scispace - formally typeset
Search or ask a question

Showing papers in "Bulletin of Earthquake Engineering in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors applied a simplified methodology to the old city centre of Seixal in Portugal to assess the seismic vulnerability of masonry buildings and found that over 500 buildings were assessed using this methodology, and the results were analyzed using an integrated Geographical information system tool.
Abstract: The seismic vulnerability assessment of old masonry buildings is essential not only to buildings with recognised historical and heritage value but also to ordinary residential masonry buildings. This paper approaches the seismic vulnerability assessment of masonry buildings by applying a simplified methodology to the old city centre of Seixal in Portugal. The methodology adopted in this study was based on a vulnerability index used for the evaluation of damage and the study of loss scenarios on a large scale. Over 500 buildings were assessed using this methodology, and the results were analysed using an integrated Geographical Information System tool. The integration of the vulnerability and loss results could allow city councils or regional authorities to plan interventions based on a global view of the site under analysis, leading to more accurate and comprehensive risk mitigation strategies that support the requirements of safety and emergency planning.

122 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a series of observations of damage to buildings and coastal defences in Tōhoku following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures.
Abstract: On March 11th 2011 a M w 9.0 mega-thrust interface subduction earthquake, the Great East Japan Earthquake, occurred 130 km off the northeast coast of Japan in the Pacific Ocean at the Japan Trench, triggering tsunami which caused damage along 600 km of coastline. Observations of damage to buildings (including vertical evacuation facilities) and coastal defences in Tōhoku are presented following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures. Observations are presented in the context of the coastal setting and tsunami characteristics experienced at each location. Damage surveys were carried out in Kamaishi City and Kesennuma City using a damage scale for reinforced concrete (RC), timber and steel frame buildings adapted from an earlier EEFIT tsunami damage scale. Observations show that many sea walls and breakwaters were overtopped, overturned, or broken up, but provided some degree of protection. We show the extreme variability of damage in a local area due to inundation depth, flow direction, velocity variations and sheltering. Survival of many RC shear wall structures shows their high potential to withstand local earthquake and significant tsunami inundation but further research is required into mitigation of scour, liquefaction, debris impact, and the prevention of overturning failure. Damage to steel and timber buildings are also discussed. These observations are intended to contribute to mitigation of future earthquake and tsunami damage by highlighting the key features which influence damage level and local variability of damage sustained by urban coastal infrastructure when subjected to extreme tsunami inundation depths.

100 citations


Journal ArticleDOI
TL;DR: In this paper, a site response in Japan is characterized using thousands of surface and borehole recordings from events of moment magnitude > 5.5, collected by the KiK-net network, including the 2011 M9.0 Tohoku earthquake.
Abstract: Site response in Japan is characterized using thousands of surface and borehole recordings from events of moment magnitude $$(\mathbf{M}) > 5.5$$ collected by the KiK-net network, including the 2011 M9.0 Tohoku earthquake. Site amplification is defined by the ratio of motions at the surface to those at depth (within the borehole), corrected for the depth effect due to destructive interference using a technique based on cross-spectral ratios between surface and down-hole motions. Site effects were particularly strong at high frequencies, despite the expectation that high-frequency response may be damped by nonlinear effects. In part, the large amplitudes at high frequencies are due to the prevalence of shallow soil conditions in Japan. We searched for typical symptoms for soil nonlinearity, such as a decrease in the predominant frequency and/or amplification, using spectral ratios of weak to strong ground motions. Localized nonlinearity occurred at some recording sites, but was not pervasive. We developed a general empirical model to express site amplification for the KiK-net sites as a function of common site variables, such as the average shear-wave velocity in the uppermost 30 m ( $$\text{ V}_\mathrm{S30})$$ and the horizontal-to-vertical (H/V) spectral ratio. We use the model to estimate site-corrected ground-motions for the Tohoku mainshock for a reference site condition; these motions are in reasonable agreement with the predictions of some of the published ground motion prediction equations for subduction zones.

98 citations


Journal ArticleDOI
TL;DR: This article presents a method for the development of vector-valued fragility functions, which are a function of more than one intensity measure (IM) for use within seismic risk evaluation of buildings, and shows that the assumption of the lognormal distribution for the derivation of Fragility functions leads to more robust functions than logistic, log-logistic or kernel regression.
Abstract: This article presents a method for the development of vector-valued fragility functions, which are a function of more than one intensity measure (IM, also known as ground-motion parameters) for use within seismic risk evaluation of buildings. As an example, a simple unreinforced masonry structure is modelled using state-of-the-art software and hundreds of nonlinear time-history analyses are conducted to compute the response of this structure to earthquake loading. Dozens of different IMs (e. g. peak ground acceleration and velocity, response spectral accelerations at various periods, Arias intensity and various duration and number of cycle measures) are considered to characterize the earthquake shaking. It is demonstrated through various statistical techniques (including Receiver Operating Characteristic analysis) that the use of more than one IM leads to a better prediction of the damage state of the building than just a single IM, which is the current practice. In addition, it is shown that the assumption of the lognormal distribution for the derivation of fragility functions leads to more robust functions than logistic, log-logistic or kernel regression. Finally, actual fragility surfaces using two pairs of IMs (one pair are uncorrelated while the other are correlated) are derived and compared to scalar-based fragility curves using only a single IM and a significant reduction in the uncertainty of the predicted damage level is observed. This type of fragility surface would be a key component of future risk evaluations that take account of recent developments in seismic hazard assessment, such as vector-valued probabilistic seismic hazard assessments. © 2012 Springer Science+Business Media Dordrecht.

98 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the most commonly used intensity measures, which are currently available in the literature, with respect to their capability to predict the seismic response of base-isolated buildings.
Abstract: Base isolation has become a widely applied technique for protecting buildings located in highly seismic areas. Due to the strongly non-linear constitutive behaviour typical of many isolation devices, the seismic response of base-isolated buildings is usually evaluated through non-linear dynamic analysis. In this type of analysis a suitable set of ground motions is needed for representing the earthquake loads and for exciting the structural model. Many methods can be found in the literature for defining the ground motions. When natural accelerograms are used, the methods mainly differ from each other based on the intensity measures used for scaling the records to the defined earthquake intensity level. Investigations have been carried out for evaluating the predictive capability of the intensity measures used in these methods: while many studies focused on ordinary buildings, only a few focused on base-isolated ones. The objective of this paper is to evaluate the most commonly used intensity measures, which are currently available in the literature, with respect to their capability to predict the seismic response of base-isolated buildings. Selected for the investigation are two frame structures characterized by a different number of storeys and base-isolated with systems having different properties. Two sets of accelerograms, consisting of ordinary and pulse-like near-fault records, are used in the analyses and in the evaluation of the intensity measures. Modified versions of existing intensity measures are also proposed, with the intent of improving the correlations between the considered intensity measures and response quantities.

96 citations


Journal ArticleDOI
TL;DR: In this article, a semi-empirical approach was used to estimate damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings.
Abstract: Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.

90 citations


Journal ArticleDOI
TL;DR: In this paper, a global dataset of more than 3,000 ground motion records from 536 sites from Greece, Italy, Turkey, USA and Japan is compiled and used to propose code-oriented elastic acceleration response spectra and soil amplification factors for a new site classification system, which, besides the classical geotechnical parameters, uses also the fundamental period of the site, the thickness of soil deposits and the average shear wave velocity to the seismic bedrock.
Abstract: A global dataset of more than 3,000 ground motion records from 536 sites from Greece, Italy, Turkey, USA and Japan is compiled and used to propose code-oriented elastic acceleration response spectra and soil amplification factors for a new site classification system, which, besides the classical geotechnical parameters $$N_{SPT}, S_{u}$$ and PI, uses also the fundamental period of the site, the thickness of soil deposits and the average shear wave velocity to the seismic bedrock, instead of $$V_{s,30}$$ . We propose a new classification system with the associated amplification factors and normalized response spectra for two seismicity levels, i.e. $$M_{s}\le 5.5$$ and $$M_{s}>5.5$$ . Uncertainties in the estimation of soil amplification factors are captured using a logic-tree approach, which allows the efficient use of alternative models and methods. The aim of this work is to improve the present EC8 soil classification. The effectiveness of the proposed classification system is compared to that of EC8 classification system using an error term, which represents the average dispersion of data within all categories of a given classification scheme. Error terms for the new classification system are lower than the error terms for EC8 classification system at all periods.

88 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the seismic behavior of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels, which consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure.
Abstract: Past seismic events, including the 2009 L’Aquila earthquake and the 2012 Emilia earthquake, clearly demonstrated the inadequacy of the current design approach for the connection system of the cladding wall panels of precast buildings. To clarify this problem the present paper investigates the seismic behaviour of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels. This system consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure, one at the top and one at the bottom, so to have under seismic action a pure frame behaviour where the wall panels are masses without stiffness. Adding mutual connections between the panels, the wall cladding panels become part of the resisting structure, leading to a dual frame/wall system or to a wall system depending on the stiffness of the connections. The seismic behaviour of this structural assembly is investigated for different degrees of interaction between frame and panels, as well as for an enhanced solution with dissipative connections. The results of nonlinear static (pushover) analyses and nonlinear dynamic analyses under recorded and artificial earthquakes highlight the role of the wall panel connections on the seismic behaviour of the structural assembly and show the effectiveness of the dual frame/wall system with dissipative connections between panels.

70 citations


Journal ArticleDOI
TL;DR: In this paper, ground shaking damage surveys were conducted in Sendai, Shirakawa, and Sukagawa, where the Japan Meteorological Agency intensity of 6+ was observed and instrumentally recorded ground motion data were available.
Abstract: A catastrophic Mw9.0 earthquake and subsequent giant tsunami struck the Tōhoku and Kanto regions of Japan on 11th March 2011, causing tremendous casualties, massive damage to structures and infrastructure, and huge economic loss. This event has revealed weakness and vulnerability of urban cities and modern society in Japan, which were thought to be one of the most earthquake-prepared nations in the world. Nevertheless, recorded ground motion data from this event offer invaluable information and opportunity; their unique features include very strong short-period spectral content, long duration, and effects due to local asperities as well as direction of rupture/wave propagation. Aiming at gaining useful experience from this tragic event, Earthquake Engineering Field Investigation Team (EEFIT) organised and dispatched a team to the Tōhoku region of Japan. During the EEFIT mission, ground shaking damage surveys were conducted in Sendai, Shirakawa, and Sukagawa, where the Japan Meteorological Agency intensity of 6+ was observed and instrumentally recorded ground motion data were available. The damage survey results identify the key factors for severe shaking damage, such as insufficient lateral reinforcement and detailing in structural columns from structural capacity viewpoint and rich spectral content of ground shaking in the intermediate vibration period range from seismic demand viewpoint. Importantly, inclusion of several ground motion parameters, such as nonlinear structural response, in shaking damage surveys, can improve the correlation of observed ground motion with shaking damage and therefore enhance existing indicators of potential damage.

68 citations


Journal ArticleDOI
TL;DR: In this article, a self-centering steel post-tensioned connection using web hourglass shape pins (WHPs) has been recently developed and experimentally validated, and a simplified nonlinear model for the connection and the associated beams and columns that consists of nonlinear beamcolumn elements, and hysteretic and contact zero-length spring elements appropriately placed in the beam-column interface.
Abstract: A new self-centering steel post-tensioned connection using web hourglass shape pins (WHPs) has been recently developed and experimentally validated. The connection isolates inelastic deformations in WHPs, avoids damage in other connection parts as well as in beams and columns, and eliminates residual drifts. WHPs do not interfere with the composite slab and can be very easily replaced without bolting or welding, and so, the connection enables non-disruptive repair and rapid return to building occupancy in the aftermath of a strong earthquake. This paper presents a simplified nonlinear model for the connection and the associated beams and columns that consists of nonlinear beam-column elements, and hysteretic and contact zero-length spring elements appropriately placed in the beam-column interface. The model was calibrated against experimental results and found to accurately simulate the connection behaviour. A prototype building was selected and designed as a conventional steel moment-resisting frame (MRF) according to Eurocode 8 or as a self-centering steel MRF (SC-MRF) using the connection with WHPs. Seismic analyses results show that the conventional MRF and the SC-MRF have comparable peak storey drifts, and highlight the inherent potential of the SC-MRF to eliminate damage in beams and residual drifts. The paper also shows that repair of damage in the conventional MRF will be costly and disruptive after the design basis earthquake, and, not financially viable after the maximum considered earthquake due to large residual drifts

65 citations


Journal ArticleDOI
TL;DR: In this article, the coupled effect of the supporting soil flexibility and pounding between neighboring, insufficiently separated equal height buildings under earthquake excitation was investigated, and the results of the numerical simulations, in the form of the structural nonlinear responses as well as the time-histories of energy dissipated during pounding-involved vibrations, are presented in addition, the variation in storeys peak responses and peak dissipated energies for different gap sizes are also shown and comparisons are made with the results obtained for colliding buildings with fixed base supports.
Abstract: The present paper investigates the coupled effect of the supporting soil flexibility and pounding between neighbouring, insufficiently separated equal height buildings under earthquake excitation. Two adjacent three-storey structures, modelled as inelastic lumped mass systems with different structural characteristics, have been considered in the study. The models have been excited using a suit of ground motions with different peak ground accelerations and recorded at different soil types. A nonlinear viscoelastic pounding force model has been employed in order to effectively capture impact forces during collisions. Spring-dashpot elements have been incorporated to simulate the horizontal and rotational movements of the supporting soil. The results of the numerical simulations, in the form of the structural nonlinear responses as well as the time-histories of energy dissipated during pounding-involved vibrations, are presented in the paper. In addition, the variation in storeys peak responses and peak dissipated energies for different gap sizes are also shown and comparisons are made with the results obtained for colliding buildings with fixed-base supports. Observations regarding the incorporation of the soil-structure interaction and its effect on the responses obtained are discussed. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of equal height buildings during earthquakes, especially the response of the lighter and more flexible structure. It has been found that the soil flexibility decreases storey peak displacements, peak impact forces and peak energies dissipated during vibrations, whereas it usually leads to the increases in the peak accelerations at each storey level.

Journal ArticleDOI
TL;DR: In this article, a numerical investigation on the influence of infills on the seismic behavior of four different case study buildings is carried out: four and eight-storey buildings, designed for seismic loads according to the current Italian technical code or for gravity loads only according to an obsolete technical code, are considered.
Abstract: A growing attention has been addressed to the influence of infills on the seismic behavior of Reinforced Concrete buildings, also supported by the observation of damage to infilled RC buildings after severe earthquakes (e.g. L’Aquila 2009, Lorca 2011). In this paper, a numerical investigation on the influence of infills on the seismic behavior of four different case study buildings is carried out: four- and eight-storey buildings, designed for seismic loads according to the current Italian technical code or for gravity loads only according to an obsolete technical code, are considered. Seismic capacity at two Limit States (Damage Limitation and Near Collapse) is assessed through static push-over analyses, within the N2 spectral assessment framework. Different infill configurations are considered (Bare, Uniformly Infilled, Pilotis), and a sensitivity analysis is carried out, thus evaluating the influence of main material and capacity parameters on seismic response, depending on the number of storeys and the design typology. Fragility curves are obtained, through the application of a Response Surface Method. Seismic performance is also expressed in terms of failure probability, given a reference time period.

Journal ArticleDOI
Abstract: This paper investigates the problem of management, maintenance and planning of interventions in transport networks located in seismic zones, in relation to the actual state of degradation of their most vulnerable elements, as bridges. The study consists in two phases: the first phase is concerned with definition of the seismic vulnerability of a typical bridge in the network, through the construction of fragility curves calculated taking into account the corrosion of the reinforcing steel as the main cause of environmental deterioration. Once the fragility curves of the deteriorated bridges are computed, the second phase consists in the analysis of the vulnerability of the transport network in which the bridges are included taking into account the modification of the traffic flows when bridge infrastructures are damaged. The results of this pilot study can be used as a first step for a proper allocation of economic resources in the planning of seismic retrofit interventions to minimize the overall risk and manage the immediate post-earthquake emergency phase and guide rescuers in reaching the affected and critical areas.

Journal ArticleDOI
TL;DR: In this paper, a set of strength equations for masonry spandrels are presented. But, only a few models for the strength of a masonry wall have been developed.
Abstract: Many older unreinforced masonry (URM) buildings feature timber floors and solid brick masonry. Simple equivalent frame models can help predicting the expected failure mechanism and estimating the strength of a URM wall. When modelling a URM wall with an equivalent frame model rather than, for example, a more detailed simplified micro-model, the strengths of the piers and spandrels need to be estimated from mechanical or empirical models. Such models are readily available for URM piers, which have been tested in many different configurations. On the contrary, only few models for spandrel strength have been developed. This paper reviews these models, discusses their merits, faults and compares the predicted strength values to the results of recent experimental tests on masonry spandrels. Based on this assessment, the paper outlines recommendations for a new set of strength equations for masonry spandrels.

Journal ArticleDOI
TL;DR: In this article, the authors proposed design energy spectra in terms of an equivalent velocity, intended for regions with design peak acceleration 0.3 ǫg or higher, derived through linear and nonlinear dynamic analyses on a number of selected Turkish strong ground motion records.
Abstract: This work proposes design energy spectra in terms of an equivalent velocity, intended for regions with design peak acceleration 0.3 g or higher. These spectra were derived through linear and nonlinear dynamic analyses on a number of selected Turkish strong ground motion records. In the long and mid period ranges the analyses are linear, given the relative insensitivity of the spectra to structural parameters other than the fundamental period; conversely, in the short period range, the spectra are more sensitive to the structural parameters and, hence, nonlinear analyses are required. The selected records are classified in eight groups with respect to soil type (stiff or soft soil), the severity of the earthquake in terms of surface magnitude $$M _\mathrm{s} (M_\mathrm{s} \le $$ 5.5 and $$M _\mathrm{s} >$$ 5.5) and the relevance of the near-source effects (impulsive or vibratory). For each of these groups, median and characteristic spectra are proposed; such levels would respectively correspond to 50 and 95 % percentiles. These spectra have an initial linear growing branch in the short period range, a horizontal branch in the mid period range and a descending branch in the long period range. Empirical criteria for estimating the hysteretic energy from the input energy are suggested. The proposed design spectra are compared with those obtained from other studies.

Journal ArticleDOI
TL;DR: In this paper, a new construction system for masonry buildings using concrete blocks units and trussed reinforcement is presented and its seismic behavior is validated through shaking table tests, considering artificial accelerograms compatible with the elastic response spectrum defined by the Eurocode 8.
Abstract: Masonry buildings worldwide exhibited severe damage and collapse in recent strong earthquake events. It is known that their brittle behavior, which is mainly due to the combination of low tensile strength, large mass and insufficient connection between structural elements, is the main limitation for their structural implementation in residential buildings. A new construction system for masonry buildings using concrete blocks units and trussed reinforcement is presented here and its seismic behavior is validated through shaking table tests. Dynamic tests of two geometrically identical two-story reduced scale (1:2) models have been carried out, considering artificial accelerograms compatible with the elastic response spectrum defined by the Eurocode 8. The first model was reinforced with the new proposed system while the second model was built with unreinforced masonry. The experimental analysis encompasses local and global parameters such as cracking patterns, failure mechanisms, and in-plane and out-of-plane behavior in terms of displacements and lateral drifts from where the global dynamic behavior of the two buildings is analyzed comparatively. Finally, behavior factors for the design recommendations in case of unreinforced masonry are also evaluated.

Journal ArticleDOI
TL;DR: In this paper, a direct displacement-based design procedure for steel eccentrically braced frame (EBF) structures is proposed and a series of case study EBF structures are designed using the procedure.
Abstract: This paper details a direct displacement-based design procedure for steel eccentrically braced frame (EBF) structures and gauges its performance by examining the non-linear dynamic response of a series of case study EBF structures designed using the procedure. Analytical expressions are developed for the storey drift at yield and for the storey drift capacity of EBFs, recognising that in addition to link beam deformations, the brace and column axial deformations can provide important contributions to storey drift components. Case study design results indicate that the ductility capacity of EBF systems will tend to be relatively low, despite the large local ductility capacity offered by well detailed links. In addition, it is found that while the ductility capacity of EBF systems will tend to reduce with height, this is not necessarily negative for seismic performance since the displacement capacity for taller EBF systems will tend to be large. To gauge the performance of the proposed DBD methodology, analytical models of the case study design solutions are subject to non-linear time-history analyses with a set of spectrum-compatible accelerograms. The average displacements and drifts obtained from the NLTH analyses are shown to align well with design values, confirming that the new methodology could provide an effective tool for the seismic design of EBF systems.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the use of simplified deterministic nonlinear static procedures for assessing the seismic response of buildings and evaluated the influence that the uncertainties in the mechanical properties of the materials and in the features of the seismic actions have in the uncertainties of the structural response.
Abstract: The main goals of this article are to analyze the use of simplified deterministic nonlinear static procedures for assessing the seismic response of buildings and to evaluate the influence that the uncertainties in the mechanical properties of the materials and in the features of the seismic actions have in the uncertainties of the structural response. A reinforced concrete building is used as a guiding case study. In the calculation of the expected spectral displacement, deterministic nonlinear static methods are simple and straightforward. For not severe earthquakes these approaches lead to somewhat conservative but adequate results when compared to more sophisticated procedures involving nonlinear dynamic analyses. Concerning the probabilistic assessment, the strength properties of the materials, concrete and steel, and the seismic action are considered as random variables. The Monte Carlo method is then used to analyze the structural response of the building. The obtained results show that significant uncertainties are expected; uncertainties in the structural response increase with the severity of the seismic actions. The major influence in the randomness of the structural response comes from the randomness of the seismic action. A useful example for selected earthquake scenarios is used to illustrate the applicability of the probabilistic approach for assessing expected damage and risk. An important conclusion of this work is the need of broaching the fragility of the buildings and expected damage assessment issues from a probabilistic perspective.

Journal ArticleDOI
TL;DR: In this article, an analysis of the damage observed in 24 reinforced concrete (RC) columns tested under uniaxial and bao-axial horizontal loading is presented, and two new expressions are proposed for the evaluation of damage in RC elements under baoxial loading.
Abstract: An analysis of the damage observed in 24 reinforced concrete (RC) columns tested under uniaxial and biaxial horizontal loading is presented. The test results show that for biaxial loading conditions specific damage occurs for lower drift demands when compared with the corresponding uniaxial demand (a reduction of 50-75 % was found). The damage distribution observed in each column is also analysed. No significant differences are found in the plastic hinge length for uniaxial and biaxial loading. The drift demands associated with each damage state are compared with reference values proposed in international guidelines. Finally, and based on the philosophy of the Park and Ang uniaxial damage index, two new expressions are proposed for the evaluation of damage in RC elements under biaxial loading. The results of the application of these expressions to the experimental results are discussed.

Journal ArticleDOI
TL;DR: It is shown that only a few of these ‘Intensity Measures’ of each accelerogram are reasonably successful and their use could therefore be recommended, but only for statistical inference, and a detailed deterministic analysis presented in the paper reveals the unacceptably poor predictive power of this measure.
Abstract: The potential of a particular ground accelerogram to inflict damage to asymmetric strongly-inelastic systems is studied in the paper. An idealised analogue, the rigid block with frictional contact on an inclined base, is adopted as the generic representation of such systems. The inclined base (of (a sufficiently steep) angle) is shaken with numerous strong records bearing the effects of forward-directivity and/or fling-step. The accumulated slippage, D, of the block caused by each record is taken as the induced “damage” to the system. The relevance of a variety of ‘Intensity Measures’ of each accelerogram (ranging from PGA and PGV to Housner’s and Arias’ Intensities) in predicting this damage, is investigated statistically. It is shown that only a few of these ‘Intensity Measures’ are reasonably successful and their use could therefore be recommended, but only for statistical inference. A detailed deterministic analysis presented in the paper for one of these successful measures, Arias Intensity, reveals the unacceptably poor predictive power of this measure. Upper-bound curves of slippage provided in closed-form expressions, are an improvement over the state-of-practice Makdisi & Seed diagrams.

Journal ArticleDOI
TL;DR: It can be concluded that the AI methods are relatively promising for prediction of average shear wave velocity as a soil property at the earthquake recording stations by applying artificial neural network and genetic expression programming models.
Abstract: Since the determination from experimental tests are expensive and time consuming, the site conditions in strong ground motion equations are mostly expressed by geologically qualitative descriptions of soils at the recording stations. The analytical solution for the site description has not been sufficiently studied due to highly nonlinear behavior of soil. Advances in field of artificial intelligence (AI) offer new insights to solve the problems in the most complex systems utilizing different algorithms and models. This paper primarily aims to predict average shear wave velocity (\(\text{ V}_\mathrm{S30}\)) as a soil property at the earthquake recording stations by applying AI methods, which are composed of artificial neural network (ANN) and genetic expression programming (GEP). The application is performed for the 60-accelerograph station sites located in California, USA. The predictor variables of \(\text{ V}_\mathrm{S30}\) in AI models, which are properly organized from strong ground motion data, are magnitude, site-to-source distance, peak ground acceleration and spectral accelerations at different site periods. \(\text{ V}_\mathrm{S30}\) values as output variable are collected from the surface wave testings conducted in the sites. The results indicates that for the considered highly nonlinear problem in this paper, the developed ANN and GEP models perform good predictions in terms of error and correlation. It can be concluded that the AI methods are relatively promising for prediction of \(\text{ V}_\mathrm{S30}\). The findings from this paper can be helpful to improve the site descriptions at the current database of the study region.

Journal ArticleDOI
TL;DR: In this paper, a simplified numerical-analytical approach to model confined masonry (CM) structures using pushover analysis, aiming to apply performance-based design procedures, is presented, and the accuracy of the predictions from both methods is very satisfactory, allowing to capture the base shear-displacement envelope and also the damage patterns of the structure.
Abstract: Confined masonry (CM) is a typical building technique in Latin American countries. This technique, due to its simplicity of construction and similarity with traditional practices of reinforced concrete building, presents a potential of use in European regions with moderate-to-high seismicity. However, most of the procedures for seismic design in codes for Latin America are force-based, which appears to be inadequate due to the high dissipative response observed for CM. This paper presents a simplified numerical-analytical approach to model CM structures using pushover analysis, aiming to apply performance-based design procedures. First, a data mining process is performed on a database of experimental results collected from lateral tests on CM walls to adjust prediction models for the wall shear strength and to determine the input relevance through a sensitivity analysis. Then, an analytical model of CM structures for pushover analysis is proposed with basis on a wide-column approach that employs an adaptive shear load-displacement constitutive relation. The proposed method is compared with a discrete element model that represents explicitly the confinements-masonry interaction, against the experimental results obtained in a quasi-static test of a full-scale tridimensional CM structure. The accuracy of the predictions from both methods is very satisfactory, allowing to capture the base shear-displacement envelope and also the damage patterns of the structure, thus, demonstrating the ability of the methods to be used in performance-based seismic assessment and design of CM buildings.

Journal ArticleDOI
TL;DR: In this article, the authors present the available formulas for predicting shear amplification in ductile walls and dual systems (wall-frames) and discuss the impact of shear cracking mainly in the plastic hinge zone of the wall near the base.
Abstract: Effect of higher vibration modes on the seismic shear demand of reinforced concrete cantilever walls has been studied since the 1970’s. The shear amplification becomes more important with increasing fundamental period (tall buildings) and increasing ductility demand (R or q factors). Yet, studying the relevant recommendations of structural engineering researchers and provisions of various seismic codes reveals that there is no consensus regarding the extent of shear amplification and of the inter-wall distribution of shear demand in structural systems comprising walls of different lengths. The paper presents the available formulas for predicting shear amplification in ductile walls and dual systems (wall-frames). One effect that impacts the shear amplification is shear cracking mainly in the plastic hinge zone of the wall near the base leading to appreciably lower shear amplification than previously predicted. Post yield shear redistribution among interconnected unequal walls is also addressed. Finally, an extensive bibliography is provided.

Journal ArticleDOI
TL;DR: In this article, the effects of irregularity in plan due to the strength variability of concrete is analyzed on a case study, a four storey RC framed building, designed for vertical loads only.
Abstract: A proper characterization of concrete strength is essential to correctly model existing RC structures, whose seismic performance is affected by the poor quality of materials. The purpose of this work is to evaluate the effect of incorrect assumptions for concrete strength and the adequacy of current Codes provisions (Eurocodes, FEMA). Even the effects of the non homogeneity of concrete strength within the building is considered due to its high variability; in fact, buildings can experience an irregular seismic response, both in plan and in elevation. In this work the effects of irregularity in plan due to the strength variability of concrete is analyzed on a case study, a four storey RC framed building, designed for vertical loads only. The variability of concrete strength has been evaluated using the data of an extensive investigation developed by REGIONE TOSCANA on a large sample of RC framed buildings.

Journal ArticleDOI
TL;DR: In this paper, the authors observed trends in the seismic performance of eight severely damaged reinforced concrete (RC) structures after the February 27, 2010 Chile earthquake and concluded that the design codes must be revised relative to wall design provisions.
Abstract: Observed trends in the seismic performance of eight severely damaged reinforced concrete (RC) structures after the February 27, 2010, Chile earthquake are presented in this article. After a reconnaissance and surveying process conducted immediately after the earthquake, several aspects not conventionally considered in building design were observed in the field. Most of the considered structures showed extensive localized damage in walls of lower stories and first basements. Several factors indicate that damage was brittle, and occurred mainly in recent RC structures supported on soft soils with some degree of vertical and/or horizontal irregularity. Non-ductile behavior has been inferred due to the lack of evidence of spread damage in the structure, and the fact that very similar structural configurations existed nearby without apparent damage. Some key aspects in understanding the observed damage are: geographical orientation of the building, presence of vertical and horizontal irregularities, wall thickness and reinforcement detailing, and lack of sources for energy dissipation. Additionally, results of a building-code type analysis are presented for the 4 most critical buildings, and Demand/Capacity ratios are calculated and compared with the observed behavior. It is concluded that the design codes must be revised relative to wall design provisions.

Journal ArticleDOI
TL;DR: In this paper, a base isolation system using scrap tire rubber pads (STRP) has been introduced for seismic mitigation of ordinary residential buildings, which has no bonding between the superstructure and the foundation beam which allows for rollover deformation.
Abstract: A new base isolation system using scrap tire rubber pads (STRP) has been introduced for seismic mitigation of ordinary residential buildings. The rubber and the steel reinforcing cords used in manufacturing the tire are the alternative materials of the proposed base isolation system. The steel reinforcing cords represent the steel plates used in conventional laminated rubber bearings. These steel reinforcing cords shall prevent the lateral bulging of the rubber bearing. The proposed base isolation system has no bonding between the superstructure and the foundation beam which allows for rollover deformation. In the first part of the study, the STRP layers were just stacked one on top of another without applying the adhesive. This paper presents loading test as well as finite element analysis (FE analysis) of strip STRP isolators that are subjected to any given combination of static vertical and lateral loads. The results of the static vertical and horizontal loading test conducted on STRP isolators were used to calculate the mechanical properties of the isolators, including stiffness and damping values. The load–displacement relationship of STRP isolators were compared between experimental and FE analysis results and the results were found to be in close agreement. The stress state within the STRP isolators was also analyzed in order to estimate the maximum stress demand in the rubber and steel reinforcing cords. These STRP isolators have several advantages over conventional laminated rubber bearings including superior damping properties, lower incurred cost, light weight and easily available material. This study suggests that using the STRP as low cost base isolation device for ordinary residential buildings is feasible.

Journal ArticleDOI
TL;DR: In this paper, the sensitivity of the response of optimally damped frames to uncertainty in structural and damping properties is examined, and the physical reasons for this behavior are discussed and some rules as to what designs are expected to be more sensitive are given.
Abstract: This paper examines the sensitivity of the response of optimally damped frames to uncertainty in structural and damping properties. Viscous dampers are first optimally designed for given nominal properties of the retrofitted structures and a given ensemble of records for each structure. The behavior of the retrofitted structures (in terms of the maximum envelope peak inter-story drift) considering uncertainty in their properties as well as in the dampers’ properties is then tested using Monte Carlo simulation. It is shown that the uncertainties lead to larger mean drifts than expected, and that some designs are more sensitive than others. The physical reasons for this behavior are discussed and some rules as to what designs are expected to be more sensitive are given.

Journal ArticleDOI
TL;DR: In this article, a new method for the evaluation of the static eccentricity and the ratio of uncoupled torsional to lateral frequencies in real multi-storey buildings was proposed.
Abstract: This paper describes a new method for the evaluation of the static eccentricity $$e_{s}$$ and the ratio $$\Omega _{\uptheta } $$ of uncoupled torsional to lateral frequencies in real multi-storey buildings. The above-mentioned parameters greatly affect the lateral-to-torsional coupling of the response of asymmetric systems and thus are of paramount importance in the assessment of the in-plan irregularity of buildings. The proposed method, which is a generalization of that suggested by Calderoni et al. (Earthq Spectra 18(2):219–231, 2002), allows the calculation of the static eccentricity $$e_{s}$$ and the ratio $$\Omega _{\uptheta } $$ from the structural response to arbitrary distributions of forces and torsional couples. The effectiveness of the method is validated on some regularly and non-regularly asymmetric buildings characterised by different in-plan irregularity. The analyses demonstrate that the results of the method are rigorous in the case of regularly asymmetric systems and only slightly depend upon the heightwise distribution of the forces in the case of non-regularly asymmetric systems. Finally, the values of the static eccentricity $$e_{s}$$ and the ratio $$\Omega _{\uptheta } $$ resulting from the proposed method are compared to those obtained by means of the procedure suggested by Makarios and Anastassiadis in (Struct Des Tall Spec Build 7(1):33–55, 1998a; Struct Des Tall Spec Build 7(1):57–71, 1998b) .

Journal ArticleDOI
TL;DR: In this article, the authors deal with the seismological and structural damage assessment of two major seismic events and aftershock sequences in Van region; special emphasis is on the findings of the site investigations performed in the aftermath of the major seismic event, which has shown substantial field evidence demonstrating that the losses generated to the local social communities were caused by typical structural and non-structural deficiencies that have been surveyed in the past in several moderate-to-major earthquakes worldwide, especially in poor countries.
Abstract: On Sunday, October 23rd, 2011, the Van province, in the Eastern Turkey, was stricken by a magnitude \(\text{ M}_{\mathrm{w}} \!=\! 7.1\) earthquake. The maximum horizontal peak ground acceleration, i.e. 0.182 g, was measured from the seismic station in Muradiye, at about 40 km from the epicenter. Several \(\text{ M}_\mathrm{w} > 5.7\) strong motion aftershocks were recorded in November 2011. The exceptionally rich sequence of ground motions was due to the dense seismotectonic activity of the Eastern Turkey, where many active historical faults exist and newly generated can also be found because of the ongoing continental collision between the Arabian and the Eurasian Plates. The 2011 Van earthquake sequence caused 644 casualties, 1966 injuries with 252 rescues; the total economic losses are estimated at around 1 billion US dollars. The present paper deals with the seismological and structural damage assessment of two major seismic events and aftershock sequences in Van region; special emphasis is on the findings of the site investigations performed in the aftermath of the major seismic event. The performed investigation has shown that there is substantial field evidence demonstrating that the losses generated to the local social communities were caused by typical structural and non-structural deficiencies that have been surveyed in the past in several moderate-to-major earthquakes worldwide, especially in poor countries. Comprehensive numerical simulations were also carried out to assess the characteristics of the strong motion records and their effects on existing representative building type of structures in the earthquake-affected region. It was found that the local building stock is highly vulnerable and requires urgent major structural interventions for seismic strengthening. A cost-efficient retrofitting scheme is however not straightforward. It should be a trade-off between two competing aspects: the use of innovative materials and technologies on one hand, and the low-quality of the workmanships and lack of adequate quality control during construction phase, which are available in the Van province, on the other hand.

Journal ArticleDOI
TL;DR: In this article, a simple and efficient procedure is proposed for determining maximum seismic displacements of planar steel frames from their residual deformation, which can be measured in-situ after strong seismic events.
Abstract: The maximum seismic displacements of a structure can be used for the assessment of its post-earthquake performance. In this paper, a simple and efficient procedure is proposed for determining maximum seismic displacements of planar steel frames from their residual deformation. More specifically, the inelastic behaviour of 36 moment resisting steel frames and 36 concentrically X-braced steel frames under one hundred strong ground motions is investigated. Thus, on the basis of extensive parametric studies for these structures and seismic records, empirical equations are constructed for simple and effective prediction of maximum seismic displacements from residual deformation, which can be measured in-situ after strong seismic events. It is found that the usage of residual deformation can be effectively utilized to evaluate the post-earthquake performance level of steel structures.