scispace - formally typeset
Search or ask a question

Showing papers in "Cellular and Molecular Life Sciences in 2009"


Journal ArticleDOI
TL;DR: This review will discuss nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes, starting with the phagocytosis pathway.
Abstract: Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.

1,402 citations


Journal ArticleDOI
TL;DR: This review will provide a general overview of the mammalian BER pathway and show how the high degree of BER conservation between E. coli and mammals has lead to advances in understanding of mammalian B ER.
Abstract: Base excision repair (BER) is the primary DNA repair pathway that corrects base lesions that arise due to oxidative, alkylation, deamination, and depurinatiation/depyrimidination damage. BER facilitates the repair of damaged DNA via two general pathways – short-patch and long-patch. The shortpatch BER pathway leads to a repair tract of a single nucleotide. Alternatively, the long-patch BER pathway produces a repair tract of at least two nucleotides. The BER pathway is initiated by one of many DNA glycosylases, which recognize and catalyze the removal of damaged bases. The completion of the BER pathway is accomplished by the coordinated action of at least three additional enzymes. These downstream enzymes carry out strand incision, gap-filling and ligation. The high degree of BER conservation between E. coli and mammals has lead to advances in our understanding of mammalian BER. This review will provide a general overview of the mammalian BER pathway. (Part of a Multi-author Review)

572 citations


Journal ArticleDOI
TL;DR: Notch signaling is reviewed with a focus on gene regulatory events at Notch target genes, of utmost importance to understand Notch signaling since certain RBP-J associated cofactors and particular epigenetic marks determine the specificity of notch target gene expression in different cell types.
Abstract: The Notch gene encodes a transmembrane receptor that gave the name to the evolutionary highly conserved Notch signaling cascade. It plays a pivotal role in the regulation of many fundamental cellular processes such as proliferation, stem cell maintenance and differentiation during embryonic and adult development. After specific ligand binding, the intracellular part of the Notch receptor is cleaved off and translocates to the nucleus, where it binds to the transcription factor RBP-J. In the absence of activated Notch, RBP-J represses Notch target genes by recruiting a corepressor complex. Here, we review Notch signaling with a focus on gene regulatory events at Notch target genes. This is of utmost importance to understand Notch signaling since certain RBP-J associated cofactors and particular epigenetic marks determine the specificity of Notch target gene expression in different cell types. We subsequently summarize the current knowledge about Notch target genes and the physiological significance of Notch signaling in development and cancer.

571 citations


Journal ArticleDOI
TL;DR: This review gives an overview of the structure, assembly and function of the best-characterized pili of both Gram-negative and Gram-positive bacteria.
Abstract: Many bacterial species possess long filamentous structures known as pili or fimbriae extending from their surfaces. Despite the diversity in pilus structure and biogenesis, pili in Gram-negative bacteria are typically formed by non-covalent homopolymerization of major pilus subunit proteins (pilins), which generates the pilus shaft. Additional pilins may be added to the fiber and often function as host cell adhesins. Some pili are also involved in biofilm formation, phage transduction, DNA uptake and a special form of bacterial cell movement, known as ‘twitching motility’ In contrast, the more recently discovered pili in Gram-positive bacteria are formed by covalent polymerization of pilin subunits in a process that requires a dedicated sortase enzyme. Minor pilins are added to the fiber and play a major role in host cell colonization.

491 citations


Journal ArticleDOI
TL;DR: This review summarizes recent insights into properties of individual selenoproteins such as tissue distribution, subcellular localization, and regulation of expression as well as potential roles the different seleniproteins play in human health and disease.
Abstract: Selenium (Se) is a nutritional trace mineral essential for various aspects of human health that exerts its effects mainly through its incorporation into selenoproteins as the amino acid, selenocysteine. Twenty-five selenoprotein genes have been identified in humans and several selenoproteins are broadly classified as antioxidant enzymes. As progress is made on characterizing the individual members of this protein family, however, it is becoming clear that their properties and functions are quite diverse. This review summarizes recent insights into properties of individual selenoproteins such as tissue distribution, subcellular localization, and regulation of expression. Also discussed are potential roles the different selenoproteins play in human health and disease.

455 citations


Journal ArticleDOI
TL;DR: A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A andDNMT3B are shown experimentally to possess DNA demethylase activity, suggesting complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.
Abstract: DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.

442 citations


Journal ArticleDOI
TL;DR: The molecular regulation of bone marrow adipogenesis is discussed with emphasis on signals that interact with osteoblastogenic pathways and the possible therapeutic implications of these interactions are highlighted.
Abstract: Bone marrow mesenchymal stem cells (MSCs) are multipotent cells, which among other cell lineages, give rise to adipocytes and osteoblasts. Within the bone marrow, the differentiation of MSCs into adipocytes or osteoblasts is competitively balanced; mechanisms that promote one cell fate actively suppress mechanisms that induce the alternative lineage. This occurs through the cross talk between complex signaling pathways including those derived from bone morphogenic proteins (BMPs), winglesstype MMTV integration site (Wnt) proteins, hedgehogs, delta/jagged proteins, fibroblastic growth factors (FGF), insulin, insulin-like growth factors (IGF), and transcriptional regulators of adipocyte and osteoblast differentiation including peroxisome proliferator-activated receptor-γ (PPARγ) and runt-related transcription factor 2 (Runx2). Here, we discuss the molecular regulation of bone marrow adipogenesis with emphasis on signals that interact with osteoblastogenic pathways and highlight the possible therapeutic implications of these interactions.

424 citations


Journal ArticleDOI
TL;DR: What is currently known on the molecular pathways these zinc finger transcription factors are implicated in are described, and their roles in development and human diseases are highlighted, with a focus on tumor malignancy.
Abstract: The ZEB family of zinc finger transcription factors are essential players during normal embryonic development. One characteristic is that they induce epithelial to mesenchymal transition (EMT), a process that reorganizes epithelial cells to become migratory mesenchymal cells. E-cadherin is a major target gene of these transcriptional repressors, and this downregulation is considered a hallmark of EMT. In recent years, the involvement of the ZEB proteins in pathological contexts has been documented as well. Mutations in ZEB encoding genes cause severe syndromic malformations and evidence is mounting that links these factors to malignant tumor progression. In this review, we describe what is currently known on the molecular pathways these transcription factors are implicated in, and we highlight their roles in development and human diseases, with a focus on tumor malignancy.

422 citations


Journal ArticleDOI
TL;DR: An overview on structure, function and regulation of HCN channels is given, with particular emphasis on the complex roles of these channels for neuronal function and cardiac rhythmicity.
Abstract: Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated pore loop channels. HCN channels are unique among vertebrate voltage-gated ion channels, in that they have a reverse voltage-dependence that leads to activation upon hyperpolarization. In addition, voltage-dependent opening of these channels is directly regulated by the binding of cAMP. HCN channels are encoded by four genes (HCN1–4) and are widely expressed throughout the heart and the central nervous system. The current flowing through HCN channels, designated Ih or If, plays a key role in the control of cardiac and neuronal rhythmicity (“pacemaker current”. In addition, Ih contributes to several other neuronal processes, including determination of resting membrane potential, dendritic integration and synaptic transmission. In this review we give an overview on structure, function and regulation of HCN channels. Particular emphasis will be laid on the complex roles of these channels for neuronal function and cardiac rhythmicity.

388 citations


Journal ArticleDOI
TL;DR: These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation.
Abstract: Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation.

359 citations


Journal ArticleDOI
TL;DR: The major differentiated function of melanocytes is the synthesis of melanin, a pigmented heteropolymer that is synthesized in specialized cellular organelles termed melanosomes, which are arranged in a supranuclear cap, protecting the DNA against incident ultraviolet light (UV) irradiation.
Abstract: The major differentiated function of melanocytes is the synthesis of melanin, a pigmented heteropolymer that is synthesized in specialized cellular organelles termed melanosomes. Mature melanosomes are transferred to neighboring keratinocytes and are arranged in a supranuclear cap, protecting the DNA against incident ultraviolet light (UV) irradiation. The synthesis and distribution of melanin in the epidermis involves several steps: transcription of melanogenic proteins, melanosome biogenesis, sorting of melanogenic proteins into the melanosomes, transport of melanosomes to the tips of melanocyte dendrites and finally transfer into keratinocytes. These events are tightly regulated by a variety of paracrine and autocrine factors in response to endogenous and exogenous stimuli, principally UV irradiation.

Journal ArticleDOI
TL;DR: Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented and the recent findings of the biological implications of these phosphorylated events in physiological and pathological processes are discussed.
Abstract: The small heat shock protein Hsp27 or its murine homologue Hsp25 acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. A variety of stimuli induce phosphorylation of serine residues 15, 78, and 82 in Hsp27 and serines 15 and 86 in Hsp25. This post-translational modification affects some of the cellular functions of Hsp25/27. As a consequence of the functional importance of Hsp25/27 phosphorylation, aberrant Hsp27 phosphorylation has been linked to several clinical conditions. This review focuses on the different Hsp25/27 kinases and phosphatases that regulate the phosphorylation pattern of Hsp25/27, and discusses the recent findings of the biological implications of these phosphorylation events in physiological and pathological processes. Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented.

Journal ArticleDOI
TL;DR: An integrated view of the role of GCK in the molecular physiology and medicine of glucose homeostasis is offered, with the aim of offering an integrated view into the kinetic properties of the glucokinase gene.
Abstract: The glucokinase (GCK) gene was one of the first candidate genes to be identified as a human “diabetes gene". Subsequently, important advances were made in understanding the impact of GCK in the regulation of glucose metabolism. Structure elucidation by crystallography provided insight into the kinetic properties of GCK. Protein interaction partners of GCK were discovered. Gene expression studies revealed new facets of the tissue distribution of GCK, including in the brain, and its regulation by insulin in the liver. Metabolic control analysis coupled to gene overexpression and knockout experiments highlighted the unique impact of GCK as a regulator of glucose metabolism. Human GCK mutants were studied biochemically to understand disease mechanisms. Drug development programs identified small molecule activators of GCK as potential antidiabetics. These advances are summarized here, with the aim of offering an integrated view of the role of GCK in the molecular physiology and medicine of glucose homeostasis.

Journal ArticleDOI
TL;DR: Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
Abstract: Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.

Journal ArticleDOI
TL;DR: In this review, aspects related to the function of periostin in tumorigenesis are summarized.
Abstract: Periostin, also called osteoblast-specific factor 2 (OSF-2), is a member of the fasciclin family and a disulfide-linked cell adhesion protein that has been shown to be expressed preferentially in the periosteum and periodontal ligaments, where it acts as a critical regulator of bone and tooth formation and maintenance. Furthermore, periostin plays an important role in cardiac development. Recent clinical evidence has also revealed that periostin is involved in the development of various tumors, such as breast, lung, colon, pancreatic, and ovarian cancers. Periostin interacts with multiple cell-surface receptors, most notably integrins, and signals mainly via the PI3-K/Akt and other pathways to promote cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, aspects related to the function of periostin in tumorigenesis are summarized.

Journal ArticleDOI
TL;DR: This work highlights the physiological functions and signaling mechanisms of Rac1 and their relevance to disease and investigates their role in aberrant cell signaling and pathological conditions.
Abstract: Rac1, a member of the Rho family of GTPases, is an intracellular transducer known to regulate multiple signaling pathways that control cytoskeleton organization, transcription, and cell proliferation. Deregulated expression or activation patterns of Rac1 can result in aberrant cell signaling and numerous pathological conditions. Here, we highlight the physiological functions and signaling mechanisms of Rac1 and their relevance to disease.

Journal ArticleDOI
TL;DR: Inhibition of its expression and/or neutralization of its anti-apoptotic function will rapidly make Mcl-1-dependent cells more susceptible to apoptosis and provide an opportunity to combat several types of cancers.
Abstract: Resistance to apoptosis is a common challenge in human malignancies contributing to both progress of cancer and resistance to conventional therapeutics. Abnormalities in a variety of cell intrinsic and extrinsic molecular mechanisms cooperatively promote tumor formation. Therapeutic approaches that specifically target components of these molecular mechanisms are getting widespread attention. Mcl-1 is a highly expressed pro-survival protein in human malignancies and its cellular expression is tightly regulated via multiple mechanisms. Mcl-1 differs from other members of the Bcl-2 family in having a very short half-life. So inhibition of its expression and/or neutralization of its anti-apoptotic function will rapidly make Mcl-1-dependent cells more susceptible to apoptosis and provide an opportunity to combat several types of cancers. This review summarizes the current knowledge on the regulation of Mcl-1 expression and discusses the alternative approaches targeting Mcl-1 in human cancer cells whose survivals mainly depend on Mcl-1.

Journal ArticleDOI
TL;DR: The development of natural and induced T Regs are discussed as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression are discussed.
Abstract: Regulatory T cells (Tregs) are a critical subset of T cells that mediate peripheral tolerance. There are two types of Tregs: natural Tregs, which develop in the thymus, and induced Tregs, which are derived from naive CD4(+) T cells in the periphery. Tregs utilize a variety of mechanisms to suppress the immune response. While Tregs are critical for the peripheral maintenance of potential autoreactive T cells, they can also be detrimental by preventing effective anti-tumor responses and sterilizing immunity against pathogens. In this review, we will discuss the development of natural and induced Tregs as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression.

Journal ArticleDOI
TL;DR: This review begins with a brief overview of the numerous types of DNA lesions handled by NER, and proceeds to describe in detail the molecular mechanisms of NER: heterogeneities in NER activity in physiological situations and the underlying regulatory mechanism.
Abstract: Nucleotide excision repair (NER) is one of the most versatile DNA repair systems. It can be subdivided into several, differentially regulated, subpathways: global genome repair (GGR), transcription-coupled repair (TCR), and transcription domain-associated repair (DAR). This review begins with a brief overview of the numerous types of DNA lesions handled by NER, and proceeds to describe in detail the molecular mechanisms of NER. It then addresses heterogeneities in NER activity in physiological situations (e. g. in differentiated cells) and explores the underlying regulatory mechanism. It then reviews several inherited diseases associated with NER deficiencies: xeroderma pigmentosum, Cockayne syndrome, trichothiodystrophy, UV-sensitive syndrome. It concludes by discussing several currently unresolved issues, relating either to the cause of the above diseases or to the mechanistic details of the various NER subpathways and of their regulation. (Part of a Multi-author Review)

Journal ArticleDOI
TL;DR: The structure of LexA protein, particularly with respect to distinct conformations that enable repression of SOS genes via specific DNA binding or repressor cleavage during the response to DNA damage, may provide new starting points in the battle against the emergence of bacterial pathogens and the spread of drug resistance among them.
Abstract: Bacteria respond to DNA damage by mounting a coordinated cellular response, governed by the RecA and LexA proteins. In Escherichia coli, RecA stimulates cleavage of the LexA repressor, inducing more than 40 genes that comprise the SOS global regulatory network. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation. In some well-characterised pathogens, induction of the SOS response modulates the evolution and dissemination of drug resistance, as well as synthesis, secretion and dissemination of the virulence. In this review, we discuss the structure of LexA protein, particularly with respect to distinct conformations that enable repression of SOS genes via specific DNA binding or repressor cleavage during the response to DNA damage. These may provide new starting points in the battle against the emergence of bacterial pathogens and the spread of drug resistance among them.

Journal ArticleDOI
TL;DR: In this paper, the authors describe how eukaryotic cells sense DSBs and trigger cell cycle arrest to allow repair, and review the mechanisms of both NHEJ and HR pathways and the choice between them.
Abstract: DNA double-strand breaks (DSBs) arise in cells from endogenous and exogenous attacks on the DNA backbone, but also as a direct consequence of replication failures. Proper repair of all these DSBs is essential for genome stability. Repair of broken chromosomes is a challenge for dividing cells that need to distribute equal genetic information to daughter cells. Consequently, eukaryotic organisms have evolved multi-potent and efficient mechanisms to repair DSBs that are primarily divided into two types of pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Here we briefly describe how eukaryotic cells sense DSBs and trigger cell cycle arrest to allow repair, and we review the mechanisms of both NHEJ and HR pathways and the choice between them. (Part of a Multi-author Review)

Journal ArticleDOI
TL;DR: This review focuses on the various roles of CK2 in the mammalian cell, with particular attention on its functions through the stages of the cell cycle and during the decision to undergo cell death.
Abstract: Protein kinase CK2 is a serine/threonine kinase with a multitude of protein substrates. The enzyme is ubiquitously expressed in mammalian cells, where it functions in a variety of cellular processes, including cell cycle progression, apoptosis, transcription, and viral infection. While the importance of CK2 in the mammalian life cycle is undisputed, the regulatory mechanisms coordinating its numerous functions remain elusive. In this review, we focus on the various roles of CK2 in the mammalian cell, with particular attention on its functions through the stages of the cell cycle and during the decision to undergo cell death. We highlight how these roles are controlled in part through direct transcriptional regulation by CK2, and how the constitutive activity of CK2 can be hijacked in the case of viral infection. Finally, we discuss possible ways in which these functions are integrated to allow the cell to respond appropriately in the presence of multiple signals.

Journal ArticleDOI
TL;DR: An overview of the cellular regulation by PIAS proteins is presented and it is proposed that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.
Abstract: The interactions and functions of protein inhibitors of activated STAT (PIAS) proteins are not restricted to the signal transducers and activators of transcription (STATs), but PIAS1, -2, -3 and -4 interact with and regulate a variety of distinct proteins, especially transcription factors. Although the majority of PIAS-interacting proteins are prone to modification by small ubiquitin-related modifier (SUMO) proteins and the PIAS proteins have the capacity to promote the modification as RING-type SUMO ligases, they do not function solely as SUMO E3 ligases. Instead, their effects are often independent of their Siz/PIAS (SP)-RING finger, but dependent on their capability to noncovalently interact with SUMOs or DNA through their SUMO-interacting motif and scaffold attachment factor-A/B, acinus and PIAS domain, respectively. Here, we present an overview of the cellular regulation by PIAS proteins and propose that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.

Journal ArticleDOI
TL;DR: The role of redox-dependent signaling pathways and transcription factors that regulate tumorigenesis are reviewed and reactive oxygen species are upregulated in tumors.
Abstract: Historically, it has been assumed that oxidative stress contributes to tumor initiation and progression solely by inducing genomic instability. Recent studies indicate that reactive oxygen species are upregulated in tumors and can lead to aberrant induction of signaling networks that cause tumorigenesis and metastasis. Here we review the role of redox-dependent signaling pathways and transcription factors that regulate tumorigenesis.

Journal ArticleDOI
TL;DR: At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma, which is essential for basic cellular processes but is toxic when present in excess.
Abstract: Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.

Journal ArticleDOI
TL;DR: Recent progress is highlighted in elucidation of molecular mechanisms underlying the roles of these hnRNPs in a wide range of nuclear processes, including DNA replication and repair, telomere maintenance, transcription, pre-mRNA splicing, and mRNA nucleo-cytoplasmic export.
Abstract: The hnRNP A/B proteins are among the most abundant RNA-binding proteins, forming the core of the ribonucleoprotein complex that associates with nascent transcripts in eukaryotic cells. There are several paralogs in this subfamily, each of which is subject to alternative transcript splicing and post-translational modifications. The structural diversity of these proteins generates a multitude of functions that involve interactions with DNA or, more commonly, RNA. They also recruit regulatory proteins associated with pathways related to DNA and RNA metabolism, and appear to accompany transcripts throughout the life of the mRNA. We have highlighted here recent progress in elucidation of molecular mechanisms underlying the roles of these hnRNPs in a wide range of nuclear processes, including DNA replication and repair, telomere maintenance, transcription, pre-mRNA splicing, and mRNA nucleo-cytoplasmic export.

Journal ArticleDOI
TL;DR: This review discusses and evaluates the different models of the mode of action of Cry toxins, including a discussion about the role of various receptors in toxin action.
Abstract: Cry proteins, produced by Bacillus thuringiensis (Bt), are widely used for the control of insect pests in agriculture as spray products or expressed in transgenic crops, such as maize and cotton. Little was known regarding the mechanism of action of these toxins when the first commercial Bt product was introduced fifty years ago. However, research on the mechanism of action over the last two decades has enhanced our knowledge of toxin interaction with membrane receptors and their effects in insect midgut cells. All this information allowed for the rational design of improved toxins with higher toxicity or toxins that overcome insect resistance, which could compromise Bt use and effectiveness in the field. In this review we discuss and evaluate the different models of the mode of action of Cry toxins, including a discussion about the role of various receptors in toxin action.

Journal ArticleDOI
TL;DR: The ability of sHsps to prevent fibril formation, their mechanisms of action and the possible in vivo consequences of such associations are discussed, along with the potential use of fibrillar crystallin proteins as bionanomaterials.
Abstract: Improper protein folding (misfolding) can lead to the formation of disordered (amorphous) or ordered (amyloid fibril) aggregates. The major lens protein, α-crystallin, is a member of the small heat-shock protein (sHsp) family of intracellular molecular chaperone proteins that prevent protein aggregation. Whilst the chaperone activity of sHsps against amorphously aggregating proteins has been well studied, its action against fibril-forming proteins has received less attention despite the presence of sHsps in deposits found in fibril-associated diseases (e.g. Alzheimer’s and Parkinson’s). In this review, the literature on the interaction of αB-crystallin and other sHsps with fibril-forming proteins is summarized. In particular, the ability of sHsps to prevent fibril formation, their mechanisms of action and the possible in vivo consequences of such associations are discussed. Finally, the fibril-forming propensity of the crystallin proteins and its implications for cataract formation are described along with the potential use of fibrillar crystallin proteins as bionanomaterials.

Journal ArticleDOI
TL;DR: The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs) and could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.
Abstract: KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFβ, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.

Journal ArticleDOI
TL;DR: A review aims to highlight aspects of the evolutionary history of the SIX family; the structural differences and similarities amongst the different SIX proteins; the role that these genes play in retinal development; and the influence that these proteins have on cell proliferation and growth.
Abstract: The sine oculis homeobox (SIX) protein family is a group of evolutionarily conserved transcription factors that are found in diverse organisms that range from flatworms to humans. These factors are expressed within, and play pivotal developmental roles in, cell populations that give rise to the head, retina, ear, nose, brain, kidney, muscle and gonads. Mutations within the fly and mammalian versions of these genes have adverse consequences on the development of these organs/tissues. Several SIX proteins have been shown to directly influence the cell cycle and are present at elevated levels during tumorigenesis and within several cancers. This review aims to highlight aspects of (1) the evolutionary history of the SIX family; (2) the structural differences and similarities amongst the different SIX proteins; (3) the role that these genes play in retinal development; and (4) the influence that these proteins have on cell proliferation and growth.