI) and mitotic scores in a large (n = 1,550) and well-characterized series of clinically annotated primary operable invasive breast cancer with long-term follow-up. Tumors were phenotyped based on their IHC profiles into luminal/HR+, HER2+, and triple-negative (TN) classes. We used a split-sample development and validation approach to determine the optimal Ki-67LI cut-offs. The optimal cut-points of Ki-67LI were 10% and 50% for the luminal class. Both Ki7LI and MS were able to split luminal tumors into subgroups with significantly variable outcomes, independent of other variables. Neither mitotic count scores nor Ki-67LI was associated with outcome in the HER2+ or the TN classes. Assessment of proliferation by using Ki-67LI and MS can distinguish subgroups of patients within luminal/hormone receptor-positive breast cancer significantly different in clinical outcomes. Overall, both Ki-67 LI and mitotic-count scores showed comparable results. The method described could provide a cost-effective method for prognostic subclassification of luminal/hormone receptor-positive breast cancer in routine clinical practice.

Journal ArticleDOI
TL;DR: CIP2A is a major determinant mediating bortezomib-induced apoptosis in TNBC cells and may be a potential therapeutic target in T NBC, which currently has no specific therapeutic targets.
Abstract: Triple negative breast cancer (TNBC) is very aggressive and currently has no specific therapeutic targets, such as hormone receptors or human epidermal growth factor receptor type 2 (HER2); therefore, prognosis is poor. Bortezomib, a proteasome inhibitor, may exert efficacy in TNBC through its multiple cellular effects. Here, we tested the efficacy of bortezomib and examined the drug mechanism in breast cancer cells. Five breast cancer cell lines: TNBC HCC-1937, MDA-MB-231, and MDA-MB-468; HER2-overexpressing MDA-MB-453; and estrogen receptor positive MCF-7 were used for in vitro studies. Apoptosis was examined by both flow cytometry and Western Blot. Signal transduction pathways in cells were assessed by Western Blot. Gene silencing was done by small interfering RNA (siRNA). In vivo efficacy of bortezomib was tested in nude mice with breast cancer xenografts. Immunohistochemical study was performed on tumor tissues from patients with TNBC. Bortezomib induced significant apoptosis, which was independent of its proteasome inhibition, in the three TNBC cell lines, but not in MDA-MB-453 or MCF-7 cells. Furthermore, cancerous inhibitor of protein phosphatase 2A (CIP2A), a cellular inhibitor of protein phosphatase 2A (PP2A), mediated the apoptotic effect of bortezomib. We showed that bortezomib inhibited CIP2A in association with p-Akt downregulation in a dose- and time-dependent manner in all sensitive TNBC cells, whereas no alterations in CIP2A expression and p-Akt were noted in bortezomib-resistant cells. Overexpression of CIP2A upregulated p-Akt and protected MDA-MB-231 and MDA-MB-468 cells from bortezomib-induced apoptosis, whereas silencing CIP2A by siRNA overcame the resistance to bortezomib-induced apoptosis in MCF-7 cells. In addition, bortezomib downregulated CIP2A mRNA but did not affect the degradation of CIP2A protein. Furthermore, bortezomib exerted in vivo antitumor activity in HCC-1937 xenografted tumors, but not in MCF-7 tumors. Bortezomib downregulated CIP2A expression in the HCC-1937 tumors but not in the MCF-7 tumors. Importantly, CIP2A expression is readily detectable in tumor samples from TNBC patients. CIP2A is a major determinant mediating bortezomib-induced apoptosis in TNBC cells. CIP2A may thus be a potential therapeutic target in TNBC.

Journal ArticleDOI
TL;DR: Estimates of numbers of cases captured by screening stratified by age provide insight into how individualised screening programs might appear in practice.
Abstract: Over the last decade several breast cancer risk alleles have been identified which has led to an increased interest in individualised risk prediction for clinical purposes. We investigate the performance of an up-to-date 18 breast cancer risk single-nucleotide polymorphisms (SNPs), together with mammographic percentage density (PD), body mass index (BMI) and clinical risk factors in predicting absolute risk of breast cancer, empirically, in a well characterised Swedish case-control study of postmenopausal women. We examined the efficiency of various prediction models at a population level for individualised screening by extending a recently proposed analytical approach for estimating number of cases captured. The performance of a risk prediction model based on an initial set of seven breast cancer risk SNPs is improved by additionally including eleven more recently established breast cancer risk SNPs (P = 4.69 × 10-4). Adding mammographic PD, BMI and all 18 SNPs to a Swedish Gail model improved the discriminatory accuracy (the AUC statistic) from 55% to 62%. The net reclassification improvement was used to assess improvement in classification of women into low, intermediate, and high categories of 5-year risk (P = 8.93 × 10-9). For scenarios we considered, we estimated that an individualised screening strategy based on risk models incorporating clinical risk factors, mammographic density and SNPs, captures 10% more cases than a screening strategy using the same resources, based on age alone. Estimates of numbers of cases captured by screening stratified by age provide insight into how individualised screening programs might appear in practice. Taken together, genetic risk factors and mammographic density offer moderate improvements to clinical risk factor models for predicting breast cancer.

Journal ArticleDOI
TL;DR: Analysis of breastfeeding and risk of breast cancer using a large matched sample of BRCA mutation carriers extends the previous findings that breastfeeding protects against BRCa1-, but not BRC a2-associated breast cancer.
Abstract: Introduction Breastfeeding has been inversely related to breast cancer risk in the general population. Clarifying the role of breastfeeding among women with a BRCA1 or BRCA2 mutation may be helpful for risk assessment and for recommendations regarding prevention. We present an updated analysis of breastfeeding and risk of breast cancer using a large matched sample of BRCA mutation carriers.

Journal ArticleDOI
TL;DR: Models developed using extended family history and genetic data, such as the IBIS model, also perform well in women considered at average risk, and extending such models to include additional nongenetic information may improve performance in women across the breast cancer risk continuum.
Abstract: Clinicians use different breast cancer risk models for patients considered at average and above-average risk, based largely on their family histories and genetic factors. We used longitudinal cohort data from women whose breast cancer risks span the full spectrum to determine the genetic and nongenetic covariates that differentiate the performance of two commonly used models that include nongenetic factors - BCRAT, also called Gail model, generally used for patients with average risk and IBIS, also called Tyrer Cuzick model, generally used for patients with above-average risk. We evaluated the performance of the BCRAT and IBIS models as currently applied in clinical settings for 10-year absolute risk of breast cancer, using prospective data from 1,857 women over a mean follow-up length of 8.1 years, of whom 83 developed cancer. This cohort spans the continuum of breast cancer risk, with some subjects at lower than average population risk. Therefore, the wide variation in individual risk makes it an interesting population to examine model performance across subgroups of women. For model calibration, we divided the cohort into quartiles of model-assigned risk and compared differences between assigned and observed risks using the Hosmer-Lemeshow (HL) chi-squared statistic. For model discrimination, we computed the area under the receiver operator curve (AUC) and the case risk percentiles (CRPs). The 10-year risks assigned by BCRAT and IBIS differed (range of difference 0.001 to 79.5). The mean BCRAT- and IBIS-assigned risks of 3.18% and 5.49%, respectively, were lower than the cohort's 10-year cumulative probability of developing breast cancer (6.25%; 95% confidence interval (CI) = 5.0 to 7.8%). Agreement between assigned and observed risks was better for IBIS (HL X42 = 7.2, P value 0.13) than BCRAT (HL X42 = 22.0, P value <0.001). The IBIS model also showed better discrimination (AUC = 69.5%, CI = 63.8% to 75.2%) than did the BCRAT model (AUC = 63.2%, CI = 57.6% to 68.9%). In almost all covariate-specific subgroups, BCRAT mean risks were significantly lower than the observed risks, while IBIS risks showed generally good agreement with observed risks, even in the subgroups of women considered at average risk (for example, no family history of breast cancer, BRCA1/2 mutation negative). Models developed using extended family history and genetic data, such as the IBIS model, also perform well in women considered at average risk (for example, no family history of breast cancer, BRCA1/2 mutation negative). Extending such models to include additional nongenetic information may improve performance in women across the breast cancer risk continuum.

Journal ArticleDOI
TL;DR: An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women who never used HRT, and a possible role of sex hormones in the etiology of hormone-receptor negative tumors is provided.
Abstract: Introduction: Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormonereceptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. Methods: Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesteronereceptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. Results: For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m 2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m 2 ) than for more overweight women (BMI ≥25.9 kg/m 2 ) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. Conclusions: An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women who never used HRT. Furthermore, postmenopausal HRT users were at an increased risk of ER-PR- as well as ER+PR+ tumors, especially among leaner women. For hormone-receptor positive tumors, but not for hormonereceptor negative tumors, our study confirms an inverse association of risk with BMI among young women of

Journal ArticleDOI
TL;DR: The aim of the present study was to characterize MBC tumors transcriptionally, to classify them into comprehensive subgroups, and to compare them with female breast cancer (FBC), and to identify NAT1 as a possible prognostic biomarker for MBC.
Abstract: Introduction: Male breast cancer (MBC) is a rare and inadequately characterized disease. The aim of the present study was to characterize MBC tumors transcriptionally, to classify them into comprehensive subgroups, and to compare them with female breast cancer (FBC). Methods: A total of 66 clinicopathologically well-annotated fresh frozen MBC tumors were analyzed using Illumina Human HT-12 bead arrays, and a tissue microarray with 220 MBC tumors was constructed for validation using immunohistochemistry. Two external gene expression datasets were used for comparison purposes: 37 MBCs and 359 FBCs. Results: Using an unsupervised approach, we classified the MBC tumors into two subgroups, luminal M1 and luminal M2, respectively, with differences in tumor biological features and outcome, and which differed from the intrinsic subgroups described in FBC. The two subgroups were recapitulated in the external MBC dataset. Luminal M2 tumors were characterized by high expression of immune response genes and genes associated with estrogen receptor (ER) signaling. Luminal M1 tumors, on the other hand, despite being ER positive by immunohistochemistry showed a lower correlation to genes associated with ER signaling and displayed a more aggressive phenotype and worse prognosis. Validation of two of the most differentially expressed genes, class 1 human leukocyte antigen (HLA) and the metabolizing gene N-acetyltransferase-1 (NAT1), respectively, revealed significantly better survival associated with high expression of both markers (HLA, hazard ratio (HR) 3.6, P = 0.002; NAT1, HR 2.5, P = 0.033). Importantly, NAT1 remained significant in a multivariate analysis (HR 2.8, P = 0.040) and may thus be a novel prognostic marker in MBC. Conclusions: We have detected two unique and stable subgroups of MBC with differences in tumor biological features and outcome. They differ from the widely acknowledged intrinsic subgroups of FBC. As such, they may constitute two novel subgroups of breast cancer, occurring exclusively in men, and which may consequently require novel treatment approaches. Finally, we identified NAT1 as a possible prognostic biomarker for MBC, as suggested by NAT1 positivity corresponding to better outcome.