scispace - formally typeset
Search or ask a question

Showing papers in "Cell Biochemistry and Biophysics in 2014"


Journal ArticleDOI
TL;DR: The introduction, regulation and energetics of TCA cycle have been discussed and the present study was carried out to review literature on T CA cycle.
Abstract: The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

422 citations


Journal ArticleDOI
Ruijun Li1, Zhigang Liu1, Yuemei Pan1, Lei Chen1, Zhixin Zhang1, Laijin Lu1 
TL;DR: Treatment of peripheral nerve injures, from conventional suturing method, to conduit coaptation with stem cell and growth factor, are summarized, and the developments of research and clinical application of these therapies are reviewed.
Abstract: Patients with peripheral nerve injuries, especially severe injury, often face poor nerve regeneration and incompletely functional recovery, even after surgical nerve repair. Current researches have extensively focused on the new approaches for the treatment of peripheral nerve injuries. This review summarizes treatments of peripheral nerve injures, from conventional suturing method, to conduit coaptation with stem cell and growth factor, and review the developments of research and clinical application of these therapies.

147 citations


Journal ArticleDOI
TL;DR: The results suggest that Cu2+-induced liver toxicity is the result of metal’s disruptive effect on liver hepatocyte mitochondrial respiratory chain that is the obvious cause of Cu2-induced ROS formation, lipid peroxidation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.
Abstract: Oxidative damage has been implicated in disorders associated with abnormal copper metabolism and also Cu(2+) overloading states. Besides, mitochondria are one of the most important targets for Cu(2+), an essential redox transition metal, induced hepatotoxicity. In this study, we aimed to investigate the mitochondrial toxicity mechanisms on isolated rat liver mitochondria. Rat liver mitochondria in both in vivo and in vitro experiments were obtained by differential ultracentrifugation and the isolated liver mitochondria were then incubated with different concentrations of Cu(2+). Our results showed that Cu(2+) induced a concentration and time-dependent rise in mitochondrial ROS formation, lipid peroxidation, and mitochondrial membrane potential collapse before mitochondrial swelling ensued. Increased disturbance in oxidative phosphorylation was also shown by decreased ATP concentration and decreased ATP/ADP ratio in Cu(2+)-treated isolated mitochondria. In addition, collapse of mitochondrial membrane potential (MMP), mitochondrial swelling, and release of cytochrome c following of Cu(2+) treatment were well inhibited by pretreatment of mitochondria with CsA and BHT. Our results showed that Cu(2+) could interact with respiratory complexes (I, II, and IV). This suggests that Cu(2+)-induced liver toxicity is the result of metal's disruptive effect on liver hepatocyte mitochondrial respiratory chain that is the obvious cause of Cu(2+)-induced ROS formation, lipid peroxidation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.

116 citations


Journal ArticleDOI
TL;DR: A role is proposed for miR-146a in TLR signalling through a negative feedback mechanism involving the attenuation of NF-κB by down-regulation of IRAK-1 and TRAF-6 and it is implicated as a target for lowering inflammation in CAD patients.
Abstract: Modulation of nuclear factor KappaB (NF-κB) activation may play a role in regulating inflammatory conditions associated with coronary artery disease (CAD). MicroRNA-146a (miR-146a) primarily targets interleukin-1 receptor-associated kinase 1 (IRAK-1) and tumour necrosis factor receptor associated factor 6 (TRAF-6), which results in inhibition of NF-κB via the TLR pathway. This study investigated the influence of the miR-146a GC rs2910164 on miR-146a expression in young South African Indians with CAD. CAD patients and controls were genotyped by PCR–RFLP and miRNA-146a levels were measured by qPCR. IRAK-1, TRAF-6 and NF-κB expression was determined by Western blot. No differences in genotypic frequency was found (GG: 45 vs. 47 %, GC: 46 vs. 41 %, CC: 9 vs. 12 %) in controls and patients respectively (odds ratio = 1.025; 95 % confidence interval 0.6782–1.550; p = 0.9164). Significantly higher levels of miR-146a was associated with CAD patients with the CC genotype (6.25-fold increase relative to controls and patients with the wildtype variant, p < 0.0001). Significantly lower levels of IRAK-1 (0.38 ± 0.02; p = 0.0072) and TRAF-6 (0.44 ± 0.02; p = 0.0146) was found in CAD patients with the CC genotype. The lowest levels of NF-κB and C-reactive protein were found in patients with the homozygous C allele compared to the heterozygous GC and wildtype variants. We propose a role for miR-146a in TLR signalling through a negative feedback mechanism involving the attenuation of NF-κB by down-regulation of IRAK-1 and TRAF-6. Our observations implicate miR-146a as a target for lowering inflammation in CAD patients.

108 citations


Journal ArticleDOI
TL;DR: Panicum sumatrense possess many growth and physiological drought tolerance characters which can be used in future breeding program.
Abstract: Drought stress is one of the abiotic stresses and it may alter plant growth, metabolism and yield. The present study aims to analyze the growth, chlorophyll pigments, osmotic adjustment and antioxidative enzymes activity in Panicum sumatrense under drought stress. The control was irrigated daily and treated plants were irrigated at 4-, 7-, 10-, 13-day intervals. Later, they were irrigated at 3-day interval up to 70 DAS. The root and leaf samples were collected on 30 DAS, 50 DAS and 70 DAS and used for analysis. The root length increased gradually in all drought treatments at all growth stages of P. sumatrense. The chlorophyll pigments and plant height showed a reduction in 13 DID treatment when compared to all treatment. Compatible solutes like proline, glycine betaine and free amino acid increased in all drought treatment when compared to control at 70 DAS. Furthermore, stress treatment caused an increase in activity of antioxidant enzymes like superoxide dismutase, catalase and peroxidase. Panicum sumatrense possess many growth and physiological drought tolerance characters which can be used in future breeding program.

93 citations


Journal ArticleDOI
Song Ye1, Liu Yang1, Xinyi Zhao, Wei Song, Wang Weilin1, Shusen Zheng1 
TL;DR: In this study, integration of published multi-level expression data and bioinformatics computational approach was used to predict two regulation mechanisms: transcription factors (TF)–miRNA–mRNA regulation and long non-coding RNA(lncRNA)–MiRNAs–m RNA regulation.
Abstract: Altered expressions of microRNAs (miRNAs) are reported in pancreatic cancer and associate with cancer pathogenesis, apoptosis, and cell growth, thereby functioning as either tumor suppressors or oncogenes. However, the majority of studies focus on defining the regulatory functions of miRNAs, whereas few investigations are directed toward assessing how the miRNA themselves are transcriptionally regulated. In this study, integration of published multi-level expression data and bioinformatics computational approach was used to predict two regulation mechanisms: transcription factors (TF)-miRNA-mRNA regulation and long non-coding RNA(lncRNA)-miRNA-mRNA regulation. To identify differentially expressed mRNAs, miRNAs, and lncRNAs, we integrated microarray expression data in pancreatic cancer tissues and normal tissues. Combination of differentially expressed mRNAs and miRNAs with miRNA-mRNA interactions based on crosslinking and immunoprecipitation followed by high-throughput sequencing (CLIP-Seq) data from StarBas, we constructed miRNA-mRNA regulatory network. Then we constructed two regulatory networks including TF-miRNA-mRNA and lncRNA-miRNA-mRNA based on chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from ChIPBase and CLIP-Seq data. A total of 4385 mRNAs, 500 miRNAs, and 21 lncRNAs were differentially expressed, of which, 18 mRNAs and 54 miRNAs are with high confidence. In miRNA-mRNA regulatory network, interrelated miRNAs target 1701 differentially regulated mRNAs. By constructing regulatory network, 19miRNAs including hsa-miR-137, hsa-miR-206, hsa-miR-429, hsa-miR-320d, and hsa-miR-320c are predicted to participate in lncRNA-miRNA-mRNA regulation. Furthermore, 8 miRNAs including hsa-mir-137, hsa-mir-206, hsa-mir-429, hsa-mir-375, hsa-mir-326, hsa-mir-217, hsa-mir-301b, and hsa-mir-184 are predicted to participate in TF-miRNA-mRNA regulation. In an integrated data analysis, we reveal large-scale effects of interrelated miRNAs and provide a model for predicting the mechanism of miRNAs disorder. Our study provides a new insight into understanding the transcriptional regulation of pancreatic cancer.

84 citations


Journal ArticleDOI
TL;DR: Induction of dicer and TNFα, and attenuation of IL-10 and majority of miRNA are associated with cardiomyopathy in Akita and could be used for putative therapeutic target for heart failure in diabetics.
Abstract: Diabetic cardiomyopathy is a leading cause of morbidity and mortality, and Insulin2 mutant (Ins2+/−) Akita is a genetic mice model of diabetes relevant to humans. Dicer, miRNAs, and inflammatory cytokines are associated with heart failure. However, the differential expression of miRNAs, dicer, and inflammatory molecules are not clear in diabetic cardiomyopathy of Akita. We measured the levels of miRNAs, dicer, pro-inflammatory tumor necrosis factor alpha (TNFα), and anti-inflammatory interleukin 10 (IL-10) in C57BL/6J (WT) and Akita hearts. The results revealed increased heart to body weight ratio and robust expression of brain natriuretic peptide (BNP: a hypertrophy marker) suggesting cardiac hypertrophy in Akita. The multiplex RT-PCR, qPCR, and immunoblotting showed up regulation of dicer, whereas miRNA array elicited spread down regulation of miRNAs in Akita including dramatic down regulation of let-7a, miR-130, miR-142-3p, miR-148, miR-338, miR-345-3p, miR-384-3p, miR-433, miR-450, miR-451, miR-455, miR-494, miR-499, miR-500, miR-542-3p, miR-744, and miR-872. Conversely, miR-295 is induced in Akita. Cardiac TNFα is upregulated at mRNA (RT-PCR and qPCR), protein (immunoblotting), and cellular (immunohistochemistry and confocal microscopy) levels, and is robust in hypertrophic cardiomyocytes suggesting direct association of TNFα with hypertrophy. Contrary to TNFα, cardiac IL-10 is downregulated in Akita. In conclusion, induction of dicer and TNFα, and attenuation of IL-10 and majority of miRNA are associated with cardiomyopathy in Akita and could be used for putative therapeutic target for heart failure in diabetics.

83 citations


Journal ArticleDOI
TL;DR: It is discovered MiR-429 plays a role in osteosarcoma by binding the 3′UTR of zinc finger E-box-binding homeobox 1 (ZEB1) mRNA, and that overexpression of ZEB1 could reverse the proliferation, subsequently blocking effect of miR- 429.
Abstract: Osteosarcoma is the 3rd most common human cancer in childhood and young adults, and is the leading cause of mortality. Recent studies suggest that miRNAs could regulate the growth and progression of osteosarcoma, indicating some novel targets for therapy. In our study, we demonstrated that miR-451 was down-regulated in human osteosarcoma U2OS, SAOS, and MG63 cells lines as well as in tumor tissue surgically resected compared with the normal tissues. Overexpression of miR-451 inhibited cell proliferation and resulted in cell apoptosis in osteosarcoma cells. G1 cell cycle arrest was also induced by miR-451. Repressed by miR-451, PGE2 and CCND1 reversed the inhibitory effects of miR-451 on proliferation. In conclusion, miR-451 played a tumor-suppressing role through modulating the expression of PGE2 and CCND1, suggesting a novel target for the diagnosis and treatment of osteosarcoma.

82 citations


Journal ArticleDOI
TL;DR: Results showed that miR-335 is significantly upregulated with treatment of leptin, resistin, TNF-α, and IL-6 in human mature adipocytes, and its expression elevated in the process of adipocyte differentiation, indicating a novel role for miR -335 in adipose tissue inflammation.
Abstract: During the development of obesity, adipose tissue releases a host of different adipokines and inflammatory cytokines, such as leptin, resistin, tumor necrosis factor α (TNF-α), Interleukin-6 (IL-6), and adiponectin, which mediate insulin resistance. Recently, some microRNAs (miRNAs) regulated by adiponectin were identified as novel targets for controlling adipose tissue inflammation. Therefore, the relationship between adipokines and miRNA is worth studying. MiR-335 is an adipogenesis-related miRNA and implicated in both fatty acid metabolism and lipogenesis. In this study, we focused on the association of miR-335 and adipokines, and examined the expression trend of miR-335 during human adipocyte differentiation. Our results showed that miR-335 is significantly upregulated with treatment of leptin, resistin, TNF-α, and IL-6 in human mature adipocytes, and its expression elevated in the process of adipocyte differentiation. Interestingly, the transcriptional regulation of miR-335 by these adipokines seems independent of its host gene (mesoderm-specific transcript homolog, MEST). Thus, we cloned and identified potential promoter of miR-335 within the intron of MEST. As a result, a fragment about 600-bp length upstream sequences of miR-335 had apparent transcription activity. These findings indicated a novel role for miR-335 in adipose tissue inflammation, and miR-335 might play an important role in the process of obesity complications via its own transcription mechanism.

74 citations


Journal ArticleDOI
TL;DR: It is revealed that the dysregulated glucose metabolism contributes to 5-FU resistance, and glycolysis inhibition by miR-122 might be a promising therapeutic strategy to overcome 5-fu resistance.
Abstract: 5-Fluorouracil (5-FU) is one of the most commonly used anticancer drugs in the treatment of colon cancer. However, acquired chemoresistance is becoming one of the major challenges for patients with advanced stages of colon cancer. Currently, the mechanisms underlying cancer cell resistance to 5-FU are not fully understood. MicroRNAs (miRNA) have been suggested to play important roles in tumorigenesis and drug resistance in colon cancer. In this study, we generated 5-FU-resistant colon cancer cell lines from which we found that miR-122 was downregulated in 5-FU-resistant cells compared with sensitive cells. Meanwhile, the glucose metabolism is significantly upregulated in 5-FU-resistant cells. We report that PKM2 is a direct target of miR-122 in colon cancer cell. Importantly, overexpression of miR-122 in 5-FU-resistant cells resensitizes 5-FU resistance through the inhibition of PKM2 both in vitro and in vivo. In summary, these findings reveal that the dysregulated glucose metabolism contributes to 5-FU resistance, and glycolysis inhibition by miR-122 might be a promising therapeutic strategy to overcome 5-FU resistance.

72 citations


Journal ArticleDOI
TL;DR: There is evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis and new therapeutic approaches have now begun to target mitochondria as a potential drug target.
Abstract: The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that hispidulin induces apoptosis in HepG2 cells and suggested that the pro-apoptotic effect of Hispidulin was mediated through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway.
Abstract: Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs. However, it’s therapeutic activity remains poorly understood. The present study investigated the pro-apoptotic effects and mechanism by which Hispidulin induces apoptosis in human hepatoblastoma cancer (HepG2) cells. The results showed that Hispidulin induced cell death in a dose- and time-dependent manner in HepG2 cells whereas no toxic reaction was observed in normal human liver cells at indicated concentration. This study also demonstrated that Hispidulin induces apoptosis through mitochondrial dysfunction, which is characterized by decreased Bcl-2/Bax ratio, disrupted mitochondrial membrane potential and increased release of cytochrome C and activated capase-3. Our results also showed that mitochondrial dysfunction was triggered by Hispidulin-induced excessive ROS generation. Hispidulin also significantly inhibited Akt activation. ROS inhibitor NAC abrogated the inhibitory effect of Hispidulin on P13k/Akt signalling pathway and the proapoptotic effect in HepG2 cells. Our results demonstrate for the first time that Hispidulin induces apoptosis in HepG2 cells and suggested that the pro-apoptotic effect of Hispidulin was mediated through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway. Since no toxic effect was observed when normal liver cells were treated with Hispidulin, Hispidulin may have the potential to be used as therapeutic for liver cancer.

Journal ArticleDOI
TL;DR: The molecular docking study of T1r1 and T1R3 in complex with four peptides displayed that the amino acid residue of SER146 and Glu277 in T1 R3 may play great roles in the synergism of umami taste, and validated the robustness of the model.
Abstract: The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. The homology models of the ligand binding domains of the human umami receptor have been constructed based on crystallographic structures of the taste receptor of the central nervous system. Furthermore, the molecular simulations of the ligand binding domain show that the likely conformation was that T1R1 protein exists in the closed conformation, and T1R3 in the open conformation in the heterodimer. The molecular docking study of T1R1 and T1R3 in complex with four peptides, including Lys–Gly–Asp–Glu–Ser–Leu–Leu–Ala, Ser–Glu–Glu, G1u–Ser, and Asp–Glu–Ser, displayed that the amino acid residue of SER146 and Glu277 in T1R3 may play great roles in the synergism of umami taste. This docking result further validated the robustness of the model. In the paper, binding of umami peptide and the T1R1/T1R3 receptor was first described and the interaction is the base of umami activity theory.

Journal ArticleDOI
Peng Ding1, Weimin Wang1, Jinkun Wang1, Zhiyong Yang1, Liping Xue 
TL;DR: TAMs phenotypes of glioma samples are the potential biomarkers in assessing the degree of malignancy, tumor invasion, and patient prognosis in clinic and may inhibit the tumor growth and improve the therapeutic outcome ofglioma patients.
Abstract: The aim of this study is to investigate the expression of tumor-associated macrophages (TAMs) M1, M2 phenotypic in human glioma tissues, and to explore the clinical significance and prognostic value of TAMs in glioma patients. A total of 50 glioma samples were obtained from patients diagnosed in our hospital from 2007 to 2010. Clinical follow-up was conducted via return visits and telephone interviews after discharge. Progression free survival (PFS) was calculated based on tumor progression by MRI and CT examination from the primary operation. Overall survival (OS) time was calculated from the initial surgical operation date to end date of follow-up or death. Kaplan-Meier methodology was used to evaluate the survival of patients and log-rank test for comparing differences between groups. The expression levels of CD16 and CD206 were investigated in the 4 μm serial paraffin sections by immunohistochemistry. M1-type macrophages filtrated in all the grades of glioma samples, and the lower expression level was associated with high grade glioma. A negative correlation was found between WHO pathological grades and the expression of M1-type macrophages by Spearman correlation analysis. M2-type macrophages filtrated in all the grades of glioma samples with the higher expression level associated with high grade glioma. A positive correlation was found between WHO pathological grades and the expression of M2-type macrophages by Spearman correlation analysis. The PFS and OS among patients with high levels of M1-type macrophages (CD16+++) were significantly higher than those with less expression. The PFS and OS among patients with high levels of M2-type macrophages (CD206+++) were significantly lower than those with low expression. M1-type macrophages may inhibit the tumor growth and improve the therapeutic outcome of glioma patients. M2 ratios are associated with tumor proliferation and poor prognosis. TAMs phenotypes of glioma samples are the potential biomarkers in assessing the degree of malignancy, tumor invasion, and patient prognosis in clinic.

Journal ArticleDOI
TL;DR: 3G mobile phone radiations affect the brain function and cause several neurological disorders, shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response.
Abstract: Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

Journal ArticleDOI
TL;DR: In conclusion, RSV induced a dose-dependent pro-oxidant effect in GRX cells, and the highest RSV dose induced oxidative-related damage, drastically reducing cell viability; but this cytotoxicity seems to be attenuated during 120 h of treatment.
Abstract: Resveratrol (RSV) is known for its antioxidant properties; however, this compound has been proposed to have cytotoxic and pro-oxidant effects depending on its concentration and time of exposure. We previously reported the cell cycle arrest effect of low doses of RSV in GRX cells, an activated hepatic stellate cell model. Here, we evaluated the effects of RSV treatment (0.1–50 μM) for 24 and 120 h on GRX viability and oxidative status. Only treatment with 50 μM of RSV reduced the amount of live cells. However, even low doses of RSV induced an increased reactive species production at both treatment times. While being diminished within 24 h, RSV induced an increase in the SOD activity in 120 h. The cellular damage was substantially increased at 24 h in the 50 μM RSV-treated group, as indicated by the high lipoperoxidation, which may be related to the significant cell death and low proliferation. Paradoxically, this cellular damage and lipoperoxidation were considerably reduced in this group after 120 h of treatment while the surviving cells proliferated. In conclusion, RSV induced a dose-dependent pro-oxidant effect in GRX cells. The highest RSV dose induced oxidative-related damage, drastically reducing cell viability; but this cytotoxicity seems to be attenuated during 120 h of treatment.

Journal ArticleDOI
TL;DR: The biological effects of IL-10 are summarized, as well as its role and therapeutic potential in auto-immune diseases, which indicate that it plays an important role in both the onset and development of auto- immune diseases.
Abstract: IL-10 is a multifunctional cytokine secreted by a variety of cells. It not only inhibits activation of monocyte/macrophage system and synthesis of monocyte cytokine and inflammatory cytokine but also promotes the proliferation and maturation of non-monocyte-dependent T cell, stimulating proliferation of antigen-specific B cell. Increasing evidence indicates that IL-10 plays an important role in both the onset and development of auto-immune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren’s syndrome (SS), multiple sclerosis (MS), Crohn’s disease (CD), and psoriasis. However, the exact mechanisms of IL-10 in auto-immune diseases remain unclear. In the present review, we will summarize the biological effects of IL-10, as well as its role and therapeutic potential in auto-immune diseases.

Journal ArticleDOI
TL;DR: The ICD results indicated that the CFX binds to the domain IIA of HSA which is in agreement with the fluorescence displacement results and far-UV CD results show that the binding of CFX leads to change in the helicity of H SA.
Abstract: The binding of ciprofloxacin (CFX) to human serum albumin (HSA) has been investigated by fluorescence displacement and induced circular dichroism (ICD) measurements. Displacement measurements were performed with CFX in the absence and presence of marker ligands (hemin for domain I, bilirubin for interspace of domain IA and IIA, chloroform for domain II, and diazepam for domain III) to establish CFX binding site in one of the three major domains of HSA. The primary binding site of CFX is located in site I of HSA (domain IIA) in close vicinity to the site where chloroform (CHCl3) binds. It is depicted from the decrease in quenching constant of HSA–CHCl3 system (0.02 ± 0.06) × 10−3 L mol−1 compared to HSA–CFX–CHCl3 system (0.01 ± 0.06) × 10−3 L mol−1 as obtained by the fluorescence displacement spectroscopy. Furthermore, far-UV CD results show that the binding of CFX leads to change in the helicity of HSA. The ICD results indicated that the CFX binds to the domain IIA of HSA which is in agreement with the fluorescence displacement results.

Journal ArticleDOI
TL;DR: This study presents a well designed computational methodology to examine the albinism-associated SNPs using SIFT, PolyPhen, PANTHER, PhD-SNP, Pmut, and MutPred tools to find R305W mutation as most deleterious and disease associated.
Abstract: Oculocutaneous albinism type 2 (OCA2), caused by mutations of OCA2 gene, is an autosomal recessive disorder characterized by reduced biosynthesis of melanin pigment in the skin, hair, and eyes. The OCA2 gene encodes instructions for making a protein called the P protein. This protein plays a crucial role in melanosome biogenesis, and controls the eumelanin content in melanocytes in part via the processing and trafficking of tyrosinase which is the rate-limiting enzyme in melanin synthesis. In this study we analyzed the pathogenic effect of 95 non-synonymous single nucleotide polymorphisms reported in OCA2 gene using computational methods. We found R305W mutation as most deleterious and disease associated using SIFT, PolyPhen, PANTHER, PhD-SNP, Pmut, and MutPred tools. To understand the atomic arrangement in 3D space, the native and mutant (R305W) structures were modeled. Molecular dynamics simulation was conducted to observe the structural significance of computationally prioritized disease-associated mutation (R305W). Root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond (NH bond), trace of covariance matrix, eigenvector projection analysis, and density analysis results showed prominent loss of stability and rise in mutant flexibility values in 3D space. This study presents a well designed computational methodology to examine the albinism-associated SNPs.

Journal ArticleDOI
TL;DR: With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.
Abstract: Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

Journal ArticleDOI
TL;DR: The present scenario of computational nsSNP characterization technique and some of the questions that are crucial for the proper understanding of pathogenicity level for any disease associated mutations are discussed.
Abstract: The computational approaches in determining disease-associated Non-synonymous single nucleotide polymorphisms (nsSNPs) have evolved very rapidly. Large number of deleterious and disease-associated nsSNP detection tools have been developed in last decade showing high prediction reliability. Despite of all these highly efficient tools, we still lack the accuracy level in determining the genotype-phenotype association of predicted nsSNPs. Furthermore, there are enormous questions that are yet to be computationally compiled before we might talk about the prediction accuracy. Earlier we have incorporated molecular dynamics simulation approaches to foster the accuracy level of computational nsSNP analysis roadmap, which further helped us to determine the changes in the protein phenotype associated with the computationally predicted disease-associated mutation. Here we have discussed on the present scenario of computational nsSNP characterization technique and some of the questions that are crucial for the proper understanding of pathogenicity level for any disease associated mutations.

Journal ArticleDOI
TL;DR: Quantitative differences in SMC and Young’s modulus values of the high-grade and low-grade UCC cells are reported, for the first time, reported.
Abstract: Specific membrane capacitance (SMC) and Young’s modulus are two important parameters characterizing the biophysical properties of a cell. In this work, the SMC and Young’s modulus of two cell lines, RT4 and T24, corresponding to well differentiated (low grade) and poorly differentiated (high grade) urothelial cell carcinoma (UCC), respectively, were quantified using microfluidic and AFM measurements. Quantitative differences in SMC and Young’s modulus values of the high-grade and low-grade UCC cells are, for the first time, reported.

Journal ArticleDOI
TL;DR: It is demonstrated that TNF-α, IL-6, and leptin upregulated miR-378 expression indicating that miR -378 probably is a novel mediator in the development of insulin resistance related to obesity.
Abstract: Obesity has become a global public health problem associated with complications including type 2 diabetes, cardiovascular disease, and several cancers. Adipocyte differentiation (adipogenesis) plays an important role in obesity and energy homeostasis. Adipose tissue secretes multiple cytokines and adipokines which can cause the complications of obesity, especially insulin resistance. TNF-α, IL-6, leptin, and resistin have been identified as the main regulators of obesity and insulin activity. miR-378 is highly induced during adipogenesis and has been reported to be positively regulated in adipogenesis. In the current study, matured human adipocytes were treated with TNF-α, IL-6, leptin, or resistin on the 15th day after the induction of human pre-adipocyte differentiation. We demonstrated that TNF-α, IL-6, and leptin upregulated miR-378 expression indicating that miR-378 probably is a novel mediator in the development of insulin resistance related to obesity.

Journal ArticleDOI
TL;DR: The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer.
Abstract: Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.

Journal ArticleDOI
TL;DR: It is hypothesized that T cell immunoglobulin mucin-3, which specifically expresses on LSCs, is beneficial for L SCs survival and AML progression by promoting expansion of MDSCs and differentiating into TAMs at the leukemia site.
Abstract: Despite the improvements in chemotherapy, about 60 % of acute myeloid leukemia (AML) remission patients still relapse. Leukemic stem cells (LSCs) are the main causes for the relapse and refractory. T cell immunoglobulin mucin-3 (TIM-3), a specific surface molecule expressed on LSCs in most types of AML, is a candidate for AML LSC-targeted therapies. It is important to know how this molecule functions in the maintenance of LSCs and suppression of anti-tumor immunity. Recent data have shown that Tim-3 which expresses on T cells can suppress immune responses indirectly by inducing expansion of myeloid-derived suppressor cells (MDSCs). MDSCs at the leukemia site can also differentiate into tumor-associated macrophages (TAMs). TAMs can promote proliferation and survival of LSCs by the diversion of adaptive immunity and the facilitation of extracellular matrix remodeling, angiogenesis, and lymphangiogenesis. Our previous study in AML patient bone marrow samples showed CD68(+) macrophages around AML clone. Based on the known evidence and our experimental findings, we hypothesize that Tim-3, which specifically expresses on LSCs, is beneficial for LSCs survival and AML progression by promoting expansion of MDSCs and differentiating into TAMs at the leukemia site.

Journal ArticleDOI
TL;DR: Shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors, and suggests that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.
Abstract: Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways involved in muscle fiber size adaptation in response to mechanical loading is unknown. Therefore, our aim was twofold: (1) to determine whether shear stress affects growth factor expression and nitric oxide (NO) production by myotubes, and (2) to explore the mechanism by which shear stress may affect myotubes in vitro. C2C12 myotubes were subjected to a laminar pulsating fluid flow (PFF; mean shear stress 0.4, 0.7 or 1.4 Pa, 1 Hz) or subjected to uni-axial cyclic strain (CS; 15 % strain, 1 Hz) for 1 h. NO production during 1-h PFF or CS treatment was quantified using Griess reagent. The glycocalyx was degraded using hyaluronidase, and stretch-activated ion channels (SACs) were blocked using GdCl3. Gene expression was analyzed immediately after 1-h PFF (1.4 Pa, 1 Hz) and at 6 h post-PFF treatment. PFF increased IGF-I Ea, MGF, VEGF, IL-6, and COX-2 mRNA, but decreased myostatin mRNA expression. Shear stress enhanced NO production in a dose-dependent manner, while CS induced no quantifiable increase in NO production. Glycocalyx degradation and blocking of SACs ablated the shear stress-stimulated NO production. In conclusion, shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors. These results suggest that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.

Journal ArticleDOI
TL;DR: Easily accessible pretreatment parameters such as NLR should be considered in defining the prognosis of C-SCLC patients besides disease extent and performance status, as well as the risk factors that influenced the prog outlook of the patients with pure SCLC.
Abstract: Despite the increasing incidence of combined small-cell lung cancer (C-SCLC) in recent years, there have not been many data on clinical prognostic factors predicting prognosis of C-SCLC patients. In present study, we sought pretreatment features especially basic laboratory parameters predicting survival of C-SCLC. We analyzed 613 small-cell lung cancer (SCLC) patients at our institution between January 2005 and December 2010. We identified 114 patients with C-SCLC. The pathologic and clinical characteristics of these patients were reviewed. Data of laboratory parameters obtained during regular examinations at diagnosis of these patients were examined. The Kaplan–Meier method was used to calculate the survival rate and depict the survival curves. The Cox regression model was used to analyze the independent factors affecting the overall survival (OS). These data were compared with the results obtained from our 499 pure SCLC patients who presented during the same time period. Of the 613 SCLC patients analyzed, 18.6 % of the patients presented with C-SCLC. No difference in OS was observed in patients with C-SCLC and patients with pure SCLC (P = 0.995). The Kaplan–Meier survival curves revealed that poor ECOG-PS (P < 0.001), extensive disease (P < 0.001), pathologic subtype of SC/LC (P < 0.001), not receiving surgery (P = 0.001), elevated serum lactate dehydrogenase (LDH) (P = 0.005), elevated NSE (P = 0.043), and elevated neutrophile–lymphocyte ratio (NLR) (P = 0.018) were associated with adverse prognosis of patients with C-SCLC. By multivariate analysis, OS was affected by ECOG-PS (hazard ratio 2.001, P = 0.012), disease extent (hazard ratio 3.406, P < 0.001), and NLR (hazard ratio 1.704, P = 0.030) in C-SCLC patients, while the risk factors that influenced the prognosis of the patients with pure SCLC were ECOG-PS (hazard ratio 2.132, P < 0.001), disease extent (hazard ratio 1.482, P < 0.001), and LDH (hazard ratio 1.811, P < 0.001). Patients with C-SCLC carry a similar prognosis than those with pure small-cell variety. Easily accessible pretreatment parameters such as NLR should be considered in defining the prognosis of C-SCLC patients besides disease extent and performance status.

Journal ArticleDOI
TL;DR: This was the first time that simultaneously detecting heavy metal content in blood and hair was used to analyze the internal heavy metal burden in resident population of Pearl River Delta area.
Abstract: To detect the content of 12 heavy metals in blood and hair sample from a general population of Pearl River Delta area, and to analyze the influence of duration of residence, gender, age, smoking and drinking on the heavy metal content. Use inductively coupled plasma mass spectrometry to detect the content of 12 heavy metals lead (Pb), mercury (Hg), cadmium (Cd), aluminum (Al), arsenic (As), copper (Cu), chrome (Cr), manganese (Mn), nickel (Ni), zinc (Zn), tin (Sn) and antimony (Sb) in blood and hair samples of a total of 50 subjects from a general population, collected by multistage stratified cluster random sampling method. The geometric mean of heavy metal content in blood samples of general population (μg/L): blood aluminum 214.00; blood chrome 92.82; blood manganese 21.43; blood nickel 20.59; blood copper 0.67; blood zinc 11.50; blood arsenic 0.55; blood cadmium 2.45; blood tin 0.00; blood antimony 1.92; blood lead 158.84; and blood mercury 1.19. The geometric mean of heavy metal content in hair samples of general population (μg/g): hair aluminum is 84.65; hair chrome 0.00; hair manganese 2.44; hair nickel 0.61; hair copper 28.49; hair zinc 136.65; hair arsenic 0.75; hair cadmium 0.46; hair tin 1.04; hair antimony 0.05; hair lead 8.97; and hair mercury 0.69. Some heavy metals were correlated with duration of residence, gender, age, smoking and drinking. This was the first time that simultaneously detecting heavy metal content in blood and hair was used to analyze the internal heavy metal burden in resident population of Pearl River Delta area. These data can serve as reference for further research.

Journal ArticleDOI
TL;DR: The findings suggest that Hispidulin exerts anti-osteoporotic and bone resorption attenuating effects via activating the AMPK signaling pathway.
Abstract: To investigate the effect of Hispidulin on ovariectomy (OVX)-induced bone loss in mice. Female mice subjected to OVX were treated with Hispidulin for 8 weeks. The total body bone mineral density was measured at the beginning and after the OVX at a time interval of 4 weeks. Micro-computed tomography of the tibia, bone histomorphometric analysis of the femur, and biomechanical analysis of tibia, vertebra, and femoral head were performed to fully evaluate the anti-osteoporotic effect of Hispidulin. Western blot analysis was performed to determine the level of activated AMPK. Hispidulin treatment effectively prevented OVX-induced body weight loss and attenuated OVX-induced bone loss. Hispidulin treatment also decreased trabecular spacing in OVX mice. The suppressing effect of Hispidulin on osteoclast surface and number was also found via histomorphometric analysis. Western blot analysis revealed that Hispidulin significantly elevated the activated AMPK levels. Our findings suggest that Hispidulin exerts anti-osteoporotic and bone resorption attenuating effects via activating the AMPK signaling pathway.

Journal ArticleDOI
TL;DR: It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model and this antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.
Abstract: Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.