scispace - formally typeset
Search or ask a question
JournalISSN: 0960-0779

Chaos Solitons & Fractals 

Elsevier BV
About: Chaos Solitons & Fractals is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Nonlinear system & Chaotic. It has an ISSN identifier of 0960-0779. Over the lifetime, 12147 publications have been published receiving 303800 citations. The journal is also known as: Chaos, solitons and fractals.


Papers
More filters
Journal ArticleDOI
TL;DR: The two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme that uses the 3D cat map to shuffle the positions of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks.
Abstract: Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. Due to the exceptionally desirable properties of mixing and sensitivity to initial conditions and parameters of chaotic maps, chaos-based encryption has suggested a new and efficient way to deal with the intractable problem of fast and highly secure image encryption. In this paper, the two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme. This new scheme employs the 3D cat map to shuffle the positions (and, if desired, grey values as well) of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security and fast encryption speed of the new scheme.

1,904 citations

Journal ArticleDOI
TL;DR: In this article, a new method, called Exp-function method, is proposed to seek solitary solutions, periodic solutions and compacton-like solutions of nonlinear differential equations, and the modified KdV equation and Dodd-Bullough-Mikhailov equation are chosen to illustrate the effectiveness and convenience of the suggested method.
Abstract: In this paper, a new method, called Exp-function method, is proposed to seek solitary solutions, periodic solutions and compacton-like solutions of nonlinear differential equations. The modified KdV equation and Dodd–Bullough–Mikhailov equation are chosen to illustrate the effectiveness and convenience of the suggested method.

1,718 citations

Journal ArticleDOI
Ji-Huan He1
TL;DR: In this article, the homotopy perturbation method is applied to the search for traveling wave solutions of nonlinear wave equations and some examples are given to illustrate the determination of the periodic solutions or the bifurcation curves of the nonlinear Wave equations.
Abstract: The homotopy perturbation method is applied to the search for traveling wave solutions of nonlinear wave equations. Some examples are given to illustrate the determination of the periodic solutions or the bifurcation curves of the nonlinear wave equations.

1,202 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduced fractional derivatives of order α in time, with 0 for relaxation, diffusion, oscillations, and wave propagation, and showed that they are governed by simple differential equations of order 1 and 2 in time.
Abstract: The processes involving the basic phenomena of relaxation, diffusion, oscillations and wave propagation are of great relevance in physics; from a mathematical point of view they are known to be governed by simple differential equations of order 1 and 2 in time. The introduction of fractional derivatives of order α in time, with 0

925 citations

Journal ArticleDOI
Bo Liu1, Ling Wang1, Yihui Jin1, Fang Tang2, Dexian Huang1 
TL;DR: Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality.
Abstract: As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of particle swarm optimization (PSO), which is an evolutionary computation technique through individual improvement plus population cooperation and competition, hybrid particle swarm optimization algorithm is proposed by incorporating chaos. Firstly, adaptive inertia weight factor (AIWF) is introduced in PSO to efficiently balance the exploration and exploitation abilities. Secondly, PSO with AIWF and chaos are hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality.

879 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023483
2022794
20211,108
2020887
2019370
2018444