scispace - formally typeset
Search or ask a question

Showing papers in "Bulletin of the American Physical Society in 2009"


Journal Article
TL;DR: In this article, a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system, is presented.
Abstract: We present a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system. These modes, referred to as Koopman modes, are associated with a particular observable, and may be determined directly from data (either numerical or experimental) using a variant of a standard Arnoldi method. They have an associated temporal frequency and growth rate and may be viewed as a nonlinear generalization of global eigenmodes of a linearized system. They provide an alternative to proper orthogonal decomposition, and in the case of periodic data the Koopman modes reduce to a discrete temporal Fourier transform. The Arnoldi method used for computations is identical to the dynamic mode decomposition recently proposed by Schmid & Sesterhenn (Sixty-First Annual Meeting of the APS Division of Fluid Dynamics, 2008), so dynamic mode decomposition can be thought of as an algorithm for finding Koopman modes. We illustrate the method on an example of a jet in crossflow, and show that the method captures the dominant frequencies and elucidates the associated spatial structures.

1,412 citations


Journal Article
TL;DR: In this paper, the authors used electron beams instead of photons to detect plasmons as resonance peaks in the energy-loss spectra of sub-nanometre electron beams rastered on nanoparticles of well-defined geometrical parameters.
Abstract: Understanding how light interacts with matter at the nanometre scale is a fundamental issue in optoelectronics and nanophotonics. In particular, many applications (such as bio-sensing, cancer therapy and all-optical signal processing) rely on surface-bound optical excitations in metallic nanoparticles. However, so far no experimental technique has been capable of imaging localized optical excitations with sufficient resolution to reveal their dramatic spatial variation over one single nanoparticle. Here, we present a novel method applied on silver nanotriangles, achieving such resolution by recording maps of plasmons in the near-infrared/visible/ultraviolet domain using electron beams instead of photons. This method relies on the detection of plasmons as resonance peaks in the energy-loss spectra of subnanometre electron beams rastered on nanoparticles of well-defined geometrical parameters. This represents a significant improvement in the spatial resolution with which plasmonic modes can be imaged, and provides a powerful tool in the development of nanometre-level optics.

803 citations



Journal Article
TL;DR: In this article, the authors investigate poly(ethylene imine) and diazonium salts as stable, complementary dopants on graphene and show that transport in graphene devices doped with these molecules exhibits asymmetry in electron and hole conductance.
Abstract: We investigate poly(ethylene imine) and diazonium salts as stable, complementary dopants on graphene. Transport in graphene devices doped with these molecules exhibits asymmetry in electron and hole conductance. The conductance of one carrier is preserved, while the conductance of the other carrier decreases. Simulations based on nonequilibrium Green's function formalism suggest that the origin of this asymmetry is imbalanced carrier injection from the graphene electrodes caused by misalignment of the electrode and channel neutrality points.

427 citations


Journal Article
TL;DR: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented, and a mixture of helium and trace amounts of nitrogen gas was used.
Abstract: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

382 citations


Journal Article
TL;DR: This work demonstrates nanoscale lateral confinement of a quasi–two-dimensional electron gas at a lanthanum aluminate–strontium titanate interface and controls this confinement using an atomic force microscope lithography technique to create tunnel junctions and field-effect transistors with characteristic dimensions as small as 2 nanometers.
Abstract: Electronic confinement at nanoscale dimensions remains a central means of science and technology. We demonstrate nanoscale lateral confinement of a quasi–two-dimensional electron gas at a lanthanum aluminate–strontium titanate interface. Control of this confinement using an atomic force microscope lithography technique enabled us to create tunnel junctions and field-effect transistors with characteristic dimensions as small as 2 nanometers. These electronic devices can be modified or erased without the need for complex lithographic procedures. Our on-demand nanoelectronics fabrication platform has the potential for widespread technological application.

382 citations



Journal Article
TL;DR: A cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field, and the results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.
Abstract: Cavity optomechanics studies the coupling between a mechanical oscillator and the electromagnetic field in a cavity. We report on a cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field. A few photons inside the ultrahigh-finesse cavity trigger strongly driven back-action dynamics, in quantitative agreement with a cavity optomechanical model. We approach the strong coupling regime of cavity optomechanics, where a single excitation of the mechanical oscillator substantially influences the cavity field. The results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.

363 citations





Journal Article
TL;DR: In this paper, the vertical transport of momentum and kinetic energy across a boundary layer flow with wind turbines is investigated in a wind-tunnel experiment with a 3×3 array of model wind turbines.
Abstract: When wind turbines are deployed in large arrays, their ability to extract kinetic energy from the flow decreases due to complex interactions among them, the terrain topography and the atmospheric boundary layer. In order to improve the understanding of the vertical transport of momentum and kinetic energy across a boundary layer flow with wind turbines, a wind-tunnel experiment is performed. The boundary layer flow includes a 3×3 array of model wind turbines. Particle-image-velocity measurements in a volume surrounding a target wind turbine are used to compute mean velocity and turbulence properties averaged on horizontal planes. Results are compared with simple momentum theory and with expressions for effective roughness length scales used to parametrize wind-turbine arrays in large-scale computer models. The impact of vertical transport of kinetic energy due to turbulence and mean flow correlations is quantified. It is found that the fluxes of kinetic energy associated with the Reynolds shear stresses a...


Journal Article
TL;DR: In this paper, the local concentration of mobile carbon adatoms from which graphene sheets form on a Ru(0001) surface was measured, and simultaneously, the growth rates of individual graphene islands.
Abstract: Using low-energy electron microscopy (LEEM), we have measured the local concentration of mobile carbon adatoms from which graphene sheets form on a Ru(0001) surface, and simultaneously, the growth rates of individual graphene islands. Graphene crystal growth on Ru differs strikingly from that of two-dimensional metal islands on metals: (i) C adatoms experience a large energy barrier to attaching to graphene step edges, so adatom diffusion does not limit growth. (ii) The supersaturations needed for appreciable growth rates are comparable to those required to nucleate islands. (iii) The growth rate is a highly nonlinear function of supersaturation, with a large activation energy (2.0±0.1 eV). Our analysis suggests that graphene grows by adding rare clusters of about five atoms rather than adding the abundant monomers (adatoms). Knowing the growth mechanism and monitoring the supersaturation, we can control the pattern of growing graphene sheets.

Journal Article
TL;DR: The photocrosslinkable bromine-functionalized poly(3-hexylthiophene) (P3HT-Br) copolymers designed for application in solution-processed organic photovoltaics are prepared by copolymerization of 2-bromo-3-(6brommohexyl) thiophene and 2.
Abstract: Photocrosslinkable bromine-functionalized poly(3-hexylthiophene) (P3HT-Br) copolymers designed for application in solution-processed organic photovoltaics are prepared by copolymerization of 2-bromo-3-(6-bromohexyl) thiophene and 2-bromo-3-hexylthiophene. The monomer ratio is carefully controlled to achieve a UV photocrosslinkable layer while retaining the π–π stacking feature of the conjugated polymers. The new materials are used as electron donors in both bulk heterojunction (BHJ) and bilayer type photovoltaic devices. Unlike devices prepared from either P3HT:PCBM blend or P3HT-Br:PCBM blend without UV treatment, photocrosslinked P3HT-Br:PCBM devices are stable even when annealed for two days at the elevated temperature of 150 °C as the nanophase separated morphology of the bulk heterojunction is stabilized as confirmed by optical microscopy and grazing incidence wide angle X-ray scattering (GIWAXS). When applied to solution-processed bilayer devices, the photocrosslinkable materials show high power conversion efficiencies (∼2%) and excellent thermal stability (3 days at 150 °C). Such performance, one of the highest obtained for a bilayer device fabricated by solution processing, is achieved as crosslinking does not disturb the π–π stacking of the polymer as confirmed by GIWAXS measurements. These novel photocrosslinkable materials provide ready access to efficient bilayer devices thus enabling the fundamental study of photophysical characteristics, charge generation, and transport across a well-defined interface.

Journal Article
TL;DR: It is found that the mean displacement of a particle initially localized on one of the nondecaying sites can be expressed in terms of the winding number, and is therefore quantized as an integer, changing from zero to one at the critical point.

Journal Article
TL;DR: In this article, a double photodynamic therapy (PDT) and photohyperthermia (PHT) cancer phototherapy system using a single laser was proposed, where ZnPc-SWNHox-BSA was injected into tumors that were subcutaneously transplanted into mice, and the tumors almost disappeared upon 670-nm laser irradiation.
Abstract: Multifunctionalization of carbon nanotubules is easily achieved by attaching functional molecules that provide specific advantages for microscopic applications. We fabricated a double photodynamic therapy (PDT) and photohyperthermia (PHT) cancer phototherapy system that uses a single laser. Zinc phthalocyanine (ZnPc) was loaded onto single-wall carbon nanohorns with holes opened (SWNHox), and the protein bovine serum albumin (BSA) was attached to the carboxyl groups of SWNHox. In this system, ZnPc was the PDT agent, SWNHox was the PHT agent, and BSA enhanced biocompatibility. The double phototherapy effect was confirmed in vitro and in vivo. When ZnPc-SWNHox-BSA was injected into tumors that were subcutaneously transplanted into mice, the tumors almost disappeared upon 670-nm laser irradiation. In contrast, the tumors continued to grow when only ZnPc or SWNHox-BSA was injected. We conclude that carbon nanotubules may be a valuable new tool for use in cancer phototherapy.

Journal Article
TL;DR: In this paper, the authors carried out numerical simulations to study the jamming transition of a model granular material in two dimensions at zero temperature, and they found an excellent scaling collapse of their data as a function of the scaling variable sigma/|rho(c)-rho|(Delta), where rho is the critical density at sigma=0 ("point J"), and Delta is the crossover scaling critical exponent.
Abstract: We carry out numerical simulations to study transport behavior about the jamming transition of a model granular material in two dimensions at zero temperature. Shear viscosity eta is computed as a function of particle volume density rho and applied shear stress sigma, for diffusively moving particles with a soft core interaction. We find an excellent scaling collapse of our data as a function of the scaling variable sigma/|rho(c)-rho|(Delta), where rho(c) is the critical density at sigma=0 ("point J"), and Delta is the crossover scaling critical exponent. We define a correlation length xi from velocity correlations in the driven steady state and show that it diverges at point J. Our results support the assertion that jamming is a true second-order critical phenomenon.

Journal Article
TL;DR: In this article, a relativistic theory of Love numbers is presented for compact bodies with strong internal gravities. But the theory is not applicable to non-rotating black holes.
Abstract: In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

Journal Article
TL;DR: In this article, the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system, were studied.
Abstract: We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H2–air mixture. The system being modeled represents turbulent combustion with the Damkohler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H2–air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes.

Journal Article
TL;DR: In this article, the optical response of a semiconductor quantum dot (SQD) coupled with a metal nanoparticle (MNP) was investigated. And the relationship between the size of the constituents and the response of the system was explored.
Abstract: In this communication, we study the optical response of a semiconductor quantum dot (SQD) coupled with a metal nanoparticle (MNP). In particular, we explore the relationship between the size of the constituents and the response of the system. We identify, here, three distinct regimes of behavior in the strong field limit that each exhibit novel properties. In the first regime, we find that the energy absorption spectrum displays an asymmetrical Fano shape (as previously predicted). It occurs when there is interference between the applied field and the induced field produced by the SQD at the MNP. When the coupling is increased by increasing the size of the SQD, we find a double peaked Fano structure in the response. This second peak occurs when the induced field becomes stronger than the external field. As the coupling is further increased by increasing the sizes of both the SQD and the MNP, we find a regime of bistability. This originates when the self-interaction of the SQD becomes significant. We explo...

Journal Article
TL;DR: In this paper, a model for the reinforcement of nanofilled elastomer and thermoplastic elastomers is proposed, which is based on the presence of glassy layers around the fillers.
Abstract: We extend a model regarding the reinforcement of nanofilled elastomers and thermoplastic elastomers. The model is then solved by numerical simulations on mesoscale. This model is based on the presence of glassy layers around the fillers. Strong reinforcement is obtained when glassy layers between fillers overlap. It is particularly strong when the corresponding clusters—fillers + glassy layers—percolate, but it can also be significant even when these clusters do not percolate but are sufficiently large. Under applied strain, the high values of local stress in the glassy bridges reduce their lifetimes. The latter depend on the history, on the temperature, on the distance between fillers, and on the local stress in the material. We show how the dynamics of yield and rebirth of glassy bridges account for the nonlinear Payne and Mullins effects, which are a large drop of the elastic modulus at intermediate deformations and a progressive recovery of the initial modulus when the samples are subsequently put at ...

Journal Article
TL;DR: In this paper, the spin state of a layered organic salt was investigated by NMR and static susceptibility measurements and the temperature dependence of the susceptibility was described as that of a regular-triangular antiferromagnetic spin-$1∕2$ system with an exchange interaction.
Abstract: The family of layered organic salts $X{[\\mathrm{Pd}{(\\text{dmit})}_{2}]}_{2}$ are Mott insulators and form scalene-triangular spin-$1∕2$ systems. Among them, $\\mathrm{Et}{\\mathrm{Me}}_{3}\\mathrm{Sb}{[\\mathrm{Pd}{(\\text{dmit})}_{2}]}_{2}$ has a nearly regular-triangular lattice. We have investigated the spin state of this salt by $^{13}\\mathrm{C}\\text{\\ensuremath{-}}\\mathrm{NMR}$ and static susceptibility measurements. The temperature dependence of the susceptibility is described as that of a regular-triangular antiferromagnetic spin-$1∕2$ system with an exchange interaction $J=220\\ensuremath{-}250\\phantom{\\rule{0.3em}{0ex}}\\mathrm{K}$. The $^{13}\\mathrm{C}\\text{\\ensuremath{-}}\\mathrm{NMR}$ measurements reveal that there is no indication of either spin ordering/freezing or an appreciable spin gap down to $1.37\\phantom{\\rule{0.3em}{0ex}}\\mathrm{K}$, which is lower than 1% of $J$. This result strongly suggests that this system is in the quantum spin-liquid state with no appreciable spin gap, which has been long sought after.

Journal Article
TL;DR: In this article, a 3D, turbulent flow in a channel with a sudden expansion was studied by direct numerical simulation of the incompressible Navier-Stokes manifold, which was performed using spectral/hp element method with stiffly-stable velocity correction scheme for time integration.
Abstract: A three-dimensional, turbulent flow in a channel with a sudden expansion was studied by direct numerical simulation of the incompressible Navier-Stokes equations. The objective of this study was to provide statistical data of backwardfacing step flow for turbulence modelling. Additionally, analysis of the statistical and dynamical properties of the flow is performed. The Reynolds number of the main simulation was Reh = 9000, based on the step height and mean inlet velocity, with the expansion ratio ER = 2:0. The discretisation is performed using the spectral/hp element method with stiffly-stable velocity correction scheme for time integration. The inlet boundary condition is a fully turbulent velocity and pressure field regenerated from a plane downstream of the inlet. A constant flowrate was ensured by applying Stokes flow correction in the inlet regeneration area. Time and spanwise averaged results revealed, apart from the primary recirculation bubble, secondary and tertiary corner eddies. Streamlines show an additional small eddy at the downstream tip of the secondary corner eddy, with the same circulation direction as the secondary vortex. The analysis of the 3D, timeonly average shows the wavy spanwise structure of both primary and secondary recirculation bubble, that results in spanwise variations of the mean reattachment location. The visualisation of spanwise averaged pressure uctuations and streamwise velocity showed that the interaction of vortices with the recirculation bubble is responsible for the apping of the reattachment position. The characteristic frequency St = 0:078 was found. The analysis of small-scale energy transfer was performed to reveal large backscatter regions in strong Reynolds stress areas in the mixing layer. High correlation of small-scale transfer with non-linear interaction of large-scale velocity and small-scale vorticity was found. The data of the flow fields was archived. It contains the averages for velocities, pressure and Reynolds stress tensor, as well as 3D instantaneous pressure and velocity history.

Journal Article
TL;DR: The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect the understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction.
Abstract: The movement of drops in electric fields plays a role in processes as diverse as storm cloud formation, ink-jet printing and lab-on-a-chip manipulations. An important factor in practical applications is the tendency for adjacent drops to coalesce, usually assumed to be favoured if drops are oppositely charged and attracted to each other. Now Ristenpart et al. show that when oppositely charged drops move towards each other in an electric field whose strength exceeds a critical value, the drops simply 'bounce' off one another. This observation calls for a re-evaluation of our understanding of all processes involving electrically induced drop motion. Adjacent drops of fluid coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. However, here it is observed that oppositely charged drops moving towards each other in a strong electric field do not coalesce when the field strength exceeds a certain value but rather 'bounce' off one another. This observation calls for a re-evaluation of our understanding of processes such as storm cloud formation and ink-jet printing, which involve electrically induced droplet motion. Electric fields induce motion in many fluid systems, including polymer melts1, surfactant micelles2 and colloidal suspensions3. Likewise, electric fields can be used to move liquid drops4. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation5, commercial ink-jet printing6, petroleum and vegetable oil dehydration7, electrospray ionization for use in mass spectrometry8, electrowetting9 and lab-on-a-chip manipulations10. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence11,12,13. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to ‘bounce’ off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction.

Journal Article
TL;DR: In this paper, the magnetic anisotropy has been shown to play a decisive role in the physics of Kondo screening, and it was shown that a Kondo resonance emerges for large-spin atoms only when the magnetic aisotropic effect creates degenerate ground-state levels that are connected by the spin flip of a screening electron.
Abstract: Localized magnetic moments on surfaces can be screened through the Kondo effect by forming a correlated system with the surrounding conduction electrons. Measurements now show that the orientation of the magnetic moment’s spin relative to the surface has a decisive role in the physics of Kondo screening. In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host1. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin2. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment’s energy on the orientation of the spin relative to its surrounding atomic environment3,4. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.

Journal Article
TL;DR: In this paper, the authors performed well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain their results by using a combination of scaling and analytical methods.
Abstract: The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine.

Journal Article
TL;DR: In this paper, a single-molecule quantum dot was operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes, and a gate voltage induced a crossing of two different types of electron spin states (singlet and triplet) at zero magnetic field.
Abstract: Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.

Journal Article
TL;DR: In this paper, the electron-phonon coupling of selected phonon modes in graphene and graphite using various ab-initio methods was computed, and the inclusion of non-local exchange-correlation effects within the GW approach strongly renormalized the square EPC of the A$'_1$ {bf K} mode by almost 80$%$ with respect to density functional theory in the LDA and GGA approximations.
Abstract: We compute electron-phonon coupling (EPC) of selected phonon modes in graphene and graphite using various ab-initio methods. The inclusion of non-local exchange-correlation effects within the GW approach strongly renormalizes the square EPC of the A$'_1$ {\\bf K} mode by almost 80$%$ with respect to density functional theory in the LDA and GGA approximations. Within GW, the phonon slope of the A$'_1$ {\\bf K} mode is almost two times larger than in GGA and LDA, in agreement with phonon dispersions from inelastic x-ray scattering and Raman spectroscopy. The hybrid B3LYP functional overestimates the EPC at {\\bf K} by about 30%. Within the Hartree-Fock approximation, the graphene structure displays an instability under a distortion following the A$'_1$ phonon at {\\bf K}.

Journal Article
TL;DR: In this article, the pairing symmetry of a two-orbital J1-J2 model for FeAs layers in oxypnictides was studied, and it was shown that the mixture of an intraorbital unconventional s-x;{2}y,{2}} approximately cos(k_{x})cos(k-y}) pairing symmetry was favored for J2>J1.
Abstract: We study the pairing symmetry of a two-orbital J1-J2 model for FeAs layers in oxypnictides. We show that the mixture of an intraorbital unconventional s_{x;{2}y;{2}} approximately cos(k_{x})cos(k_{y}) pairing symmetry, which changes sign between the electron and hole Fermi surfaces, and a very small d_{x;{2}-y;{2}} approximately cos(k_{x})-cos(k_{y}) component is favored in a large part of the J1-J2 phase diagram. A pure s_{x;{2}y;{2}} pairing state is favored for J2>J1. The signs of the d_{x;{2}-y;{2}} order parameters in the two different orbitals are opposite. While a small d_{xy} approximately sin(k_{x})sin(k_{y}) interorbital pairing coexists in the above phases, the intraorbital d_{xy} pairing is not favored even for large J2.