scispace - formally typeset
Search or ask a question

Showing papers in "Buildings in 2012"


Journal ArticleDOI
TL;DR: In this paper, a conceptual framework aimed at implementing sustainability principles in the building industry is presented, which includes resource conservation, cost efficiency and design for human adaptation, based on the sustainable triple bottom line principle.
Abstract: This paper presents a conceptual framework aimed at implementing sustainability principles in the building industry. The proposed framework based on the sustainable triple bottom line principle, includes resource conservation, cost efficiency and design for human adaptation. Following a thorough literature review, each principle involving strategies and methods to be applied during the life cycle of building projects is explained and a few case studies are presented for clarity on the methods. The framework will allow design teams to have an appropriate balance between economic, social and environmental issues, changing the way construction practitioners think about the information they use when assessing building projects, thereby facilitating the sustainability of building industry.

370 citations


Journal ArticleDOI
TL;DR: In this paper, the authors quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building, and find that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories.
Abstract: The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.

174 citations


Journal ArticleDOI
TL;DR: Seismic isolation is a technique that has been used around the world to protect building structures, nonstructural components and content from the damaging effects of earthquake ground shaking as mentioned in this paper.
Abstract: Seismic isolation is a technique that has been used around the world to protect building structures, nonstructural components and content from the damaging effects of earthquake ground shaking. This paper summarizes current practices, describes widely used seismic isolation hardware, chronicles the history and development of modern seismic isolation through shake table testing of isolated buildings, and reviews past efforts to achieve three-dimensional seismic isolation. The review of current practices and past research are synthesized with recent developments from full-scale shake table testing to highlight areas where research is needed to achieve full seismic damage protection of buildings. The emphasis of this paper is on the application of passive seismic isolation for buildings primarily as practiced in the United States, though systems used in other countries will be discussed.

161 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the results of a comprehensive investigation including more than 100 fatigue damage cases, reported for steel and composite bridges, and categorized the damage cases according to types of detail.
Abstract: This paper reviews the results of a comprehensive investigation including more than 100 fatigue damage cases, reported for steel and composite bridges. The damage cases are categorized according to types of detail. The mechanisms behind fatigue damage in each category are identified and studied. It was found that more than 90% of all reported damage cases are of deformation-induced type and generated by some kind of unintentional or otherwise overlooked interaction between different load-carrying members or systems in the bridge. Poor detailing, with unstiffened gaps and abrupt changes in stiffness at the connections between different members were also found to contribute to fatigue cracking in many details.

118 citations


Journal ArticleDOI
TL;DR: In this article, the authors argue that as cities continue to expand horizontally, to safeguard against their reaching an eventual breaking point, the tall building as a building type is a possible solution by way of conquering vertical space through agglomeration and densification.
Abstract: The tall building is the most dominating symbol of the cities and a human-made marvel that defies gravity by reaching to the clouds. It embodies unrelenting human aspirations to build even higher. It conjures a number of valid questions in our minds. The foremost and fundamental question that is often asked: Why tall buildings? This review paper seeks to answer the question by laying out arguments against and for tall buildings. Then, it provides a brief account of the historic and recent developments of tall buildings including their status during the current economic recession. The paper argues that as cities continue to expand horizontally, to safeguard against their reaching an eventual breaking point, the tall building as a building type is a possible solution by way of conquering vertical space through agglomeration and densification. Case studies of some recently built tall buildings are discussed to illustrate the nature of tall building development in their respective cities. The paper attempts to dispel any discernment about tall buildings as mere pieces of art and architecture by emphasizing their truly speculative, technological, sustainable, and evolving nature. It concludes by projecting a vision of tall buildings and their integration into the cities of the 21st century.

97 citations


Journal ArticleDOI
TL;DR: In this paper, the structural vulnerability of a specific monumental masonry building: the Vicarious Palace (Palazzo del Vicario) in Pescia, a small town near Florence, was investigated using a finite element model in which the nonlinearities of the masonry were considered by proper constitutive assumptions.
Abstract: Recent Italian earthquakes have underlined the need for wide monitoring and safety assessment of architectonical heritage. This has emerged also from requirements of the new Italian Technical Recommendations for buildings. Within this subject the paper investigates the seismic vulnerability of a specific monumental masonry building: the Vicarious Palace (Palazzo del Vicario) in Pescia, a small town near Florence. The structural behavior of the Palace was investigated using a finite element model in which the non-linearities of the masonry were considered by proper constitutive assumptions. The seismic behavior was evaluated by the pushover method, according to the Italian Technical Recommendations. The results were compared with the ones obtained by a simplified approach based on the kinematic theorem of limit analysis. Comparisons of the expected seismic demand vs the seismic capacity of the Palace confirm the weakness of this type of building to suffer extensive damage under earthquakes, as frequently observed in similar construction typologies. Additionally, the comprehension of the structural behavior under seismic loading allows the identification of a proper retrofitting strategy.

73 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined contemporary issues in building collapse and its implications for sustainable development in Nigeria and explored whether the approach to construction by industry stakeholders is in line with the principles of sustainable development following the spate of building collapses in Nigeria.
Abstract: This paper examines contemporary issues in building collapse and its implications for sustainable development in Nigeria. It explores whether the approach to construction by industry stakeholders is in line with the principles of sustainable development following the spate of building collapses in Nigeria. The rationale for the investigation stems from the view by scholars that construction industry stakeholders’ do not seem to consider the future in their current activities. The study establishes that the approach to construction by industry stakeholders do not match sustainable principles, and contributes to general under perforxmance of buildings. The paper recommends an overhaul of planning and implementation policies for building development regulations (e.g., building codes). The Nigerian government, as a major construction stakeholder should initiate sustainable construction measures and enforce this as best practice for the construction industry.

60 citations


Journal ArticleDOI
TL;DR: In this article, a typical two-story unreinforced masonry building is analyzed and the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young's modulus and available ductility in shear.
Abstract: Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

41 citations


Journal ArticleDOI
TL;DR: In this paper, a multidisciplinary approach for assessing the seismic vulnerability of heritage masonry buildings is described, which is applied to a specific case study that represents a very common typology of masonry building in Italy.
Abstract: A multidisciplinary approach for assessing the seismic vulnerability of heritage masonry buildings is described throughout the paper. The procedure is applied to a specific case study that represents a very common typology of masonry building in Italy. The seismic vulnerability of the examined building was assessed after the following: (a) historical investigation about the building and the surrounding area, (b) detailed geometrical relieves, (c) identification of materials by means of surveys and literature indications, (d) dynamic in-situ tests, (e) foundation soil characterization, (f) dynamic identification of the structure by means of a refined Finite Element (FE) model. After these steps, the FE model was used to assess the safety level of the building by means of non-linear static analyses according to the provisions of Eurocode 8 and estimate of the q-factor. Some parametric studies were also carried out by means of both linear dynamic and non-linear static analyses.

40 citations


Journal ArticleDOI
TL;DR: In this paper, a multi-factorial analytical decision support toolkit is developed to assist architects in assessing their consequences in terms of whether or not the material option is likely to move towards sustainability objectives.
Abstract: Material selection is a complex and delicate task determined by the immense number of building material options. Likewise, multiple factors are often considered by the architect when evaluating the various categories of building materials. As a result, these sets of factors or variables often present tradeoffs that make the decision process even more complex. To ease the material-selection process, this article examines one aspect of the research objectives: the relevant factors or variables needed to develop a systematic and efficient material-selection system. Through the analysis of frequency data and results of a pilot study, it identifies some of the potential factors that will impact architects decisions in their choice of green vernacular building materials, during the design-decision making process. The application of the criteria for the quantitative evaluation and selection of the best alternative building material, using the Analytic Hierarchy Process (AHP) model, are discussed. The aim is to develop a multi-factorial analytical decision support toolkit to assist architects assess their consequences in terms of whether or not the material option is likely to move towards sustainability objectives. An example is included to illustrate the AHP approach. The argument is advanced that the explicit incorporation of sustainability in the material selection process requires the assessment of the social, economic, technical, sensorial and environmental consequences of potential material options.

39 citations


Journal ArticleDOI
TL;DR: In this article, the thermal and environmental performance of three window frame materials, namely polyvinyl chloride (PVC), wood, and aluminum, were evaluated and compared using a heat transfer model.
Abstract: Window frame material has significant impact on the thermal performance of the window. Moreover, with sustainable design becoming a necessity, window frame materials need to have higher levels of environmental performance to be considered sustainable. As a result, a holistic performance metric is needed to assess window frame material. Three similar frames were considered, manufactured from aluminum, polyvinyl chloride (PVC), and wood. First their thermal performance was evaluated and compared using a heat transfer model. Then, carbon footprints of the three materials were considered for 1m2 of window area with a similar thermal performance. It was found that the thermal, as well as the environmental, performance of the wooden window frame was superior to those of aluminum and PVC. On the other hand aluminum frames had high environmental impacts and comparatively lower thermal performance. This study provides a holistic viewpoint on window frames by considering both environmental and thermal performance.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the adequacy of sudden column loss as an idealisation of local damage caused by realistic explosion events, and extended prior work by combining the development of accurate computational models with large-scale testing of a typical floor system in a prototypical steel-framed structure.
Abstract: Over the past decade, much research has focused on the behaviour of structures following the failure of a key structural component. Particular attention has been given to sudden column loss, though questions remain as to whether this event-independent scenario is relevant to actual extreme events such as explosion. Few studies have been conducted to assess the performance of floor slabs above a failed column, and the computational tools used have not been validated against experimental results. The research program presented in this paper investigates the adequacy of sudden column loss as an idealisation of local damage caused by realistic explosion events, and extends prior work by combining the development of accurate computational models with large-scale testing of a typical floor system in a prototypical steel-framed structure. The floor system consists of corrugated decking topped by a lightly reinforced concrete slab that is connected to the floor beams through shear studs. The design is consistent with typical building practices in the US. The first test has been completed, and subsequent tests are currently being planned. This paper addresses the importance of robustness design for localized damage and includes a detailed description regarding how the research program advances the current state of knowledge for assessing robustness of compositely constructed steel-framed buildings.

Journal ArticleDOI
TL;DR: In this paper, the authors found that frequent communication and the establishment's shared grounds are essential to develop knowledge and positively influence the design outcome, while negative qualities on a personal level and on that of a design studio environment would hinder a student's creativity.
Abstract: Design is a social phenomenon and researchers suggest that social interaction, negotiations and communication between designers are essential to initiate creativity. Within the design studio environment, a number of factors affect the healthy social interaction and design negotiations, such as the teaching style of tutors and the culture that governs a design studio’s environment. This may in turn affect the utilization of the outcome of negotiations in the design project. Design studio students from the third to fifth years at the College of Architecture, University of Dammam (UD), the Kingdom of Saudi Arabia (KSA), were surveyed to find out how far the design studio’s culture and communication would impact the production of innovative design projects. The results show that frequent communication and the establishment’s shared grounds are essential to develop knowledge and positively influence the design outcome. On the other hand, the research found that negative qualities on a personal level and on that of a design studio environment would hinder a student’s creativity. However, to develop students’ design/innovative abilities, the researcher recommends that certain measures should be considered. These would include transforming the design studio into an interactive and friendly learning environment, adjusting the teaching methodology, and developing interactive communication abilities of students and tutors.

Journal ArticleDOI
TL;DR: In this article, a conventional unitized laminated glass curtain wall subjected to high and low-level air blast loading is modeled by a linear elastic FE-model and a split screw spline frame and four rigid brackets.
Abstract: Nonlinear numerical simulations are reported for a conventional unitized laminated glass curtain wall subjected to high- and low-level air blast loading. The studied curtain wall, spanning floor to floor, consisted of a laminated glass panel, a continuous bead of structural silicone sealant, a split screw spline frame and four rigid brackets. Firstly, a linear elastic FE-model (M01) is presented to investigate dynamic stresses and deflections due to explosion, by taking into account geometrical nonlinearities. Since, in similar glazing systems, it is important to take into account the possible cracking of glass lites, a second model (M02), calibrated to previous experimental data, is proposed. In it, glass behaves as a brittle-elastic material, whereas an elastoplastic characteristic curve is assumed for mullions. As a result, the design explosion seriously affects the main components of the curtain wall, especially the bead of silicone. To address these criticalities, additional viscoelastic (VE) devices are installed at the frame corners (M03). Their effectiveness explains the additional deformability provided to the conventional curtain wall, as well as the obvious dissipation of the incoming energy due to blast loading. Structural and energy capabilities provided by devices are highlighted by means of numerical simulations.

Journal ArticleDOI
TL;DR: In this paper, the authors present the features of tall-building projects Sustainability Indicator (TPSI), a "Sustainability Rating System" that specializes in tall building projects, which can be used as a design tool and/or as a checklist to compare and to improve the sustainable performance of tall building design schemes.
Abstract: The paper presents the features of Tall-building Projects Sustainability Indicator (TPSI)—a “Sustainability Rating System” that specializes in tall-building projects. The system comprises two components; the “Technical Manual” in the form of a booklet and the “Calculator” in the form of an Excel tool. It can be used as a “design tool” and/or as a “checklist” to compare and to improve the sustainable performance of tall-building design schemes. At the same time, the system can be used to evaluate the sustainability of existing tall-building projects. The first version of the TPSI rating system (TPSI 2012 Version) was released as an online tool (GreenLight) and thoroughly examined and validated by multiple parties.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the occupants' perceptions of 47 commercial and institutional buildings worldwide and found that the greater the number of positive comments, the better the perception score, and vice-versa.
Abstract: The authors investigated the occupants’ perceptions of 47 commercial and institutional buildings worldwide. These investigations involved the personal distribution and collection of a questionnaire survey seeking the occupants' perceptions (scored on a 7-point scale) of some 45 factors: Operational; Environmental (including temperature, air quality, lighting, and noise); Personal Control; and Satisfaction (including design, needs, comfort overall, productivity, and health). Occupants were also invited to comment on nine of these factors. While it has been suggested that in the ideal situation the occupants would have no complaints about their indoor environment, the aim here was to discover the real situation—in particular the proportion of occupants who were prepared to make a comment, the general nature of the comments (positive, negative, or balanced), and whether these correlated with the occupants’ perception scores. On average, 34 per cent of respondents took up the invitation to make a comment. As anticipated, the greater the number of positive comments, the better the perception score, and vice-versa. However, it appears that it only required around 20% of the comments to be positive for the perception score to exceed the mid-point of the seven-point scale, whereas 65% or more of negative comments were needed to go under that point. This paper details the nature of the correlation between the occupants’ comments and the corresponding scores for a range of building operational and indoor environmental factors and speculates on their potential for the analysis and prediction of building performance from the perspective of the occupants.

Journal ArticleDOI
TL;DR: In this article, the impact of vibration time in sandcrete block production using six fine aggregate deposits found within Benin City (Midwestern Nigeria) and their various pair combinations was investigated.
Abstract: The majority of the sandcrete blocks used in the Nigerian building industry fall short of the minimum specification standards. There is evidence to suggest a wide variation in compressive strength from one block manufacturer to another and also within block samples from a single source. This problem has been attributed to poor quality control and substandard constituent materials. Also very alarming is the ignorance surrounding the usage and engineering properties of some of the widely used fine aggregate deposits. As a way forward, this paper aims to re-establish the impact of vibration time in sandcrete block production using six fine aggregate deposits found within Benin City (Midwestern Nigeria) and their various pair combinations. Some of the basic properties like silt content, grading parameters—co-efficient of uniformity (Cu), curvature co-efficient (Cc) and the fineness modulus (Fm)—of these fine aggregates were established by laboratory means. In addition, the wet and dry compressive strength of these sandcrete blocks made from these sands were established. A total of 1,080 block samples produced under very controlled conditions were used in this investigation. It was revealed that the utility value of sand can be improved when the weaker and commonly used sands were combined with those that are better, more expensive and less frequently used at different vibration periods and ratios. Findings further revealed that sand types and the sand combination approach adopted were very significant to grading parameters and strength; at a much higher vibration time the compressive strength and durability properties were also considerably improved.

Journal ArticleDOI
TL;DR: In this paper, a finite element model is developed to analyse the effects of reinforcement geometry and arrangement within a timber beam, and the model is directly validated against experimental equivalents and found to never be mismatched by more than 8% in respect to yield strength predictions.
Abstract: A finite element model is developed to analyse, as a function of volume fraction, the effects of reinforcement geometry and arrangement within a timber beam. The model is directly validated against experimental equivalents and found to never be mismatched by more than 8% in respect to yield strength predictions. Yield strength increases linearly as a function of increasing reinforcement volume fraction, while the flexural modulus follows more closely a power law regression fit. Reinforcement geometry and location of reinforcement are found to impact both the flexural properties of timber-steel composite beams and the changes due to an increase in volume fraction.

Journal ArticleDOI
TL;DR: In this paper, a case study of a 2012 tornado that struck a single large rural light-frame wood house with an unconventional roof system was presented, and a fragility methodology was used as a tool to probabilistically study the loss of the roof system, and bound an EF-scale rating of the tornado.
Abstract: Tornadoes are a particularly devastating natural hazard that affect communities across the United States, particularly the Midwest and South. They are unique from an engineering point-of-view due to their very low probability of occurrence but often highly destructive consequences. The 2011 season was particularly devastating to the Southeastern portion of the U.S. This paper presents a single case study of a 2012 tornado that struck a single large rural light-frame wood house with an unconventional roof system. A fragility methodology was used as a tool to probabilistically study the loss of the roof system, and bound an Enhanced Fujita (EF) scale rating of the tornado. The tornado was initially rated as an EF3 tornado by the U.S. National Weather Service. However, following a detailed site inspection verified with numerical structural models, the tornado was downgraded to an EF2 tornado. As expected, the use of nail connections in a roof-to-wall connection resulted in a weaker link compared to a hurricane clip. The approach presented in this paper can be used as a supplement to the EF rating provided by U.S. National Weather Service meteorologists when unusual conditions in either the structure or surroundings exists.

Journal ArticleDOI
TL;DR: In this article, a simple closed form formulae describing the nonlinear behavior of moment frames of uniform response have been proposed to control and address the gradual softening of such structures due to local/partial instabilities and formation of plastic hinges.
Abstract: Structures of Uniform Response are special earthquake resistant frames in which members of similar groups such as beams, columns and braces of similar nature share the same demand-capacity ratios regardless of their location within the group. The fundamental idea behind this presentation is that seismic structural response is largely a function of design and construction, rather than analysis. Both strength and stiffness are induced rather than investigated. Failure mechanisms and stability conditions are enforced rather than tested. Structures of Uniform Response are expected to sustain relatively large inelastic displacements during major earthquakes. A simple technique has been proposed to control and address the gradual softening of such structures due to local/partial instabilities and formation of plastic hinges. In structures of uniform response, the magnitude and shape of distribution of lateral forces affects the distribution of story stiffness in proportion with story moments, therefore affecting the dynamic behavior of the system as a whole. Simple closed form formulae describing the nonlinear behavior of moment frames of uniform response have been proposed. While the scope of this contribution is limited to moment frames, the proposed method can successfully be extended to all types of recognized earthquake resisting systems.

Journal ArticleDOI
TL;DR: In this article, the authors show that building failures in the broad sense are much more common than we may have realized and that much more work needs to be done on a variety of fronts to prevent building failures from a life safety standpoint.
Abstract: Most building professionals have investigated or performed remedial designs for at least one architectural or engineering system failure during their careers. Other practitioners, especially those who work for forensic consultants or firms specializing in disaster response and repair, are more familiar with the variety and extent of building failures as they assist their clients in restoring damaged or deficient buildings. The advent of social medial and twenty-four-hour news channels along with the general ease of finding more examples of failures in the Internet have made us realize that building failures in the broad sense are much more common than we may have realized.Relatively recent events leading to building failures such as the Christchurch, New Zealand earthquakes, the roof/parking deck of the Algo Centre mall in the northern Ontario, Canada city of Elliot Lake and the Indiana State Fairground stage collapse in the US are just a few reminders that much more work needs to be done on a variety of fronts to prevent building failures from a life safety standpoint. The need is compounded by economic concerns from what would be considered more mundane or common failures. Inspections by the author after Hurricane Katrina revealed a huge number of failures associated rain water alone as roofs, windows, flashing, mechanical penetrations etc. failed leading to interior water penetration often resulting in more damage from damp conditions and mold propagation than outright structural collapses. [...]

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample, showing that the apartment on the top floor consumed 59% more energy than the average for the gas consumed throughout the year.
Abstract: This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36o27’S; longitude: 64o27’W), where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

Journal ArticleDOI
TL;DR: In this article, the authors report on recent experience of engaging with building users who have communication difficulties, as a potential part of client briefing, and present a challenge to effectively engage with a representative sample of residents to ascertain how they value their living environment.
Abstract: This paper reports on recent experience of engaging with building users who have communication difficulties, as a potential part of client briefing. The users were residents of a specialist Scottish Housing Association (HA) providing social housing and care services; the residents having a wide range of complex needs, predominantly learning difficulties. Many of these residents have communication difficulties, ranging from mild to very severe. The challenge presented was to effectively engage with a representative sample of residents to ascertain how they value their living environment. The researchers’ involvement was based on prior research into how different participants engage in the architectural design process.

Journal ArticleDOI
TL;DR: In this paper, the authors describe some methods for producing developable surfaces with practical applications for creating useful lightweight, rigid, jig-less and elegant structural forms from sheet materials.
Abstract: This paper describes some methods for producing developable surfaces with practical applications for creating useful lightweight, rigid, jig-less and elegant structural forms from sheet materials. Multiple related techniques based on the same fundamental principle can be used to generate a variety of interesting singly curved and doubly curved shapes. The system requires a minimum of specialist software, and is described in simple steps that can be followed by the reader with access to basic 3D CAD tools.

Journal ArticleDOI
TL;DR: In this article, the earthquake resistance of an innovative viscoelastic (VE) gypsum shearwall is evaluated and compared to conventional structural and non-structural walls.
Abstract: A key element in the seismic load resisting system of a wood framed structure is the shear wall which is typically sheathed on one side with plywood or oriented strand board (OSB) and gypsum on the other. The shear capacity of gypsum sheathed shear walls is typically neglected in high seismic areas due to the susceptibility of conventional drywall screw connections to damage caused by earthquakes. The earthquake resistance of an innovative viscoelastic (VE) gypsum shearwall is evaluated and compared to conventional structural and non-structural walls. Ten 8 ft × 8 ft wood framed wall specimens of three configurations [nailed-OSB, screw-gypsum, and VE polymer-gypsum] were subjected to a cyclic test protocol. The energy dissipation, stiffness, and damage characteristics of all shearwalls are reported herein. Testing results indicate the VE-gypsum walls can dissipate more energy than the OSB structural panels and 500% more energy that the conventional gypsum sheathed walls and contains a constant source of energy dissipation not seen in the structural and non-structural walls. The wall stiffness of the OSB wall degrades at a far greater rate that the VE gypsum wall and at continued cycling degrades below the VE wall stiffness. Unlike both of the conventional wall types, the VE wall showed no visible or audible signs of damage when subjected to shear displacements up to 1.

Journal ArticleDOI
TL;DR: In this article, the capacity domains and polar spectra are used to assess the seismic performance of irregular structures by using static non-linear static analyses, and the polar spectrum represents the spectral seismic response evaluated for different in-plan directions.
Abstract: In the last few years, the need to evaluate the seismic performances of buildings on sustaining strong motion has encouraged the development of simplified non-linear static analyses. Several procedures are available today to assess the behavior of plane-frame systems or plan-regular framed buildings suitable for engineering purposes. Less accurate procedures are instead available for irregular structures. This study introduces new tools to assess the seismic performance of irregular structures by using capacity domains and polar spectra. In particular, the capacity domains, plotted in terms of base shear and node control displacements and obtained by means of static non-linear analyses, lead to the evaluation of the direction of least seismic capacity of the investigated structure. The polar spectrum, instead, leads to taking into account the directivity and site effects of seismic events. In particular, the polar spectrum represents the spectral seismic response evaluated for different in-plan directions.

Journal ArticleDOI
TL;DR: In this article, a case study describes the investigation carried out to determine the causes of wall and roof deterioration at the building, and details the repair efforts undertaken to help designers, building owners, and maintenance personnel prevent similar problems from occurring in their buildings.
Abstract: The natatorium enclosure at the Avon Recreation Center in Avon, Colorado experienced significant deterioration of the CMU facade due to moisture carried by humid air from the interior of the space into the wall assembly. This situation was caused by a combination of an insufficient interior air and vapor barrier along with an HVAC system that failed to provide negative pressurization to the space. This case study describes the investigation carried out to determine the causes of wall and roof deterioration at the building, and details the repair efforts undertaken. Lessons learned are presented to help designers, building owners, and maintenance personnel prevent similar problems from occurring in their buildings.