scispace - formally typeset
Search or ask a question
JournalISSN: 1470-7330

Cancer Imaging 

Springer Science+Business Media
About: Cancer Imaging is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Medicine & Magnetic resonance imaging. It has an ISSN identifier of 1470-7330. It is also open access. Over the lifetime, 1267 publications have been published receiving 26037 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: DW-MRI is proving valuable in monitoring treatment where changes due to cell swelling and apoptosis are measurable as changes in ADC at an earlier stage than subsequent conventional radiological response indicators.
Abstract: Diffusion-weighted magnetic resonance imaging (DW-MRI) provides image contrast through measurement of the diffusion properties of water within tissues. Application of diffusion sensitising gradients to the MR pulse sequence allows water molecular displacement over distances of 1–20 μm to be recognised. Diffusion can be predominantly unidirectional (anisotropic) or not (isotropic). Combining images obtained with different amounts of diffusion weighting provides an apparent diffusion coefficient (ADC) map. In cancer imaging DW-MRI has been used to distinguish brain tumours from peritumoural oedema. It is also increasingly exploited to differentiate benign and malignant lesions in liver, breast and prostate where increased cellularity of malignant lesions restricts water motion in a reduced extracellular space. It is proving valuable in monitoring treatment where changes due to cell swelling and apoptosis are measurable as changes in ADC at an earlier stage than subsequent conventional radiological response indicators.

317 citations

Journal ArticleDOI
TL;DR: Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.
Abstract: Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.

311 citations

Journal ArticleDOI
TL;DR: This study provides initial evidence for a relationship between texture features in NSCLC on non-contrast-enhanced CT and tumour metabolism and stage and warrants further investigation as a potential method for obtaining prognostic information for patients with NSCLc undergoing CT.
Abstract: The aim was to undertake an initial study of the relationship between texture features in computed tomography (CT) images of non-small cell lung cancer (NSCLC) and tumour glucose metabolism and stage. This retrospective pilot study comprised 17 patients with 18 pathologically confirmed NSCLC. Non-contrast-enhanced CT images of the primary pulmonary lesions underwent texture analysis in 2 stages as follows: (a) image filtration using Laplacian of Gaussian filter to differentially highlight fine to coarse textures, followed by (b) texture quantification using mean grey intensity (MGI), entropy (E) and uniformity (U) parameters. Texture parameters were compared with tumour fluorodeoxyglucose (FDG) uptake (standardised uptake value (SUV)) and stage as determined by the clinical report of the CT and FDG-positron emission tomography imaging. Tumour SUVs ranged between 2.8 and 10.4. The number of NSCLC with tumour stages I, II, III and IV were 4, 4, 4 and 6, respectively. Coarse texture features correlated with tumour SUV (E: r = 0.51, p = 0.03; U: r = -0.52, p = 0.03), whereas fine texture features correlated with tumour stage (MGI: rs = 0.71, p = 0.001; E: rs = 0.55, p = 0.02; U: rs = -0.49, p = 0.04). Fine texture predicted tumour stage with a kappa of 0.7, demonstrating 100% sensitivity and 87.5% specificity for detecting tumours above stage II ( p = 0.0001). This study provides initial evidence for a relationship between texture features in NSCLC on non-contrast-enhanced CT and tumour metabolism and stage. Texture analysis warrants further investigation as a potential method for obtaining prognostic information for patients with NSCLC undergoing CT.

299 citations

Journal ArticleDOI
TL;DR: This article illustrates the image and histological features that correlate with CT texture parameters obtained from tumours using the filtration-histogram approach, which comprises image filTration to highlight image features of a specified size followed by histogram analysis for quantification.
Abstract: Analysis of texture within tumours on computed tomography (CT) is emerging as a potentially useful tool in assessing prognosis and treatment response for patients with cancer. This article illustrates the image and histological features that correlate with CT texture parameters obtained from tumours using the filtration-histogram approach, which comprises image filtration to highlight image features of a specified size followed by histogram analysis for quantification. Computer modelling can be used to generate texture parameters for a range of simple hypothetical images with specified image features. The model results are useful in explaining relationships between image features and texture parameters. The main image features that can be related to texture parameters are the number of objects highlighted by the filter, the brightness and/or contrast of highlighted objects relative to background attenuation, and the variability of brightness/contrast of highlighted objects. These relationships are also demonstrable by texture analysis of clinical CT images. The results of computer modelling may facilitate the interpretation of the reported associations between CT texture and histopathology in human tumours. The histogram parameters derived during the filtration-histogram method of CT texture analysis have specific relationships with a range of image features. Knowledge of these relationships can assist the understanding of results obtained from clinical CT texture analysis studies in oncology.

257 citations

Journal ArticleDOI
TL;DR: Grey scale sonographic features that help to identify metastatic and lymphomatous lymph nodes include size, shape and internal architecture, and serial monitoring of nodal size and vascularity are useful features in the assessment of treatment response.
Abstract: Malignant lymph nodes in the neck include metastases and lymphoma. Cervical nodal metastases are common in patients with head and neck cancers, and their assessment is important as it affects treatment planning and prognosis. Neck nodes are also a common site of lymphomatous involvement and an accurate diagnosis is essential as its treatment differs from other causes of neck lymphadenopathy. On ultrasound, grey scale sonography helps to evaluate nodal morphology, whilst power Doppler sonography is used to assess the vascular pattern. Grey scale sonographic features that help to identify metastatic and lymphomatous lymph nodes include size, shape and internal architecture (loss of hilar architecture, presence of intranodal necrosis and calcification). Soft tissue oedema and nodal matting are additional grey scale features seen in tuberculous nodes or in nodes that have been previously irradiated. Power Doppler sonography evaluates the vascular pattern of nodes and helps to identify the malignant nodes. In addition, serial monitoring of nodal size and vascularity are useful features in the assessment of treatment response.

242 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202370
202278
202162
202088
201991
201851