scispace - formally typeset
Search or ask a question
JournalISSN: 1871-5249

Central nervous system agents in medicinal chemistry 

Bentham Science Publishers
About: Central nervous system agents in medicinal chemistry is an academic journal published by Bentham Science Publishers. The journal publishes majorly in the area(s): Neuroprotection & Medicine. It has an ISSN identifier of 1871-5249. Over the lifetime, 384 publications have been published receiving 6153 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review will focus on those functions of astrocytes that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve outcome following cerebral ischemia.
Abstract: In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating stroke, with the exception of thrombolytics. Although many targets have been pursued, including antioxidants, calcium channel blockers, glutamate receptor blockers, and neurotrophic factors, often the focus has been on neuronal mechanisms of injury. Broader attention to loss and dysfunction of non-neuronal cell types is now required to increase the chance of success. Of the several glial cell types, this review will focus on astrocytes. Astrocytes are the most abundant cell type in the higher mammalian nervous system, and they play key roles in normal CNS physiology and in central nervous system injury and pathology. In the setting of ischemia astrocytes perform multiple functions, some beneficial and some potentially detrimental, making them excellent candidates as therapeutic targets to improve outcome following stroke and in other central nervous system injuries. The older neurocentric view of the central nervous system has changed radically with the growing understanding of the many essential functions of astrocytes. These include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and modulation of neuronal excitability. In this review, we will focus on those functions of astrocytes that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve outcome following cerebral ischemia.

261 citations

Journal ArticleDOI
TL;DR: In the Ayurvedic system, the herbs used for medicinal purposes are classed as brain tonics or rejuvenators, and the best known and most scientifically investigated of these herbs, Ashwagandha will be discussed in detail in this review.
Abstract: Ayurveda is a Sanskrit word, which means "the scripture for longevity". It represents an ancient system of traditional medicine prevalent in India and in several other south Asian countries. It is based on a holistic view of treatment which is believed to cure human diseases through establishment of equilibrium in the different elements of human life, the body, the mind, the intellect and the soul [1]. Ayurveda dates back to the period of the Indus Valley civilization (about 3000 B.C) and has been passed on through generations of oral tradition, like the other four sacred texts (Rigveda, Yajurveda, Samaveda and Atharvanaveda) which were composed between 12(th) and 7(th) century B.C [2, 3]. References to the herbal medicines of Ayurveda are found in all of the other four Vedas, suggesting that Ayurveda predates the other Vedas by at least several centuries. It was already in full practice at the time of Buddha (6(th) century B.C) and had produced two of the greatest physicians of ancient India, Charaka and Shushrutha who composed the basic texts of their trade, the Samhitas. By this time, ayurveda had already developed eight different subspecialties of medical treatment, named Ashtanga, which included surgery, internal medicine, ENT, pediatrics, toxicology, health and longevity, and spiritual healing [4]. Ayurvedic medicine was mainly composed of herbal preparations which were occasionally combined with different levels of other compounds, as supplements [5]. In the Ayurvedic system, the herbs used for medicinal purposes are classed as brain tonics or rejuvenators. Among the plants most often used in Ayurveda are, in the descending order of importance: (a) Ashwagandha, (b) Brahmi, (c) Jatamansi, (d) Jyotishmati, (e) Mandukparni, (f) Shankhapushpi, and (g) Vacha. The general appearance of these seven plants is shown in Fig.1. Their corresponding Latin names, as employed in current scientific literature, the botanical families that each of them belongs to, their normal habitats in different areas of the world, as well as the common synonyms by which they are known, are shown in the Table 1. The scientific investigations concerning the best known and most scientifically investigated of these herbs, Ashwagandha will be discussed in detail in this review. Ashwagandha (Withania somnifera, WS), also commonly known, in different parts of the world, as Indian ginseng, Winter cherry, Ajagandha, Kanaje Hindi and Samm Al Ferakh, is a plant belonging to the Solanaceae family. It is also known in different linguistic areas in India by its local vernacular names [6]. It grows prolifically in dry regions of South Asia, Central Asia and Africa, particularly in India, Pakistan, Bangladesh, Sri Lanka, Afghanistan, South Africa, Egypt, Morocco, Congo and Jordon [7]. In India, it is cultivated, on a commercial scale, in the states of Madhya Pradesh, Uttar Pradesh, Punjab, Gujarat and Rajasthan [6]. In Sanskrit, ashwagandha, the Indian name for WS, means "odor of the horse", probably originating from the odor of its root which resembles that of a sweaty horse. The name"somnifera" in Latin means "sleep-inducer" which probably refers to its extensive use as a remedy against stress from a variety of daily chores. Some herbalists refer to ashwagandha as Indian ginseng, since it is used in India, in a way similar to how ginseng is used in traditional Chinese medicine to treat a large variety of human diseases [8]. Ashwagandha is a shrub whose various parts (berries, leaves and roots) have been used by Ayurvedic practitioners as folk remedies, or as aphrodisiacs and diuretics. The fresh roots are sometimes boiled in milk, in order to leach out undesirable constituents. The berries are sometimes used as a substitute to coagulate milk in cheese making. In Ayurveda, the herbal preparation is referred to as a "rasayana", an elixir that works, in a nonspecific, global fashion, to increase human health and longevity. It is also considered an adaptogen, a nontoxic medication that normalizes physiological functions, disturbed by chronic stress, through correction of imbalances in the neuroendocrine and immune systems [9, 10]. The scientific research that has been carried out on Ashwagandha and other ayurvedic herbal medicines may be classified into three major categories, taking into consideration the endogenous or exogenous phenomena that are known to cause physiological disequilibrium leading to the pathological state; (A) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on specific non-neurological diseases; (B) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on neurodegenerative disorders; and (C) biochemical, physiological and genetic studies on the herbal plants themselves, in order to distinguish between those originating from different habitats, or to improve the known medicinal quality of the indigenous plant. Some of the major points on its use in the treatment of neurodegenerative disorders are described below.

141 citations

Journal ArticleDOI
TL;DR: Despite the numerous treatment options available for relieving neuropathic pain, the most appropriate treatment strategy is only able to reduce pain in 70% of patients, and combination therapies using two or more analgesics with different mechanisms of action may also offer adequate pain relief.
Abstract: Neuropathic pain (pain associated with lesions or dysfunction of nervous system) is relatively common, occurring in about 1% of the population. Studies in animal models describe a number of peripheral and central pathophysiological processes after nerve injury that would be the basis of underlying neuropathic pain mechanism. A change in function, chemistry, and structures of neurons (neural plasticity) underlie the production of the altered sensitivity characteristics of neuropathic pain. Peripheral sensitization acts on the nociceptors, and central sensitization takes place at various levels ranging from the dorsal horn to the brain. In addition, abnormal interactions between the sympathetic and sensory pathways contribute to mechanisms mediating neuropathic pain. Despite recent advances in identification of peripheral and central sensitization mechanisms related to nervous system injury, the effective treatment of patients suffering from neuropathic pain remains a clinical challenge. Although numerous treatment options are available for relieving neuropathic pain, there is no consensus on the most appropriate treatment. However, recommendations can be proposed for first-line, second-line, and third-line pharmacological treatments based on the level of evidence for the different treatment strategies. Beside opioids, the available therapies shown to be effective in managing neuropathic pain include anticonvulsants, antidepressants, topical treatments (lidocaine patch, capsaicin), and ketamine. Tricyclic antidepressants are often the first drugs selected to alleviate neuropathic pain (first-line pharmacological treatment). Although they are very effective in reducing pain in several neuropathic pain disorders, treatment may be compromised (and outweighed) by their side effects. In patients with a history of cardiovascular disorders, glaucoma, and urine retention, pregabalin and gabapentine are emerging as first-line treatment for neuropathic pain. In addition these anti-epileptic drugs have a favourable safety profile with minimal concerns regarding drug interactions and showing no interference with hepatic enzymes. Despite the numerous treatment options available for relieving neuropathic pain, the most appropriate treatment strategy is only able to reduce pain in 70% of these patients. In the remaining patients, combination therapies using two or more analgesics with different mechanisms of action may also offer adequate pain relief. Although combination treatment is clinical practice and may result in greater pain relief, trials regarding different combinations of analgesics are lacking (which combination to use, occurrence of additive or supra-additive effects, sequential or concurrent treatment, adverse-event profiles of these analgesics, alone and in combination) are lacking. Additionally, 10% of patients still experience intractable pain and are refractory to all forms of pharmacotherapy. If medical treatments fail, invasive therapies such as intrathecal drug administration and neurosurgical interventions may be considered.

118 citations

Journal ArticleDOI
TL;DR: The reviewed results suggest that chronic, but not acute, administration of antidepressants suppress panic attacks by increasing the release of 5-HT and enhancing the responsivity of post-synaptic 5- HT1A and5-HT2A receptors in the DPAG.
Abstract: Antidepressants are widely used to treat several anxiety disorders, among which generalized anxiety disorder (GAD) and panic disorder (PD). Serotonin (5-HT) is believed to play a key role in the mode of action of these agents, a major question being which pathways and receptor subtypes are involved in each type of anxiety disorder. The dual role of 5-HT in defense hypothesis assumes that 5-HT facilitates defensive responses to potential threat, like inhibitory avoidance, related to anxiety, whereas it inhibits defensive responses to proximal danger, like one-way escape, related to panic. The former action would be exerted at the forebrain, chiefly the amygdala and medial prefrontal cortex (PFC), while the latter would be exerted at the dorsal periaqueductal gray (DPAG) matter of the midbrain. The present review is focused on studies designed to test this hypothesis, performed in animal models of anxiety and panic, as well as in human experimental anxiety tests. The reviewed results suggest that chronic, but not acute, administration of antidepressants suppress panic attacks by increasing the release of 5-HT and enhancing the responsivity of post-synaptic 5-HT1A and 5-HT2A receptors in the DPAG. The attenuation of generalized anxiety, also caused by the same drug treatment, would be due to the desensitization of 5-HT2C receptors and, less certainly, to increased stimulation of 5-HT1A receptors in forebrain structures. This action would result in less activation of the amygdala, medial PFC and insula by warning signals, as shown by the reviewed results obtained with functional neuroimaging in healthy volunteers and patients with anxiety disorders.

118 citations

Journal ArticleDOI
TL;DR: The sigma-1 receptor is a receptor chaperone essential for the metabotropic receptor signaling and for the survival against cellular stress.
Abstract: Chaperones are proteins that assist the correct folding of other protein clients either when the clients are being synthesized or at their functional localities. Chaperones are responsible for certain diseases. The sigma-1 receptor is recently identified as a receptor chaperone whose activity can be activated/deactivated by specific ligands. Under physiological conditions, the sigma-1 receptor chaperones the functional IP3 receptor at the endoplasmic reticulum and mitochondrion interface to ensure proper Ca2+ signaling from endoplasmic reticulum into mitochondrion. However, under pathological conditions whereby cells encounter enormous stress that results in the endoplasmic reticulum losing its global Ca2+ homeostasis, the sigma-1 receptor translocates and counteracts the arising apoptosis. Thus, the sigma-1 receptor is a receptor chaperone essential for the metabotropic receptor signaling and for the survival against cellular stress. The sigma-1 receptor has been implicated in many diseases including addiction, pain, depression, stroke, and cancer. Whether the chaperone activity of the sigma-1 receptor attributes to those diseases awaits further investigation.

111 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20237
202223
20217
202014
201923
201815