scispace - formally typeset
Search or ask a question

Showing papers in "Carcinogenesis in 2015"


Journal ArticleDOI
TL;DR: This review highlights recent advances in understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the Immunosuppressive microenvironment via induction of immunosppressive cells and activation of immune checkpoint pathways.
Abstract: Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways.

245 citations


Journal ArticleDOI
TL;DR: Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer.
Abstract: Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.

238 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that HCC-derived exosomes could mobilize normal hepatocyte, which may have implication in facilitating the protrusive activity of HCC cells through liver parenchyma during the process of metastasis.
Abstract: Exosomes are increasingly recognized as important mediators of cell-cell communication in cancer progression through the horizontal transfer of RNAs and proteins to neighboring or distant cells. Hepatocellular carcinoma (HCC) is a highly malignant cancer, whose metastasis is largely influenced by the tumor microenvironment. The possible role of exosomes in the interactions between HCC tumor cell and its surrounding hepatic milieu are however largely unknown. In this study, we comprehensively characterized the exosomal RNA and proteome contents derived from three HCC cell lines (HKCI-C3, HKCI-8 and MHCC97L) and an immortalized hepatocyte line (MIHA) using Ion Torrent sequencing and mass spectrometry, respectively. RNA deep sequencing and proteomic analysis revealed exosomes derived from metastatic HCC cell lines carried a large number of protumorigenic RNAs and proteins, such as MET protooncogene, S100 family members and the caveolins. Of interest, we found that exosomes from motile HCC cell lines could significantly enhance the migratory and invasive abilities of non-motile MIHA cell. We further demonstrated that uptake of these shuttled molecules could trigger PI3K/AKT and MAPK signaling pathways in MIHA with increased secretion of active MMP-2 and MMP-9. Our study showed for the first time that HCC-derived exosomes could mobilize normal hepatocyte, which may have implication in facilitating the protrusive activity of HCC cells through liver parenchyma during the process of metastasis.

200 citations


Journal ArticleDOI
TL;DR: Novel mechanistic evidence is provided for curcumin-mediated sensitization to 5FU-related chemoresistance through suppression of EMT in 5FUR cells via upregulation of E MT-suppressive miRNAs, highlighting the potential therapeutic usefulness ofCurcumin as an adjunct in patients with chemoresistant advanced CRC.
Abstract: Resistance to cytotoxic chemotherapy is a major cause of mortality in colorectal cancer (CRC) patients Chemoresistance has been linked primarily to a subset of cancer cells undergoing epithelial–mesenchymal transition (EMT) Curcumin, a botanical with antitumorigenic properties, has been shown to enhance sensitivity of cancer cells to chemotherapeutic drugs, but the molecular mechanisms underlying this phenomenon remain unclear Effects of curcumin and 5-fluorouracil (5FU) individually, and in combination, were examined in parental and 5FU resistant (5FUR) cell lines We performed a series of growth proliferation and apoptosis assays in 2D and 3D cell cultures Furthermore, we identified and analyzed the expression pattern of a subset of putative EMT-suppressive microRNAs (miRNAs) and their downstream target genes regulated by curcumin Chemosensitizing effects of curcumin were validated in a xenograft mouse model Combined treatment with curcumin and 5FU enhanced cellular apoptosis and inhibited proliferation in both parental and 5FUR cells, whereas 5FU alone was ineffective in 5FUR cells A group of EMT-suppressive miRNAs were upregulated by curcumin treatment in 5FUR cells Curcumin suppressed EMT in 5FUR cells by downregulating BMI1, SUZ12 and EZH2 transcripts, key mediators of cancer stemness-related polycomb repressive complex subunits Using a xenograft and mathematical models, we further demonstrated that curcumin sensitized 5FU to suppress tumor growth We provide novel mechanistic evidence for curcumin-mediated sensitization to 5FU-related chemoresistance through suppression of EMT in 5FUR cells via upregulation of EMT-suppressive miRNAs This study highlights the potential therapeutic usefulness of curcumin as an adjunct in patients with chemoresistant advanced CRC

194 citations


Journal ArticleDOI
TL;DR: It is found that MM patients with germline BAP1 mutation MM have an overall 7-fold increased long-term survival, independently of sex and age.
Abstract: BRCA1-associated protein-1 (BAP1) mutations cause a new cancer syndrome, with a high rate of malignant mesothelioma (MM). Here, we tested the hypothesis that MM associated with germline BAP1 mutations has a better prognosis compared with sporadic MM. We compared survival among germline BAP1 mutation MM patients with that of all MM (N = 10 556) recorded in the United States Surveillance, Epidemiology, and End Results (SEER) data from 1973 to 2010. We identified 23 MM patients—11 alive—with germline BAP1 mutations and available data on survival. Ten patients had peritoneal MM, ten pleural MM and three MM in both locations. Thirteen patients had one or more malignancies in addition to MM. Actuarial median survival for the MM patients with germline BAP1 mutations was 5 years, as compared with <1 year for the median survival in the United States SEER MM group. Five-year survival was 47%, 95% confidence interval (24–67%), as compared with 6.7% (6.2–7.3%) in the control SEER group. Analysis of the pooled cohort of germline BAP1 mutation MM showed that patients with peritoneal MM (median survival of 10 years, P = 0.0571), or with a second malignancy in addition to MM (median survival of 10 years, P = 0.0716), survived for a longer time compared with patients who only had pleural MM, or MM patients without a second malignancy, respectively. In conclusion, we found that MM patients with germline BAP1 mutations have an overall 7-fold increased long-term survival, independently of sex and age. Appropriate genetic counseling and clinical management should be considered for MM patients who are also BAP1 mutation carriers.

188 citations


Journal ArticleDOI
TL;DR: The limited knowledge of the characteristics of glioma stem-like cells and their response to current clinical treatments warrants intensive investigation with the aim to improve patient survival and/or develop a cure for this disease.
Abstract: Glioblastoma is the most common and most aggressive primary brain malignancy. The current initial standard of care consists of maximal safe surgical resection followed by radical radiotherapy and adjuvant temozolomide. Despite optimal therapy, median survival is ~15 months from diagnosis in molecularly unselected patients, and <6 months for patients with recurrent disease. Therefore, clinical treatments are currently palliative, not curative. Collectively, current knowledge suggests that the continued tumor growth and recurrence is in part due to the presence of glioma stem-like cells, which display self-renewal and tumorigenic potential. They differ from their more differentiated progeny, as they are more resistant to current treatments. Recurrent disease may be a consequence of the enhancement and/or gain of stem cell-like characteristics during disease progression, together with preferential death of more differentiated tumor cells during treatment, signifying that the cancer stem cell phenotype is a crucial therapeutic target. The limited knowledge of the characteristics of these cells and their response to current clinical treatments warrants intensive investigation with the aim to improve patient survival and/or develop a cure for this disease.

181 citations


Journal ArticleDOI
TL;DR: The role that the innate immune cells of inflammatory responses play in tumorigenesis is reviewed and the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed.
Abstract: An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in

154 citations


Journal ArticleDOI
TL;DR: The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study.
Abstract: Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.

151 citations


Journal ArticleDOI
TL;DR: The data indicate that despite lower absorption and bioavailability of rutin, maximum efficacy was achieved in the case of GLE, which also comprises of other phytochemical groups including acetogenins that make up its natural complex environment.
Abstract: Phytochemical complexity of plant extracts may offer health-promoting benefits including chemotherapeutic and chemopreventive effects. Isolation of 'most-active fraction' or single constituents from whole extracts may not only compromise the therapeutic efficacy but also render toxicity, thus emphasizing the importance of preserving the natural composition of whole extracts. The leaves of Annona muricata, commonly known as Graviola, are known to be rich in flavonoids, isoquinoline alkaloids and annonaceous acetogenins. Here, we demonstrate phytochemical synergy among the constituents of Graviola leaf extract (GLE) compared to its flavonoid-enriched (FEF) and acetogenin-enriched (AEF) fractions. Comparative quantitation of flavonoids revealed enrichment of rutin (~7-fold) and quercetin-3-glucoside (Q-3-G, ~3-fold) in FEF compared to GLE. In vivo pharmacokinetics and in vitro absorption kinetics of flavonoids revealed enhanced bioavailability of rutin in FEF compared to GLE. However, GLE was more effective in inhibiting in vitro prostate cancer proliferation, viability and clonogenic capacity compared to FEF. Oral administration of 100mg/kg bw GLE showed ~1.2-fold higher tumor growth-inhibitory efficacy than FEF in human prostate tumor xenografts although the concentration of rutin and Q-3-G was more in FEF. Contrarily, AEF, despite its superior in vitro and in vivo efficacy, resulted in death of the mice due to toxicity. Our data indicate that despite lower absorption and bioavailability of rutin, maximum efficacy was achieved in the case of GLE, which also comprises of other phytochemical groups including acetogenins that make up its natural complex environment. Hence, our study emphasizes on evaluating the nature of interactions among Graviola leaf phytochemcials for developing favorable dose regimen for prostate cancer management to achieve optimal therapeutic benefits.

130 citations


Journal ArticleDOI
TL;DR: Evidence is provided that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway.
Abstract: Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma.

116 citations


Journal ArticleDOI
TL;DR: It was found that serum albumin, LDH and total bilirubin were significantly associated with 5-year OS in multivariate Cox analyses and cumulative analysis showed a significant dose-response trend of significantly increasing risk of death with increasing number of unfavorable LFT levels.
Abstract: Liver function tests (LFTs) have been reported as independent predictors of non-liver disease-related morbidity and mortality in general population and cancer patients. In this study, we evaluated the relationship between pretreatment serum LFTs and overall survival (OS) in non-metastatic Caucasian breast cancer patients. Seven LFTs, including albumin, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase (LDH), total bilirubin and total protein, were measured in pretreatment serum from 2425 female Caucasian patients with newly diagnosed, histologically confirmed non-metastatic invasive breast cancer. Multivariate Cox model was used to estimate hazard ratio (HR) and 95% confidence interval (CI) for the association of individual LFTs with 5-year OS while adjusting for age, smoking status, pathological characteristics and treatment regimen. We found that serum albumin, LDH and total bilirubin were significantly associated with 5-year OS in multivariate Cox analyses. Patients with higher albumin level exhibited 45% reduced risk of death (HR = 0.55, 95% CI: 0.40-0.75) compared with those with lower albumin level. Patients with higher total bilirubin level had a nearly 40% reduction in the risk of death (HR = 0.62, 95% CI: 0.45-0.85) and patients with higher LDH levels had a 1.42-fold increased risk of death (HR = 1.42, 95% CI: 1.08-1.88). Furthermore, cumulative analysis showed a significant dose-response trend of significantly increasing risk of death with increasing number of unfavorable LFT levels. Our result highlighted the potential of using pretreatment serum levels of albumin, LDH and total bilirubin as prognostic factors for OS in patients with non-metastatic breast cancer.

Journal ArticleDOI
TL;DR: The results indicated that miR-27a/b is involved in resistance to chemotherapy in esophageal cancer, through miR/b-induced transformation of normal fibroblast into CAF.
Abstract: There is increasing evidence that the expression of microRNA (miRNA) in cancer is associated with chemosensitivity but the mechanism of miRNA-induced chemoresistance has not been fully elucidated. The aim of this study was to examine the role of extracellular miRNA in the response to chemotherapy in esophageal cancer. First, serum expression of miRNAs selected by miRNA array was measured by quantitative reverse transcription-polymerase chain reaction in 68 patients with esophageal cancer who received cisplatin-based chemotherapy to examine the relationship between miRNA expression and response to chemotherapy. The serum expression levels of 18 miRNAs were different between responders and non-responders by miRNA array. Of these, high expression levels of miR-27a/b correlated with poor response to chemotherapy in patients with esophageal cancer. Next, in vitro assays were conducted to investigate the mechanism of miRNA-induced chemoresistance. Although transfection of miR-27a/b to cancer cells had no significant impact on chemosensitivity, esophageal cancer cells cultured in supernatant of miR-27a/b-transfected normal fibroblast showed reduced chemosensitivity to cisplatin, compared with cancer cells cultured in supernatant of normal fibroblast. MiR-27a/b-transfected normal fibroblast showed α-smooth muscle actin (α-SMA) expression, a marker of cancer-associated fibroblasts (CAF) and increased production of transforming growth factor-β (TGF-β). Chemosensitivity recovered after administration of neutralizing antibody of TGF-β to the supernatant transfer experiments. Our results indicated that miR-27a/b is involved in resistance to chemotherapy in esophageal cancer, through miR-27a/b-induced transformation of normal fibroblast into CAF.

Journal ArticleDOI
TL;DR: In vitro assays showed that EGFR and RAF-1 are direct targets of miR-7, which potently suppressed the proliferation of CRC cells, and, interestingly, that the growth inhibitory effect of each of these was enhanced by cetuximab.
Abstract: MicroRNA-7 (miR-7) has been reported to be a tumor suppressor in all malignancies including colorectal cancer (CRC). However, its significance for CRC clinical outcomes has not yet been explored. The potential for miR-7 to act as a tumor suppressor by coordinately regulating the epidermal growth factor receptor (EGFR) signaling pathway at several levels was examined. We investigated the tumor inhibitory effect of miR-7 in CRC, with particular focus on the relationship between miR-7 and the EGFR pathway. Quantitative reverse transcription-PCR was used to evaluate miR-7 expression in 105 CRC cases to determine the clinicopathologic significance of this miRNA. The regulation of EGFR by miR-7 was examined with miR-7 precursor-transfected cells. Furthermore, we investigated whether miR-7 suppresses proliferation of CRC cells in combination with cetuximab, a monoclonal antibody against EGFR. Multivariate analysis indicated that low miR-7 expression was an independent prognostic factor for poor survival (P = 0.0430). In vitro assays showed that EGFR and RAF-1 are direct targets of miR-7, which potently suppressed the proliferation of CRC cells, and, interestingly, that the growth inhibitory effect of each of these was enhanced by cetuximab. miR-7 is a meaningful prognostic marker. Furthermore, these data indicate that miR-7 precursor, alone or in combination with cetuximab, may be useful in therapy against CRC.

Journal ArticleDOI
TL;DR: The findings demonstrate the first evidence supporting a role of piRNAs, a novel group of non-coding RNA, in human tumorigenesis via a piRNA-mediated epigenetic mechanism, which warrants further confirmation and investigation.
Abstract: Although PIWI-interacting RNAs (piRNAs) account for the largest class of the small non-coding RNA superfamily, virtually nothing is known of their function in human carcinogenesis. Once thought to be expressed solely in the germ line where they safeguard the genome against transposon-induced insertional mutations, piRNAs are now believed to play an active role in somatic gene regulation through sequence-specific histone modification and DNA methylation. In the current study, we investigate the role of piRNA-021285 (piR-021285) in the regulation of the breast cancer methylome. Genotypic screening of a panel of single-nucleotide polymorphism (SNP)-containing piRNAs revealed a significant association between SNP rs1326306 G>T in piR-021285 and increased likelihood for breast cancer in a Connecticut-based population (441 cases and 479 controls). Given nascent but compelling evidence of piRNA-mediated gene-specific methylation in the soma, a genome-wide methylation screen was then carried out using wild type (WT) and variant piR-021285 mimic-transfected MCF7 cells to explore whether the observed association could be attributed in part to piR-021285-induced methylation at cancer-relevant genes. We found significant methylation differences at a number of experimentally implicated breast cancer-related genes, including attenuated 5' untranslated region (UTR)/first exon methylation at the proinvasive ARHGAP11A gene in variant mimic-transfected cells. Follow-up functional analyses revealed both concurrent increased ARHGAP11A mRNA expression and enhanced invasiveness in variant versus WT piR-021285 mimic-transfected breast cancer cell lines. Taken together, our findings demonstrate the first evidence supporting a role of piRNAs, a novel group of non-coding RNA, in human tumorigenesis via a piRNA-mediated epigenetic mechanism, which warrants further confirmation and investigation.

Journal ArticleDOI
TL;DR: Evidence is provided that a 5-base pair indel polymorphism in the promoter region of GAS5 with hepatocelluar carcinoma (HCC) susceptibility in Chinese populations may contribute to hepatocarcinogenesis by affecting methylation status of the GAS 5 promoter and subsequently its transcriptional activity thus serving as a potential therapy target for HCC.
Abstract: The growth arrest special 5 (GAS5) is known to be involved in various cancers. However, its expression regulation remains unclear. Polymorphisms in the promoter region of GAS5 may affect its expression and be associated with cancer susceptibility. In this research, we first evaluated the association of a 5-base pair indel polymorphism (rs145204276) in the promoter region of GAS5 with hepatocelluar carcinoma (HCC) susceptibility in Chinese populations. Logistic regression analysis showed that the deletion allele of rs145204276 significantly increased the risk of HCC in two independent case control sets (1034 HCC and 1054 controls). Further genotype-phenotype association analysis revealed that the deletion allele was markedly correlated with higher expression of GAS5 in HCC tissues. The luciferase activity analysis in an in vitro reporter gene system suggested that the deletion allele improved an increased expression of GAS5 in three hepatoma cell lines. Intriguingly, overexpression of GAS5 displayed an anti-apoptosis effect in HCC cell lines, GAS5 knockdown could partially revert this anti-apoptosis effect, suggesting that GAS5 may act as a proto-oncogene in HCC, in contrast with its inhibitory role in other cancers. Further pyrosequencing revealed that the genotypes of rs145204276 were associated with methylation status of GAS5 promoter region. Taken together, our findings provided evidence that rs145204276 may contribute to hepatocarcinogenesis by affecting methylation status of the GAS5 promoter and subsequently its transcriptional activity thus serving as a potential therapy target for HCC.

Journal ArticleDOI
TL;DR: A role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens and pharmaceuticals are suggested in the disruption of the tumor microenvironment.
Abstract: Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.

Journal ArticleDOI
TL;DR: A novel mechanism of the inflammatory cytokine IL-6 induced Fra-1 upregulation through activating STAT3 by phosphorylation and acetylation is described, demonstrating that this signaling pathway plays a critical role in promoting epithelial–mesenchymal transition and aggressiveness of colorectal cancer.
Abstract: The pro-inflammatory cytokine interleukin-6 (IL-6) in tumor microenvironment has been suggested to promote development and progression of colorectal cancer (CRC). However, the underlying molecular mechanisms remain elusive. In this study, we demonstrate that fos-related antigen-1 (Fra-1) plays a critical role in IL-6 induced CRC aggressiveness and epithelial–mesenchymal transition (EMT). In CRC cell lines, the expression of Fra-1 gene was found significantly upregulated during IL-6-driven EMT process. The Fra-1 induction occurred at transcriptional level in a manner dependent on signal transducer and activator of transcription 3 (STAT3), during which both phosphorylated and acetylated post-translational modifications were required for STAT3 activation to directly bind to the Fra-1 promoter. Importantly, RNA interference-based attenuation of either STAT3 or Fra-1 prevented IL-6-induced EMT, cell migration and invasion, whereas ectopic expression of Fra-1 markedly reversed the STAT3-knockdown effect and enhanced CRC cell aggressiveness by regulating the expression of EMT-promoting factors (ZEB1, Snail, Slug, MMP-2 and MMP-9). Furthermore, Fra-1 levels were positively correlated with the local invasion depth as well as lymph node and liver metastasis in a total of 229 CRC patients. Intense immunohistochemical staining of Fra-1 was observed at the tumor marginal area adjacent to inflammatory cells and in parallel with IL-6 secretion and STAT3 activation in CRC tissues. Together, this study proposes the existence of an aberrant IL-6/STAT3/Fra-1 signaling axis leading to CRC aggressiveness through EMT induction, which suggests novel therapeutic opportunities for the malignant disease.

Journal ArticleDOI
TL;DR: The critical involvement of STAT3 is established in conferring anoikis resistance to pancreatic cancer cells and increased metastasis and interleukin-6 treatment and overexpression enhanced ano Kikis resistance and protected the cells from PL-induced anoika.
Abstract: Tumor cells need to attain anoikis resistance to survive prior to metastasis making it a vital trait of malignancy. The mechanism by which pancreatic cancer cells resist anoikis and metastasize is not well established. Significant proportion of pancreatic cancer cells resisted anoikis when grown under anchorage-independent conditions. The cells that resisted anoikis showed higher migratory and invasive characteristics than the cells that were cultured under anchorage-dependent condition. Interestingly, anoikis-resistant cells exhibited significantly increased expression and phosphorylation of signal transducer and activation of transcription 3 (STAT3) at Tyr 705, as compared to adherent cells. AG 490 and piplartine (PL) induced significant anoikis in anoikis-resistant pancreatic cancer cells. Silencing STAT3 not only reduced the capacity of pancreatic cancer cells to resist anoikis but also reversed its invasive characteristics. Interleukin-6 treatment and overexpression of STAT3 enhanced anoikis resistance and protected the cells from PL-induced anoikis. PL-treated cells completely failed to develop tumors when injected subcutaneously in immune-compromised mice. Moreover, these cells also failed to metastasize when injected intravenously. On the other hand, untreated anoikis-resistant cells not only formed aggressive tumors but also metastasized substantially to lungs and liver when injected intravenously. Metastatic nodules formed by untreated anoikis-resistant cells in lungs exhibited significant phosphorylation of STAT3 at Tyr705. Taken together, our results established the critical involvement of STAT3 in conferring anoikis resistance to pancreatic cancer cells and increased metastasis.

Journal ArticleDOI
TL;DR: A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in understanding of exposure-associated carcinogenesis and metabolic reprogramming.
Abstract: Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.

Journal ArticleDOI
TL;DR: DNA methylation profiling of TAFs reveals global demethylation and a selective impact on the TGF-β pathway and identifies a novel prognostic biomarker in non-small cell lung cancer.
Abstract: Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance.

Journal ArticleDOI
TL;DR: It is concluded that A.muciniphila and H.typhlonius can modulate gut microbiota composition and intestinal tumor development in mice and a negative association of unclassified Clostridiales with increased tumor burden is found.
Abstract: Gastrointestinal tumor growth is thought to be promoted by gastrointestinal bacteria and their inflammatory products. We observed that intestine-specific conditional Apc mutant mice (FabplCre;Apc (15lox/+)) developed many more colorectal tumors under conventional than under pathogen-low housing conditions. Shotgun metagenomic sequencing plus quantitative PCR analysis of feces DNA revealed the presence of two bacterial species in conventional mice, absent from pathogen-low mice. One, Helicobacter typhlonius, has not been associated with cancer in man, nor in immune-competent mice. The other species, mucin-degrading Akkermansia muciniphila, is abundantly present in healthy humans, but reduced in patients with inflammatory gastrointestinal diseases and in obese and type 2 diabetic mice. Eradication of H.typhlonius in young conventional mice by antibiotics decreased the number of intestinal tumors. Additional presence of A.muciniphila prior to the antibiotic treatment reduced the tumor number even further. Colonization of pathogen-low FabplCre;Apc (15lox/+) mice with H.typhlonius or A.muciniphila increased the number of intestinal tumors, the thickness of the intestinal mucus layer and A.muciniphila colonization without H.typhlonius increased the density of mucin-producing goblet cells. However, dual colonization with H.typhlonius and A.muciniphila significantly reduced the number of intestinal tumors, the mucus layer thickness and goblet cell density to that of control mice. By global microbiota composition analysis, we found a positive association of A.muciniphila, and of H.typhlonius, and a negative association of unclassified Clostridiales with increased tumor burden. We conclude that A.muciniphila and H.typhlonius can modulate gut microbiota composition and intestinal tumor development in mice.

Journal ArticleDOI
TL;DR: It is demonstrated that overexpression of miR-544a induces VIM, SNAI1 and ZEB1expression, and reduces CDH1 expression, resulting in an EMT phenotype, and raises the possibility that inhibition of mi R-544A may be a therapeutic target of metastatic GC.
Abstract: The epithelial-mesenchymal transition (EMT) contributes to cancer progression, as well as the development of normal organs, wound healing and organ fibrosis. We established a cell-based reporter system for identifying EMT-inducing microRNAs (miRNAs) with a gastric cancer (GC) cell line, MKN1, transfected with a reporter construct containing a promoter sequence of VIM in the 5' upstream region of the TurboRFP reporter gene. Function-based screening using this reporter system was performed with a 328-miRNA library, and resulted in the identification miR-544a as an EMT-inducing miRNA. Although miR-544a is already known to be involved in the regulation of CDH1, the mechanism by which EMT occurs remains poorly understood. Herein, we demonstrated that overexpression of miR-544a induces VIM, SNAI1 and ZEB1 expression, and reduces CDH1 expression, resulting in an EMT phenotype. In addition, we found that CDH1 and AXIN2, which are related to the degradation and the translocation of β-catenin, are direct targets of miR-544a. Subsequently, the reduction of CDH1 and AXIN2 by miR-544a induced the nuclear import of β-catenin, suggesting that miR-544a may activate the WNT signaling pathway through the stabilization of β-catenin in nucleus. Our findings raise the possibility that inhibition of miR-544a may be a therapeutic target of metastatic GC.

Journal ArticleDOI
TL;DR: It is reported that ERBB4 is over-expressed in human CRC, and in experimental systems enhances the survival and growth of cells driven by Ras and/or WNT signaling, and suggest ER BB4 as a novel therapeutic target in a subset of CRC.
Abstract: The ERBB4 receptor tyrosine kinase promotes colonocyte survival. Herein, we tested whether ERBB4's antiapoptotic signaling promotes transformation and colorectal tumorigenesis. ERBB4 alterations in a The Cancer Genome Atlas colorectal cancer (CRC) data set stratified survival, and in a combined Moffitt Cancer Center and Vanderbilt Medical Center CRC expression data set, ERBB4 message levels were increased at all tumor stages. Similarly, western blot and immunohistochemistry on additional CRC tissue banks showed elevated ERBB4 protein in tumors. ERBB4 was highly expressed in aggressive, dedifferentiated CRC cell lines, and its knockdown in LIM2405 cells reduced anchorage-independent colony formation. In nude mouse xenograft studies, ERBB4 alone was insufficient to induce tumor establishment of non-transformed mouse colonocytes, but its over-expression in cells harboring Apc(min) and v-Ha-Ras caused a doubling of tumor size. ERBB4-expressing xenografts displayed increased activation of survival pathways, including epidermal growth factor receptor and Akt phosphorylation and COX-2 expression, and decreased apoptotic signals. Finally, ERBB4 deletion from mouse intestinal epithelium impaired stem cell replication and in vitro enteroid establishment. In summary, we report that ERBB4 is over-expressed in human CRC, and in experimental systems enhances the survival and growth of cells driven by Ras and/or WNT signaling. Chronic ERBB4 over-expression in the context of, for example, inflammation may contribute to colorectal carcinogenesis. Tumors with high receptor levels are likely to have enhanced cell survival signaling through epidermal growth factor receptor, PI3K and COX-2. These results suggest ERBB4 as a novel therapeutic target in a subset of CRC.

Journal ArticleDOI
TL;DR: It is shown that the miR-17-92 cluster is highly expressed in human hepatocellular carcinoma (HCC) tissues compared to the non-tumorous liver tissues by RT-PCR and in situ hybridization analyses and the possibility of targeting this pivotal miRNA cluster for potential therapy is suggested.
Abstract: MiR-17-92 cluster is an oncogenic miRNA cluster that is implicated in several cancers, although its role in hepatocarcinogenesis has not been clearly defined. In this study, we show that the miR-17-92 cluster is highly expressed in human hepatocellular carcinoma (HCC) tissues compared to the non-tumorous liver tissues by RT-PCR and in situ hybridization analyses. Increased miR-17-92 cluster expression in HCC tissues was further confirmed by analysis of the RNA-sequencing data of 319 patients available from the Cancer Genome Atlas (TCGA) Data Portal (https://tcga-data.nci.nih.gov/tcga/). To create an animal model that resembles enhanced miR-17-92 in the liver, we developed liver-specific miR-17-92 transgenic mice and the animals were treated with the hepatic carcinogen, diethylnitrosamine (DEN). We observed that the liver-specific miR-17-92 transgenic mice showed significantly increased hepatocellular cancer development compared to the matched wild-type control mice. Forced overexpression of the miR-17-92 cluster in cultured human hepatocellular cancer cells enhanced tumor cell proliferation, colony formation and invasiveness in vitro, whereas inhibition of the miR-17-92 cluster reduced tumor cell growth. By analyzing the miRNA and mRNA sequencing data from the 312 hepatocellular cancer patients available from the TCGA database, we observed that the expression levels of the miR-17-92 cluster members and host gene in the tumor tissues are negatively correlated with several target genes, including CREBL2, PRRG1, NTN4. Our findings demonstrate an important role of the miR-17-92 cluster in hepatocarcinogenesis and suggest the possibility of targeting this pivotal miRNA cluster for potential therapy.

Journal ArticleDOI
TL;DR: H.pylori infection may trigger the TGF-β1-induced EMT pathway and the emergence of Gastric cancer stem cells (CSCs) and its eradication may prevent the carcinogenesis of gastric cancer by inhibiting these two pathways.
Abstract: We know little concerning the expression of transforming growth factor-β1 (TGF-β1) and TGF-β1-induced epithelial-mesenchymal transition (EMT) markers in gastric mucosa and their changes after eradication of Helicobacter pylori infection have not yet been clarified. In the present study, we compared the time course of messenger RNA (mRNA) expression of TGF-β1 and five EMT markers (Twist, Snail, Slug, vimentin and E-cadherin) in 111 controls, 55 patients with gastric dysplasia and 71 patients with early gastric cancer, following eradication of H.pylori. mRNA levels in non-cancerous gastric mucosa were measured using quantitative real time-polymerase chain reaction and the histologic findings of gastric mucosa were compared before and after eradication. The average duration of follow-up was 46.7 months (6.0-112.4). The levels of TGF-β1, Twist, Snail, Slug and vimentin mRNA, in addition to levels of CD44 detected by immunohistochemistry, showed all up-regulation in patients with dysplasia or early gastric cancer compared with controls (P < 0.05); moreover, the mRNA levels of E-cadherin, an epithelial marker, were decreased in these patients compared with the control group (P < 0.001). Eradication of H.pylori reduced the expression of TGF-β1, Twist, Snail, Slug and vimentin mRNA (P-value for slope <0.001), as well as the immunohistochemical expression of CD44 (P = 0.014), whereas it enhanced the expression of E-cadherin (P-value for slope < 0.05). Thus, H.pylori infection may trigger the TGF-β1-induced EMT pathway and the emergence of gastric cancer stem cells (CSCs). Its eradication may prevent the carcinogenesis of gastric cancer by inhibiting these two pathways.

Journal ArticleDOI
TL;DR: Evidence is provided that CAFs reduce miR-200b expression and promote tumor invasion through epigenetic changes of miR -200b in gastric cancer, and CAFs might be a therapeutic target for inhibition of Gastric cancer.
Abstract: Cancer-associated fibroblasts (CAFs) have recently been linked to the invasion and metastasis of gastric cancer. In addition, the microRNA (miR)-200 family plays a central role in the regulation of the epithelial-mesenchymal transition process during cancer metastasis, and aberrant DNA methylation is one of the key mechanisms underlying regulation of the miR-200 family. In this study, we clarified whether epigenetic changes of miR-200b by CAFs stimulate cancer invasion and peritoneal dissemination in gastric cancer. We evaluated the relationship between miR-200b and CAFs using a coculture model. In addition, we established a peritoneal metastasis mouse model and investigated the expression and methylation status of miR-200b. We also investigated the expression and methylation status of miR-200b and CAFs expression in primary gastric cancer samples. CAFs (CAF-37 and CAF-50) contributed to epigenetic changes of miR-200b, reduced miR-200b expression and promoted tumor invasion and migration in NUGC3 and OCUM-2M cells in coculture. In the model mice, epigenetic changes of miR-200b were observed in the inoculated high-frequency peritoneal dissemination cells. In the 173 gastric cancer samples, the low miR-200b expression group demonstrated a significantly poorer prognosis compared with the high miR-200b expression group and was associated with peritoneal metastasis. In addition, downregulation of miR-200b in cancer cells was significantly correlated with alpha-smooth muscle actin expression. Our data provide evidence that CAFs reduce miR-200b expression and promote tumor invasion through epigenetic changes of miR-200b in gastric cancer. Thus, CAFs might be a therapeutic target for inhibition of gastric cancer.

Journal ArticleDOI
TL;DR: In addition to TP53, RB1 and PTEN, TMEM132D, SPTA1 and VPS13B could be also involved in SCLC development, with the products from their mutated alleles being potential therapeutic targets in SclC patients.
Abstract: Small cell lung cancer (SCLC) is the most aggressive type of lung cancer. Only 15% of SCLC patients survive beyond 2 years after diagnosis. Therefore, for the improvement of patients' outcome in this disease, it is necessary to identify genetic alterations applicable as therapeutic targets in SCLC cells. The purpose of this study is the identification of genes frequently mutated and expressed in SCLCs that will be targetable for therapy of SCLC patients. Exome sequencing was performed in 28 primary tumors and 16 metastatic tumors from 38 patients with SCLCs. Expression of mutant alleles was verified in 19 cases by RNA sequencing. TP53, RB1 and PTEN were identified as being significantly mutated genes. Additional 36 genes were identified as being frequently (≥10%) mutated in SCLCs by combining the results of this study and two recent studies. Mutated alleles were expressed in 8 of the 36 genes, TMEM132D, SPTA1, VPS13B, CSMD2, ANK2, ASTN1, ASPM and FBN3. In particular, the TMEM132D, SPTA1 and VPS13B genes were commonly mutated in both early and late stage tumors, primary tumors and metastases, and tumors before and after chemotherapy, as in the case of the TP53 and RB1 genes. Therefore, in addition to TP53, RB1 and PTEN, TMEM132D, SPTA1 and VPS13B could be also involved in SCLC development, with the products from their mutated alleles being potential therapeutic targets in SCLC patients.

Journal ArticleDOI
TL;DR: It is demonstrated that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration and directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway.
Abstract: Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases.

Journal ArticleDOI
TL;DR: Novel evidence is provided for the biological and clinical significance of RacGAP1 as a potential biomarker for identifying patients with lymph node metastasis and poor prognosis in CRC.
Abstract: Rac GTPase-activating protein (RacGAP) 1 plays a key role in controlling various cellular phenomena including cytokinesis, transformation, invasive migration and metastasis. This study investigated the function and clinical significance of RacGAP1 expression in colorectal cancer (CRC). The intrinsic functions of RacGAP1 in CRC cells were analyzed using small interfering RNA (siRNA). We analyzed RacGAP1 mRNA expression in surgical specimens from 193 CRC patients (Cohort 1) by real-time PCR. Finally, we validated RacGAP1 protein expression using formalin-fixed paraffin-embedded samples from 298 CRC patients (Cohort 2) by immunohistochemistry. Reduced RacGAP1 expression by siRNA in CRC cell lines showed significantly decreased cellular proliferation, migration and invasion. In Cohort 1, RacGAP1 expression in CRC was significantly higher than in adjacent normal mucosa and increased according to tumor node metastasis stage progression. High RacGAP1 expression in tumors was significantly associated with progression and prognosis. In Cohort 2, RacGAP1 protein was overexpressed mainly in the nuclei of CRC cells; however, its expression was scarcely observed in normal colorectal mucosa. RacGAP1 protein expression was significantly higher in CRC patients with higher T stage, vessel invasion and lymph node and distant metastasis. Increased expression of RacGAP1 protein was significantly associated with poor disease-free and overall survival. Multivariate analyses revealed that high RacGAP1 expression was an independent predictive marker for lymph node metastasis, recurrence and poor prognosis in CRC. Our data provide novel evidence for the biological and clinical significance of RacGAP1 as a potential biomarker for identifying patients with lymph node metastasis and poor prognosis in CRC.

Journal ArticleDOI
TL;DR: New, clear evidence of distinct metabolic signatures for lung AdC and SqCC is provided, which can potentially impact on diagnosis and provide important leads for future research on novel therapeutic targets or imaging tracers.
Abstract: Lung tumour subtyping, particularly the distinction between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC), is a critical diagnostic requirement. In this work, the metabolic signatures of lung carcinomas were investigated through (1)H NMR metabolomics, with a view to provide additional criteria for improved diagnosis and treatment planning. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyse matched tumour and adjacent control tissues from 56 patients undergoing surgical excision of primary lung carcinomas. Multivariate modeling allowed tumour and control tissues to be discriminated with high accuracy (97% classification rate), mainly due to significant differences in the levels of 13 metabolites. Notably, the magnitude of those differences were clearly distinct for AdC and SqCC: major alterations in AdC were related to phospholipid metabolism (increased phosphocholine, glycerophosphocholine and phosphoethanolamine, together with decreased acetate) and protein catabolism (increased peptide moieties), whereas SqCC had stronger glycolytic and glutaminolytic profiles (negatively correlated variations in glucose and lactate and positively correlated increases in glutamate and alanine). Other tumour metabolic features were increased creatine, glutathione, taurine and uridine nucleotides, the first two being especially prominent in SqCC and the latter in AdC. Furthermore, multivariate analysis of AdC and SqCC profiles allowed their discrimination with a 94% classification rate, thus showing great potential for aiding lung tumours subtyping. Overall, this study has provided new, clear evidence of distinct metabolic signatures for lung AdC and SqCC, which can potentially impact on diagnosis and provide important leads for future research on novel therapeutic targets or imaging tracers.