scispace - formally typeset
Search or ask a question

Showing papers in "British Journal of Pharmacology in 2021"


Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as mentioned in this paper provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

223 citations


Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as mentioned in this paper provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15542. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

199 citations


Journal ArticleDOI
TL;DR: Crystallization allowed the identification of the 3D structure and gating cycle of P2X receptors, including the agonist‐binding pocket, and a range of subtype‐selective antagonists, as well as positive and negative allosteric modulators.
Abstract: The known seven mammalian receptor subunits (P2X1-7) form cationic channels gated by ATP. Three subunits compose a receptor channel. Each subunit is a polypeptide consisting of two transmembrane regions (TM1 and TM2), intracellular N- and C-termini, and a bulky extracellular loop. Crystallization allowed the identification of the 3D structure and gating cycle of P2X receptors. The agonist-binding pocket is located at the intersection of two neighbouring subunits. In addition to the mammalian P2X receptors, their primitive ligand-gated counterparts with little structural similarity have also been cloned. Selective agonists for P2X receptor subtypes are not available, but medicinal chemistry supplied a range of subtype-selective antagonists, as well as positive and negative allosteric modulators. Knockout mice and selective antagonists helped to identify pathological functions due to defective P2X receptors, such as male infertility (P2X1), hearing loss (P2X2), pain/cough (P2X3), neuropathic pain (P2X4), inflammatory bone loss (P2X5), and faulty immune reactions (P2X7).

134 citations


Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as mentioned in this paper provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

133 citations


Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as discussed by the authors provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

106 citations


Journal ArticleDOI
TL;DR: An overview of novel targets addressed by clinical trials and an outlook on novel preclinical perspectives in PAH are provided.
Abstract: Therapeutic options for pulmonary arterial hypertension (PAH) have increased over the last decades. The advent of pharmacological therapies targeting the prostacyclin, endothelin, and NO pathways has significantly improved outcomes. However, for the vast majority of patients, PAH remains a life-limiting illness with no prospect of cure. PAH is characterised by pulmonary vascular remodelling. Current research focusses on targeting the underlying pathways of aberrant proliferation, migration, and apoptosis. Despite success in preclinical models, using a plethora of novel approaches targeting cellular GPCRs, ion channels, metabolism, epigenetics, growth factor receptors, transcription factors, and inflammation, successful transfer to human disease with positive outcomes in clinical trials is limited. This review provides an overview of novel targets addressed by clinical trials and gives an outlook on novel preclinical perspectives in PAH. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.

94 citations


Journal ArticleDOI
TL;DR: The current evidence about the role of mitochondrial dynamics in cardiac pathophysiology is discussed, with a particular focus on the mechanisms underlying the development of cardiac hypertrophy and heart failure, metabolic and genetic cardiomyopathies, ischaemia/reperfusion injury, atherosclerosis and ischaemic stroke.
Abstract: The process of mitochondrial dynamics is emerging as a core player in cardiovascular homeostasis. This process refers to the co-ordinated cycles of biogenesis, fusion, fission and degradation to which mitochondria constantly undergo to maintain their integrity, distribution and size. These mechanisms represent an early response to mitochondrial stress, confining organelle portions that are irreversibly damaged and preserving mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to myocardial damage and cardiac disease progression in a variety of disease models, including pressure overload, ischaemia/reperfusion and metabolic disturbance. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in cardiovascular diseases. In this review, we discuss the current evidence about the role of mitochondrial dynamics in cardiac pathophysiology, with a particular focus on the mechanisms underlying the development of cardiac hypertrophy and heart failure, metabolic and genetic cardiomyopathies, ischaemia/reperfusion injury, atherosclerosis and ischaemic stroke.

92 citations


Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as mentioned in this paper provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15541. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

87 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors investigated the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin, and they found that quercETin is known to promote p53-independent cell death in various cancer cell lines.
Abstract: Background and purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin. Experimental approach We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action. Key results Quercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death. Conclusion and implications Quercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent.

79 citations


Journal ArticleDOI
TL;DR: A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS‐CoV‐2, in vitro, is needed.
Abstract: Background and purpose Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. Experimental approach Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. Key results All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 μg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. Conclusion and implications This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.

72 citations


Journal ArticleDOI
TL;DR: The BMD gains seen with bone‐forming and dual‐action treatments are greater in treatment‐naïve patients compared to patients pretreated with anti‐resorptive treatments, however, the antifracture efficacy seems to be preserved.
Abstract: Efficient therapies are available for the treatment of osteoporosis. Anti-resorptive therapies, including bisphosphonates and denosumab, increase bone mineral density (BMD) and reduce the risk of fractures by 20-70%. Bone-forming or dual-action treatments stimulate bone formation and increase BMD more than the anti-resorptive therapies. Two studies have demonstrated that these treatments are superior to anti-resorptives in preventing fractures in patients with severe osteoporosis. Bone-forming or dual-action treatments should be followed by anti-resorptive treatment to maintain the fracture risk reduction. The BMD gains seen with bone-forming and dual-action treatments are greater in treatment-naive patients compared to patients pretreated with anti-resorptive treatments. However, the antifracture efficacy seems to be preserved. Treatment failure will often lead to switch of treatment from orally to parentally administrated anti-resorptives treatment or from anti-resorptive to bone-forming or dual-action treatment. Osteoporosis is a chronic condition and therefore needs a long-term management plan with a personalized approach to treatment. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.

Journal ArticleDOI
TL;DR: Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, Sirt3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process.
Abstract: Epigenetic mechanisms, including DNA methylation and histone post-translational modifications (PTMs), have been known to regulate chromatin structure and lineage-specific gene expression during cardiovascular development and disease. However, alterations in the landscape of histone PTMs and their contribution to the pathogenesis of incurable cardiovascular diseases such as pulmonary hypertension (PH) and associated right heart failure (RHF) remain largely unexplored. This review focusses on the studies in PH and RHF that investigated the gene families that write (histone acetyltransferases), read (bromodomain-containing proteins) or erase (histone deacetylases [HDACs] and sirtuins [SIRT]) acetyl moieties from the e-amino group of lysine residues of histones and non-histone proteins. Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, SIRT3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process. Due to the reversible nature of post-translational protein acetylation, the therapeutic efficacy of numerous small-molecule inhibitors (vorinostat, valproic acid, sodium butyrate, mocetinostat, entinostat, tubastatin A, apabetalone, JQ1 and resveratrol) have been evaluated in different preclinical models of cardiovascular disease, which revealed the promising therapeutic benefits of targeting histone acetylation pathways in the attenuation of cardiac hypertrophy, fibrosis, left heart dysfunction, PH and RHF. This review also emphasizes the need for deeper molecular insights into the contribution of epigenetic changes to PH pathogenesis and therapeutic evaluation of isoform-specific modulation in ex vivo and in vivo models of PH and RHF. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.

Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as mentioned in this paper provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15543. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the therapeutic potential of targeting the interface of SARS CoV-2 with the host via repurposing of clinically licensed drugs and evaluated their use in combinatory treatments with virus-and host-directed drugs in vitro.
Abstract: BACKGROUND AND PURPOSE: The SARS-COV-2 pandemic and the global spread of coronavirus disease 2019 (COVID-19) urgently call for efficient and safe antiviral treatment strategies. A straightforward approach to speed up drug development at lower costs is drug repurposing. Here, we investigated the therapeutic potential of targeting the interface of SARS CoV-2 with the host via repurposing of clinically licensed drugs and evaluated their use in combinatory treatments with virus- and host-directed drugs in vitro. EXPERIMENTAL APPROACH: We tested the antiviral potential of the antifungal itraconazole and the antidepressant fluoxetine on the production of infectious SARS-CoV-2 particles in the polarized Calu-3 cell culture model and evaluated the added benefit of a combinatory use of these host-directed drugs with the direct acting antiviral remdesivir, an inhibitor of viral RNA polymerase. KEY RESULTS: Drug treatments were well-tolerated and potently impaired viral replication. Importantly, both itraconazole-remdesivir and fluoxetine-remdesivir combinations inhibited the production of infectious SARS-CoV-2 particles > 90% and displayed synergistic effects, as determined in commonly used reference models for drug interaction. CONCLUSION AND IMPLICATIONS: Itraconazole-remdesivir and fluoxetine-remdesivir combinations are promising starting points for therapeutic options to control SARS-CoV-2 infection and severe progression of COVID-19.

Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as discussed by the authors provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15540. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors investigated the effect of nuciferine on folic acid-induced acute kidney injury in mice and found that nucifierine significantly inhibited ferroptosis by preventing iron accumulation and lipid peroxidation.
Abstract: Background and purpose Acute kidney injury is a common clinical problem with no definitive or specific treatment. Therefore, the molecular mechanisms of acute kidney injury must be fully understood to develop novel treatments. Nuciferine, a major bioactive compound isolated from the lotus leaf, possesses extensive pharmacological activities. Its effect on folic acid-induced acute kidney injury, however, remains unknown. Here, we aimed to clarify the pharmacological effects of nuciferine and its mechanisms of action in acute kidney injury. Experimental approach The effects of nuciferine on folic acid-induced acute kidney injury in mice were investigated. HK-2 human proximal tubular epithelial cells and HEK293T HEK cells were used to evaluate the protective effect of nuciferine on RSL3-induced ferroptosis. Key results Nuciferine treatment mitigated the pathological alterations, ameliorated inflammatory cell infiltration and improved kidney dysfunction in mice with folic acid-induced acute kidney injury. In HK-2 and HEK293T cells, nuciferine significantly prevented RSL3-induced ferroptotic cell death. Mechanistically, nuciferine significantly inhibited ferroptosis by preventing iron accumulation and lipid peroxidation in vitro and in vivo. Moreover, knockdown of glutathione (GSH) peroxidase 4 (GPX4) abolished the protective effect of nuciferine against ferroptosis. Conclusion and implications Nuciferine ameliorated renal injury in mice with acute kidney injury, perhaps by inhibiting the ferroptosis. Nuciferine may represent a novel treatment that improves recovery from acute kidney injury by targeting ferroptosis.

Journal ArticleDOI
TL;DR: This work investigated the protective effects of astaxanthin against traumatic brain injury and its underlying mechanisms of action with respect to oxidative stress and neuronal apoptosis.
Abstract: Background and purpose Oxidative stress and neuronal apoptosis play key roles in traumatic brain injury. We investigated the protective effects of astaxanthin against traumatic brain injury and its underlying mechanisms of action. Experimental approach A weight-drop model of traumatic brain injury in vivo and hydrogen peroxide exposure in vitro model were established. Brain oedema, behaviour tests, western blot, biochemical analysis, lesion volume, histopathological study and cell viability were performed. Key results Astaxanthin significantly reduced oxidative insults on Days 1, 3 and 7 after traumatic brain injury. Neuronal apoptosis was also ameliorated on Day 3. Additionally, astaxanthin improved neurological functions up to 3 weeks after traumatic brain injury. Astaxanthin treatment dramatically enhanced the expression of peroxiredoxin 2 (Prx2), nuclear factor-erythroid 2-related factor 2 (NRF2/Nrf2) and sirtuin 1 (SIRT1), while it down-regulated the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) and p38. Inhibition of Prx2 by siRNA injection reversed the beneficial effects of astaxanthin against traumatic brain injury. Additionally, Nrf2 knockout prevented the neuroprotective effects of astaxanthin in traumatic brain injury. In contrast, overexpression of Prx2 in Nrf2 knockout mice attenuated the secondary brain injury after traumatic brain injury. Moreover, inhibiting SIRT1 by EX527 dramatically inhibited the neuroprotective effects of astaxanthin and suppressed SIRT1/Nrf2/Prx2/ASK1/p38 pathway both in vivo and in vitro. Conclusion and implications Astaxanthin improved the neurological functions and protected the brain from injury after traumatic brain injury, primarily by reducing oxidative stress and neuronal death via SIRT1/Nrf2/Prx2/ASK1/p38 signalling pathway and might be a new candidate to ameliorate traumatic brain injury.

Journal ArticleDOI
TL;DR: The multiple aspects of complement activation, regulation, crosstalk with other parts of the immune system, and the options to target complement in COVID‐19 patients to halt disease progression and death are discussed.
Abstract: The complement system is an ancient part of innate immunity sensing highly pathogenic coronaviruses by mannan-binding lectin (MBL) resulting in lectin pathway activation and subsequent generation of the anaphylatoxins (ATs) C3a and C5a as important effector molecules. Complement deposition on endothelial cells and high blood C5a serum levels have been reported in COVID-19 patients with severe illness, suggesting vigorous complement activation leading to systemic thrombotic microangiopathy (TMA). Complement regulator gene variants prevalent in African-Americans have been associated with a higher risk for severe TMA and multi-organ injury. Strikingly, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2)-infected African-Americans suffer from high mortality. These findings allow us to apply our knowledge from other complement-mediated diseases to COVID-19 infection to better understand severe disease pathogenesis. Here, we discuss the multiple aspects of complement activation, regulation, crosstalk with other parts of the immune system, and the options to target complement in COVID-19 patients to halt disease progression and death.

Journal ArticleDOI
TL;DR: This review summarises the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlights their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches.
Abstract: Oxysterols are oxygenated forms of cholesterol generated via autooxidation by free radicals and ROS, or formed enzymically by a variety of enzymes such as those involved in the synthesis of bile acids. Although found at very low concentrations in vivo, these metabolites play key roles in health and disease, particularly in development and regulating immune cell responses, by binding to effector proteins such as LXRα, RORγ and Insig and directly or indirectly regulating transcriptional programmes that affect cell metabolism and function. In this review, we summarise the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlight their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.

Journal ArticleDOI
TL;DR: Oxysterols are oxidized forms of cholesterol generated from cholesterol by auto‐oxidation, enzymatic processes, or both that induce a type of cell death associated with OXIdative stress and several characteristics of APOPTOsis and autoPHAGY, defined as oxiapoptophagy.
Abstract: Oxysterols are oxidized forms of cholesterol generated from cholesterol by auto-oxidation, enzymatic processes, or both Some of them (7-ketocholesterol, 7β-hydroxycholesterol and 24(S)-hydroxycholesterol), when used at cytotoxic concentrations on different cell types from different species (mesenchymal bone marrow cells, monocytic cells and nerve cells), induce a type of cell death associated with OXIdative stress and several characteristics of APOPTOsis and autoPHAGY, defined as oxiapoptophagy Oxidative stress is associated with overproduction of ROS, increased antioxidant enzyme activities, lipid peroxidation and protein carbonylation Apoptosis is associated with activation of the mitochondrial pathway, opening of the mitochondrial permeability pore, loss of mitochondrial membrane potential, caspase-3 activation, PARP degradation, nuclear condensation and/or fragmentation Autophagy is characterized by autophagic vacuoles revealed by monodansylcadaverine staining and transmission electron microscopy, plus increased ratio of LC-3II/LC-3I In addition, morphological, topographical and functional changes of the peroxisome are observed LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics To view the other articles in this section visit http://onlinelibrarywileycom/doi/101111/bphv17816/issuetoc

Journal ArticleDOI
TL;DR: Women are twice as likely as men to develop post‐traumatic stress disorder (PTSD) making the search for biological mechanisms underlying these gender disparities especially crucial, and whether and how the endocannabinoid system may modulate fear expression and extinction in females remains unknown.
Abstract: Background and purpose Women are twice as likely as men to develop post-traumatic stress disorder (PTSD) making the search for biological mechanisms underlying these gender disparities especially crucial. One of the hallmark symptoms of PTSD is an alteration in the ability to extinguish fear responses to trauma-associated cues. In male rodents, the endocannabinoid system can modulate fear extinction and has been suggested as a therapeutic target for PTSD. However, whether and how the endocannabinoid system may modulate fear expression and extinction in females remains unknown. Experimental approach To answer this question, we pharmacologically manipulated endocannabinoid signalling in male and female rats prior to extinction of auditory conditioned fear and measured both passive (freezing) and active (darting) conditioned responses. Key results Surprisingly, we found that acute systemic inhibition of the endocannabinoid anandamide (AEA) or 2-arachidonoyl glycerol (2-AG) hydrolysis did not significantly alter fear expression or extinction in males. However, the same manipulations in females produced diverging effects. Increased AEA signalling at vanilloid TRPV1 receptors impaired fear memory extinction. In contrast, inhibition of 2-AG hydrolysis promoted active over passive fear responses acutely via activation of cannabinoid1 (CB1 ) receptors. Measurement of AEA and 2-AG levels after extinction training revealed sex- and brain region-specific changes. Conclusion and implications We provide the first evidence that AEA and 2-AG signalling affect fear expression and extinction in females in opposite directions. These findings are relevant to future research on sex differences in mechanisms of fear extinction and may help develop sex-specific therapeutics to treat trauma-related disorders.

Journal ArticleDOI
TL;DR: In this article, butyrate was shown to improve muscle atrophy induced by diabetic nephropathy by enhancing intestinal barrier function and activating the FFA2 receptor-mediated PI3K/Akt/mTOR pathway.
Abstract: BACKGROUND AND PURPOSE Muscle protein catabolism in patients with diabetic nephropathy (DN) results in striking loss of muscle proteins, which increases morbidity and mortality risks. Evidence shows that short-chain fatty acids (SCFAs) play an important role in health maintenance and disease development. Recently, the connection between butyrate (a SCFA) and DN has been revealed, although the relationship between butyrate and muscle atrophy remains unclear. EXPERIMENTAL APPROACH We studied changes in serum butyrate levels in DN patients using metabolomic analyses. In db/db mice, protective effects of butyrate on DN-induced muscle atrophy. were explored. Inhibition of muscle atrophy by butyrate and the underlying mechanism(s) were studied in C2C12 cells exposed to high glucose/lipopolysaccharide (HG/LPS). KEY RESULTS Butyrate levels in DN patients were significantly decreased. In db/db mice, supplementing normal diet with butyrate improved intestinal barrier function. Concurrently, butyrate alleviated muscle atrophy, promoted PI3K/Akt/mTOR signalling, and suppressed oxidative stress and autophagy in skeletal muscle of db/db mice, and in HG/LPS-exposed C2C12 cells. Further, FFA2 receptors, key components of SCFA signalling, were decreased in skeletal muscle of db/db mice and in HG/LPS-exposed C2C12 cells. Overexpression of FFA2 receptors activated PI3K/Akt/mTOR signalling and inhibited oxidative stress and autophagy in HG/LPS-exposed C2C12 cells. Silencing of FFA2 blocked PI3K/Akt/mTOR signalling that was improved by butyrate, as well as the suppression of oxidative stress and reduction of autophagy. CONCLUSION AND IMPLICATION Butyrate exerts protective effects on muscle atrophy induced by DN by enhancing intestinal barrier function and activating the FFA2 receptor-mediated PI3K/Akt/mTOR pathway.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the anatomy and physiology of zebrafish and mammalian cardiovascular systems and described the use of Zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies.
Abstract: Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease.

Journal ArticleDOI
TL;DR: Emerging information on resistance mechanisms, lineage plasticity and phenotype switching, gene polymorphisms and the relationship between microRNAs and drug resistance are addressed, which can help discover more effective and specific regimens to overcome enzalutamide resistance.
Abstract: Prostate cancer is the second most common malignancy in men and androgen deprivation therapy is the first-line therapy. However, most cases will eventually develop castration-resistant prostate cancer after androgen deprivation therapy treatment. Enzalutamide is a second-generation androgen receptor antagonist approved by the Food and Drug Administration to treat patients with castration-resistant prostate cancer. Unfortunately, patients receiving enzalutamide treatment will ultimately develop resistance via various complicated mechanisms. This review examines the emerging information on these resistance mechanisms, including androgen receptor-related signalling pathways, glucocorticoid receptor-related pathways and metabolic effects. Notably, lineage plasticity and phenotype switching, gene polymorphisms and the relationship between microRNAs and drug resistance are addressed. Furthermore, potential therapeutic strategies for enzalutamide-resistant castration-resistant prostate cancer treatment are suggested, which can help discover more effective and specific regimens to overcome enzalutamide resistance.

Journal ArticleDOI
TL;DR: Exosomes are a subset of extracellular vesicles essential for cell-cell communication in health and disease with the ability to transport nucleic acids, functional proteins and other metabolites as mentioned in this paper.
Abstract: Exosomes are a subset of extracellular vesicles essential for cell-cell communication in health and disease with the ability to transport nucleic acids, functional proteins and other metabolites. Their clinical use as diagnostic biomarkers and therapeutic carriers has become a major field of research over recent years, generating rapidly expanding scientific interest and financial investment. Their reduced immunogenicity compared to liposomes or viral vectors and their ability to cross major physiological barriers like the blood-brain barrier make them an appealing and innovative option as biomarkers and therapeutic agents. Here, we review the latest clinical developments of exosome biotechnology for diagnostic and therapeutic purposes, including the most recent COVID-19-related exosome-based clinical trials. We present current exosome engineering strategies for optimal clinical safety and efficacy, and assess the technology developed for good manufacturing practice compliant scaling up and storage approaches along with their limitations in pharmaceutical industry.

Journal ArticleDOI
TL;DR: In this article, the authors give an overview of recent discoveries concerning dietary miRNAs, possible ways of enhancing their resistance to food processing and gut conditions, their transport in extracellular vesicles (animal- and plant-origin) and possible biological effects on recipient cells after ingestion.
Abstract: Cross-kingdom communication via non-coding RNAs is a recent discovery. Exogenous microRNAs (exog-miRNAs) mainly enter the host via the diet. Generally considered unstable in the gastrointestinal tract, some exogenous RNAs may resist these conditions, especially if transported in extracellular vesicles. They could then reach the intestines and more probably exert a regulatory effect. We give an overview of recent discoveries concerning dietary miRNAs, possible ways of enhancing their resistance to food processing and gut conditions, their transport in extracellular vesicles (animal- and plant-origin) and possible biological effects on recipient cells after ingestion. We critically focus on what we believe are the most relevant data for future pharmacological development of dietary miRNAs as therapeutic agents. Finally, we discuss the miRNA-mediated cross-kingdom regulation between diet, host and the gut microbiota. We conclude that, despite many obstacles and challenges, extracellular miRNAs are serious candidates to be targeted pharmacologically for development of new therapeutic agents.

Journal ArticleDOI
TL;DR: It is concluded that PTHrP has several distinct paracrine, autocrine, and intracrine actions in the course of breast cancer pathophysiology, some mediated through action at PTH1 receptors and others are controlled by other domains within P THrP.
Abstract: The sequence similarity within the amino-terminal regions of parathyroid hormone (PTH) and PTH-related protein (PTHrP) allows the two to share actions at a common site, the PTH1 receptor. A number of biological activities have been ascribed to actions of other domains within PTHrP. PTHrP production by late stage breast cancer has been shown to contribute to bone metastasis formation through promotion of osteoclast formation and bone resorption by action through PTH1 receptors. There is evidence also for a role for PTHrP early in breast cancer that is protective against tumour progression. No signalling pathway has been identified for this effect. PTHrP has also been identified as a factor promoting the emergence of breast cancer cells from dormancy in bone. In that case, PTHrP does not function through activation of PTH1 receptors, despite having very substantial effects on transcriptional activity of the breast cancer cells. This indicates actions of PTHrP that are non-canonical, that is, mediated through domains other than the amino-terminal. It is concluded that PTHrP has several distinct paracrine, autocrine, and intracrine actions in the course of breast cancer pathophysiology. Some are mediated through action at PTH1 receptors and others are controlled by other domains within PTHrP. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.

Journal ArticleDOI
TL;DR: Basic knowledge about the histaminergic nervous system and the mechanisms underlying sleep/wake regulation that are controlled by the brain histamine system are summarised.
Abstract: Histamine plays pleiotropic roles as a neurotransmitter in the physiology of brain function, this includes the maintenance of wakefulness, appetite regulation and memory retrieval. Since numerous studies have revealed an association between histaminergic dysfunction and diverse neuropsychiatric disorders, such as Alzheimer's disease and schizophrenia, a large number of compounds acting on the brain histamine system have been developed to treat neurological disorders. In 2016, pitolisant, which was developed as a histamine H3 receptor inverse agonist by Schwartz and colleagues, was launched for the treatment of narcolepsy, emphasising the prominent role of brain histamine on wakefulness. Recent advances in neuroscientific techniques such as chemogenetic and optogenetic approaches have led to remarkable progress in the understanding of histaminergic neural circuits essential for the control of wakefulness. In this review article, we summarise the basic knowledge about the histaminergic nervous system and the mechanisms underlying sleep/wake regulation that are controlled by the brain histamine system. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.

Journal ArticleDOI
TL;DR: Recent insights are provided into the role of chemokines and chemokine receptors in PAH and RV remodelling and the opportunities and roadblocks in targeting them.
Abstract: Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary artery remodelling leading to increased right ventricular pressure overload, which results in right heart failure and premature death. Inflammation plays a central role in the development of PAH, and the recruitment and function of immune cells are tightly regulated by chemotactic cytokines called chemokines. A number of studies have shown that the development and progression of PAH are associated with the dysregulated expression of several chemokines and chemokine receptors in the pulmonary vasculature. Moreover, some chemokines are differentially regulated in the pressure-overloaded right ventricle. Recent studies have tested the efficacy of pharmacological agents targeting several chemokines and chemokine receptors for their effects on the development of PAH, suggesting that these receptors could serve as useful therapeutic targets. In this review, we provide recent insights into the role of chemokines and chemokine receptors in PAH and RV remodelling and the opportunities and roadblocks in targeting them. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.

Journal ArticleDOI
TL;DR: This review describes the available methods for assessment of RV function and RV–arterial coupling and the effects of pharmacotherapy on these variables and proposes simplified methods, including echocardiographic and cardiac MRI approaches.
Abstract: Adaptation of right ventricular (RV) function to increased afterload-known as RV-arterial coupling-is a key determinant of prognosis in pulmonary hypertension. However, measurement of RV-arterial coupling is a complex, invasive process involving analysis of the RV pressure-volume relationship during preload reduction over multiple cardiac cycles. Simplified methods have therefore been proposed, including echocardiographic and cardiac MRI approaches. This review describes the available methods for assessment of RV function and RV-arterial coupling and the effects of pharmacotherapy on these variables. Overall, pharmacotherapies for pulmonary hypertension have shown beneficial effects on various measures of RV function, but it is often unclear if these are direct RV effects or indirect results of afterload reduction. Studies of the effects of pharmacotherapies on RV-arterial coupling are limited and mostly restricted to experimental models. Simplified methods to assess RV-arterial coupling should be validated and incorporated into routine clinical follow-up and future clinical trials. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.