scispace - formally typeset
Search or ask a question
JournalISSN: 0143-3334

Carcinogenesis 

Oxford University Press
About: Carcinogenesis is an academic journal published by Oxford University Press. The journal publishes majorly in the area(s): Carcinogenesis & Cancer. It has an ISSN identifier of 0143-3334. Over the lifetime, 12619 publications have been published receiving 684838 citations. The journal is also known as: oncogenesis & tumorigenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: The current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies are discussed.
Abstract: Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer including DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs, specifically microRNA expression. The reversible nature of epigenetic aberrations has led to the emergence of the promising field of epigenetic therapy, which is already making progress with the recent FDA approval of three epigenetic drugs for cancer treatment. In this review, we discuss the current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies.

4,033 citations

Journal ArticleDOI
TL;DR: This work surmises that CRI represents the seventh hallmark of cancer, and suggests that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells.
Abstract: Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.

2,475 citations

Journal ArticleDOI
TL;DR: An antioxidant fraction of Chinese green tea, containing several catechins, has been previously shown to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion in mouse skin and was shown to have antioxidative activity toward hydrogen peroxide and the superoxide radical.
Abstract: An antioxidant fraction of Chinese green tea (green tea antioxidant; GTA), containing several catechins, has been previously shown to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion in mouse skin. In the present study, GTA was shown to have antioxidative activity toward hydrogen peroxide (H2O2) and the superoxide radical (O2-). GTA also prevented oxygen radical and H2O2-induced cytotoxicity and inhibition of intercellular communication in cultured B6C3F1 mouse hepatocytes and human keratinocytes (NHEK cells). GTA (0.05-50 micrograms/ml) prevented the killing of hepatocytes (measured by lactate dehydrogenase release) by paraquat (1-10 mM) and glucose oxidase (0.8-40 micrograms/ml) in a concentration-dependent fashion. GTA (50 micrograms/ml) also prevented the inhibition of hepatocyte intercellular communication by paraquat (5 mM), glucose oxidase (0.8 micrograms/ml), and phenobarbital (500 micrograms/ml). In addition, GTA (50 micrograms/ml) prevented the inhibition of intercellular communication in human keratinocytes by TPA (100 ng/ml). Cytotoxicity and inhibition of intercellular communication, two possible mechanisms by which tumor promoters may produce their promoting effects were therefore prevented by GTA. The inhibition of these two effects of pro-oxidant compounds may suggest a mechanism by which GTA inhibits tumor promotion in vivo.

1,895 citations

Journal ArticleDOI
TL;DR: The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds, and it seems likely that oxidativeDNA damage is important in the etiology of many human cancers.
Abstract: A major development of carcinogenesis research in the past 20 years has been the discovery of significant levels of DNA damage arising from endogenous cellular sources. Dramatic improvements in analytical chemistry have provided sensitive and specific methodology for identification and quantitation of DNA adducts. Application of these techniques to the analysis of nuclear DNA from human tissues has debunked the notion that the human genome is pristine in the absence of exposure to environmental carcinogens. Much endogenous DNA damage arises from intermediates of oxygen reduction that either attack the bases or the deoxyribosyl backbone of DNA. Alternatively, oxygen radicals can attack other cellular components such as lipids to generate reactive intermediates that couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations that are commonly observed in mutated oncogenes and tumor suppressor genes. Their mutagenicity is mitigated by repair via base excision and nucleotide excision pathways. The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds. Thus, it seems likely that oxidative DNA damage is important in the etiology of many human cancers. This review highlights some of the major accomplishments in the study of oxidative DNA damage and its role in carcinogenesis. It also identifies controversies that need to be resolved. Unraveling the contributions to tumorigenesis of DNA damage from endogenous and exogenous sources represents a major challenge for the future.

1,825 citations

Journal ArticleDOI
TL;DR: An intense research effort is uncovering the underlying mechanisms of apoptosis such that, in the next decade, one envisions that this information will produce new strategies to exploit apoptosis for therapeutic benefit.
Abstract: In the last decade, basic cancer research has produced remarkable advances in our understanding of cancer biology and cancer genetics. Among the most important of these advances is the realization that apoptosis and the genes that control it have a profound effect on the malignant phenotype. For example, it is now clear that some oncogenic mutations disrupt apoptosis, leading to tumor initiation, progression or metastasis. Conversely, compelling evidence indicates that other oncogenic changes promote apoptosis, thereby producing selective pressure to override apoptosis during multistage carcinogenesis. Finally, it is now well documented that most cytotoxic anticancer agents induce apoptosis, raising the intriguing possibility that defects in apoptotic programs contribute to treatment failure. Because the same mutations that suppress apoptosis during tumor development also reduce treatment sensitivity, apoptosis provides a conceptual framework to link cancer genetics with cancer therapy. An intense research effort is uncovering the underlying mechanisms of apoptosis such that, in the next decade, one envisions that this information will produce new strategies to exploit apoptosis for therapeutic benefit.

1,810 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202351
2022127
2021140
2020182
2019168
2018160