scispace - formally typeset
Search or ask a question

Showing papers in "Bulletin of the American Physical Society in 2015"


Journal Article
TL;DR: High-resolution spectroscopic imaging techniques show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states, providing strong evidence for the formation of a topological phase and edge-bound Majorana fermions in atomic chains.
Abstract: A possible sighting of Majorana states Nearly 80 years ago, the Italian physicist Ettore Majorana proposed the existence of an unusual type of particle that is its own antiparticle, the so-called Majorana fermion. The search for a free Majorana fermion has so far been unsuccessful, but bound Majorana-like collective excitations may exist in certain exotic superconductors. Nadj-Perge et al. created such a topological superconductor by depositing iron atoms onto the surface of superconducting lead, forming atomic chains (see the Perspective by Lee). They then used a scanning tunneling microscope to observe enhanced conductance at the ends of these chains at zero energy, where theory predicts Majorana states should appear. Science, this issue p. 602; see also p. 547 Scanning tunneling microscopy is used to observe signatures of Majorana states at the ends of iron atom chains. [Also see Perspective by Lee] Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.

877 citations


Journal Article
TL;DR: It is found that the strength of the torque per unit charge current density in Bi2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction.

862 citations



Journal Article
TL;DR: A trustful prediction of new promising materials, identification of anomalies, and scientific advancement are doubtful when the scientific connection between the descriptor and the actuating mechanisms is unclear.
Abstract: Statistical learning of materials properties or functions so far starts with a largely silent, nonchallenged step: the choice of the set of descriptive parameters (termed descriptor). However, when the scientific connection between the descriptor and the actuating mechanisms is unclear, the causality of the learned descriptor-property relation is uncertain. Thus, a trustful prediction of new promising materials, identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define requirements for a suitable descriptor. For a classic example, the energy difference of zinc blende or wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found systematically.

455 citations


Journal Article
TL;DR: In this paper, an ionic field effect transistor (termed an iFET) is described, in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2.
Abstract: The ability to tune material properties using gating by electric fields is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as the observation of gate electric-field-induced superconductivity and metal-insulator transitions. Here, we describe an ionic field-effect transistor (termed an iFET), in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2. The strong charge doping induced by the tunable ion intercalation alters the energetics of various charge-ordered states in 1T-TaS2 and produces a series of phase transitions in thin-flake samples with reduced dimensionality. We find that the charge-density wave states in 1T-TaS2 collapse in the two-dimensional limit at critical thicknesses. Meanwhile, at low temperatures, the ionic gating induces multiple phase transitions from Mott-insulator to metal in 1T-TaS2 thin flakes, with five orders of magnitude modulation in resistance, and superconductivity emerges in a textured charge-density wave state induced by ionic gating. Our method of gate-controlled intercalation opens up possibilities in searching for novel states of matter in the extreme charge-carrier-concentration limit.

437 citations


Journal Article
TL;DR: In this paper, the authors demonstrate large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. The results provide a significant step in realization of active camouflage systems in microwave frequencies.
Abstract: Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

422 citations


Journal Article
TL;DR: In this article, the authors analyzed the electronic structure and optical properties of perovskite solar cells based on CH3NH3PbI3 with the quasiparticle self-consistent GW approximation.
Abstract: The performance of organometallic perovskite solar cells has rapidly surpassed those of both traditional dye-sensitized and organic photovoltaics, e.g. solar cells based on CH3NH3PbI3 have recently reached 18% conversion efficiency. We analyze its electronic structure and optical properties within the quasiparticle self-consistent GW approximation (QSGW ). Quasiparticle self-consistency is essential for an accurate description of the band structure: bandgaps are much larger than what is predicted by the local density approximation (LDA) or GW based on the LDA. Several characteristics combine to make the electronic structure of this material unusual. First, there is a strong driving force for ferroelectricity, as a consequence the polar organic moiety CH3NH3. The moiety is only weakly coupled to the PbI3 cage; thus it can rotate give rise to ferroelectric domains. This in turn will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and may contribute to the current-voltage hysteresis found in perovskite solar cells. Second, spin orbit modifies both valence band and conduction band dispersions in a very unusual manner: both get split at the R point into two extrema nearby. This can be interpreted in terms of a large Dresselhaus term, which vanishes at R but for small excursions about R varies linearly in k. Conduction bands (Pb 6p character) and valence bands (I 5p) are affected differently; moreover the splittings vary with the orientation of the moiety. We will show how the splittings, and their dependence on the orientation of the moiety through the ferroelectric effect, have important consequences for both electronic transport and the optical properties of this material.

418 citations


Journal Article
TL;DR: In this article, the authors reported an all-carbon MTC with topologically non-trivial electronic states by exhibiting node-lines in bulk, which can evolve into 3D Dirac point in the absence of inversion symmetry.
Abstract: Graphene, a two dimensional (2D) carbon sheet, acquires many of its amazing properties from the Dirac point nature of its electronic structures with negligible spin-orbit coupling. Extending to 3D space, graphene networks with negative curvature, called Mackay-Terrones crystals (MTC), have been proposed and experimentally explored, yet their topological properties remain to be discovered. Based on the rst-principle calculations, we report an all-carbon MTC with topologically non-trivial electronic states by exhibiting node-lines in bulk. When the node-lines are projected on to surfaces to form circles, \drumhead" like at surface bands nestled inside of the circles are formed. The bulk node-line can evolve into 3D Dirac point in the absence of inversion symmetry, which has shown its plausible existence in recent experiments.

383 citations


Journal Article
TL;DR: By applying intense circularly polarized light, which breaks time-reversal symmetry, it is demonstrated that the exciton level in each valley can be selectively tuned by as much as 18 meV through the optical Stark effect, which offers a new way to control the valley degree of freedom.
Abstract: Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations [1–4], even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2 [5]. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom and may provide a means to realize new valley-selective Floquet topological phases [6–8] in 2D TMDs.

352 citations


Journal Article
TL;DR: This paper derived constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data.
Abstract: We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-alpha forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an \"inverse distance ladder\" yields a measurement of H-0 = 67.3 +/- 1.1 km s(-1) Mpc(-1), with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Lambda CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Lambda), our BAO + SN + CMB combination yields matter density Omega(m) = 0.301 +/- 0.008 and curvature Omega(k) = -0.003 +/- 0.003. When we allow more general forms of evolving dark energy, the BAO + SN + CMB parameter constraints are always consistent with flat Lambda CDM values at approximate to 1 sigma. While the overall chi(2) of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H-0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Sigma m(nu) < 0.56 eV (95% confidence), improving to Sigma m(nu) < 0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat Lambda CDM model that allows extra relativistic species, our data combination yields N-eff = 3.43 +/- 0.26; while the LyaF BAO data prefer higher N-eff when excluding galaxy BAO, the galaxy BAO alone favor N-eff approximate to 3. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.

336 citations


Journal Article
TL;DR: It is shown that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms, and suggests a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

Journal Article
TL;DR: A simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator by using a method for implementing linear combinations of unitary operations together with a robust form of oblivious amplitude amplification.
Abstract: We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations together with a robust form of oblivious amplitude amplification.

Journal Article
TL;DR: In this article, the existence of efficient exciton-exciton annihilation, a four-body interaction, in monolayer MoS2 was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density.
Abstract: Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.

Journal Article
TL;DR: In this article, the authors used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system.
Abstract: Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A–CBP–pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A–CBP–pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Journal Article
TL;DR: In this article, the predicted half-integer quantum Hall effect was observed using the topological insulator BiSbTeSe2, which exhibits topological surface states at room temperature, with each surface contributing a half quantum of Hall conductance.
Abstract: Experimentalists have observed the predicted half-integer quantum Hall effect using the topological insulator BiSbTeSe2, which exhibits topological surface states at room temperature, with each surface contributing a half quantum of Hall conductance.



Journal Article
TL;DR: A novel statistical-mechanical approach to directly measure the interaction energy between pedestrians reveals a simple power-law interaction that is based not on the physical separation between pedestrians but on their projected time to a potential future collision, and is therefore fundamentally anticipating in nature.

Journal Article
TL;DR: In this paper, the authors describe how to create a Chern insulator of phonons in the solid state, based on a simple setting, a dielectric slab with a suitable pattern of holes, which can be tuned in-situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound.
Abstract: Topological states of matter are particularly robust, since they exploit global features insensitive to local perturbations. In this work, we describe how to create a Chern insulator of phonons in the solid state. The proposed implementation is based on a simple setting, a dielectric slab with a suitable pattern of holes. Its topological properties can be wholly tuned in-situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This would be an example of a Chern insulator produced from the interaction between two physically very different particle species, photons and phonons.


Journal Article
TL;DR: This work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.
Abstract: Significance We propose a class of active matter, the living liquid crystal (LLC), representing motile rod-shaped bacteria placed in water-based nontoxic liquid crystal. Long-range orientational order of the liquid crystal and the swimming activity of bacteria demonstrate a strong coupling that dramatically alters individual and collective bacterial dynamics. For example, swimming bacteria perturb the orientational order of the liquid crystal or even cause its local melting, making the flagella motion optically visible. Second, self-organized textures emerge from the initial uniform LLC alignment with a characteristic length controlled by a balance between bacteria activity and anisotropic viscoelasticity of liquid crystal. Third, the local liquid crystal orientation controls the direction of motion of bacteria. LLC can lead to valuable biosensoring and biomedical applications. Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.

Journal Article
TL;DR: In this paper, melt spinning combined with a plasma-activated sintering (MS-PAS) method is employed for commercial p-type zone-melted (ZM) ingots of Bi_0.5Sb_1.5Te_3.
Abstract: Bismuth telluride based thermoelectric materials have been commercialized for a wide range of applications in power generation and refrigeration. However, the poor machinability and susceptibility to brittle fracturing of commercial ingots often impose significant limitations on the manufacturing process and durability of thermoelectric devices. In this study, melt spinning combined with a plasma-activated sintering (MS-PAS) method is employed for commercial p-type zone-melted (ZM) ingots of Bi_0.5Sb_1.5Te_3. This fast synthesis approach achieves hierarchical structures and in-situ nanoscale precipitates, resulting in the simultaneous improvement of the thermoelectric performance and the mechanical properties. Benefitting from a strong suppression of the lattice thermal conductivity, a peak ZT of 1.22 is achieved at 340 K in MS-PAS synthesized structures, representing about a 40% enhancement over that of ZM ingots. Moreover, MS-PAS specimens with hierarchical structures exhibit superior machinability and mechanical properties with an almost 30% enhancement in their fracture toughness, combined with an eightfold and a factor of six increase in the compressive and flexural strength, respectively. Accompanied by an excellent thermal stability up to 200 °C for the MS-PAS synthesized samples, the MS-PAS technique demonstrates great potential for mass production and large-scale applications of Bi_2Te_3 related thermoelectrics.

Journal Article
TL;DR: The charge densities of the conduction band minimum and the valence band maximum are localized in nanoscales due to the potential fluctuations, which causes electron-hole separation and reduces carrier recombination rates, which may contribute to the long carrier lifetime observed in experiments.
Abstract: Perovskite-based solar cells have achieved high solar-energy conversion efficiencies and attracted wide attentions nowadays. Despite the rapid progress in solar-cell devices, many fundamental issues of the hybrid perovskites have not been fully understood. Experimentally, it is well-known that in CH3NH3PbI3 the organic molecules CH3NH3 are randomly orientated at the room temperature, but the impact of the random molecular orientation has not been investigated. Because of the dipole moment of the organic molecule, the random orientation creates a novel system with long-range potential fluctuations unlike alloys or other conventional disordered systems. Using linear scaling ab initio methods, we find that the charge densities of the conduction band minimum and the valence band maximum are localized in nanoscales due to the potential fluctuations. The charge localization causes electron–hole separation and reduces carrier recombination rates, which may contribute to the long carrier lifetime observed in expe...


Journal Article
TL;DR: In this paper, the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monoline 2H-MoSi2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations were investigated.
Abstract: Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure–property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T′-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibr...

Journal Article
TL;DR: In this article, an electric double-layer technique is used to induce clean two-dimensional superconductivity in the layered insulator ZrNCl, which is thinner than one unit-cell.
Abstract: A 3D approach to make 2D superconductors When the thickness of a superconducting film becomes comparable to the typical size of its electron pairs, its superconductivity enters a two-dimensional (2D) regime. Thinner films usually have higher amounts of disorder, making it difficult to isolate the 2D effects. To circumvent this limitation, Saito et al. induced charge carriers on the surface of the 3D insulator ZrNCl. This approach produced a clean superconducting layer thinner than the unit cell of the crystal. The superconducting state was extremely sensitive to the application of a perpendicular magnetic field, as expected for clean systems. Science, this issue p. 409 An electric-double-layer technique is used to induce clean two-dimensional superconductivity in the layered insulator ZrNCl. Recently emerging two-dimensional (2D) superconductors in atomically thin layers and at heterogeneous interfaces are attracting growing interest in condensed matter physics. Here, we report that an ion-gated zirconium nitride chloride surface, exhibiting a dome-shaped phase diagram with a maximum critical temperature of 14.8 kelvin, behaves as a superconductor persisting to the 2D limit. The superconducting thickness estimated from the upper critical fields is ≅ 1.8 nanometers, which is thinner than one unit-cell. The majority of the vortex phase diagram down to 2 kelvin is occupied by a metallic state with a finite resistance, owing to the quantum creep of vortices caused by extremely weak pinning and disorder. Our findings highlight the potential of electric-field–induced superconductivity, establishing a new platform for accessing quantum phases in clean 2D superconductors.

Journal Article
TL;DR: A spin-coupled valley photocurrent is demonstrated, within an electric-double-layer transistor based on WSe2, whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further modulated with an external electric field.

Journal Article
TL;DR: In this article, the properties of excitons in monolayer MoS$_2$ from a theoretical point of view were investigated, and it was shown that low energy excitonic states occur both at the Brillouin zone center and at the corners of the two-dimensional hydrogenic model, and that the valley-degenerate exciton doublet splits at finite momentum into an upper mode with nonanalytic linear dispersion and a lower mode with quadratic dispersion.
Abstract: We address the properties of excitons in monolayer MoS$_2$ from a theoretical point of view, showing that low-energy excitonic states occur both at the Brillouin zone center and at the Brillouin-zone corners, that binding energies at the Brillouin-zone center deviate strongly from the $(n-1/2)^{-2}$ pattern of the two-dimensional hydrogenic model, and that the valley-degenerate exciton doublet at the Brillouin-zone center splits at finite momentum into an upper mode with non-analytic linear dispersion and a lower mode with quadratic dispersion. Although monolayer MoS$_2$ is a direct-gap semiconductor when classified by its quasiparticle band structure, it may well be an indirect gap material when classified by its excitation spectra.

Journal Article
TL;DR: By performing angle-resolved photoemission spectroscopy, a pair of 3D Dirac fermions in Cd3As2 are directly observed, proving that it is a model 3D TDS and by in situ doping it is able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.
Abstract: Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, β-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.