scispace - formally typeset
Search or ask a question

Showing papers in "ChemBioChem in 2021"


Journal ArticleDOI
TL;DR: Although fluorescence and colorimetry lack high sensitivity, they show promise as point‐of‐care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification.
Abstract: The recent pandemic of the novel coronavirus disease 2019 (COVID-19) has caused huge worldwide disruption due to the lack of available testing locations and equipment. The use of optical techniques for viral detection has flourished in the past 15 years, providing more reliable, inexpensive, and accurate detection methods. In the current minireview, optical phenomena including fluorescence, surface plasmons, surface-enhanced Raman scattering (SERS), and colorimetry are discussed in the context of detecting virus pathogens. The sensitivity of a viral detection method can be dramatically improved by using materials that exhibit surface plasmons or SERS, but often this requires advanced instrumentation for detection. Although fluorescence and colorimetry lack high sensitivity, they show promise as point-of-care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification. The advantages and disadvantages of each optical detection method are presented, and prospects for applying optical biosensors in COVID-19 detection are discussed.

99 citations


Journal ArticleDOI
TL;DR: Proteolysis-targeting chimeras (PROTACs), an emerging paradigm-shifting technology, hijacks the ubiquitin-proteasome system for targeted protein degradation.
Abstract: Proteolysis-targeting chimeras (PROTACs), an emerging paradigm-shifting technology, hijacks the ubiquitin-proteasome system for targeted protein degradation. PROTACs induce ternary complexes between an E3 ligase and POI, and this induced proximity leads to polyUb chain formation on substrates and eventual proteasomal-mediated POI degradation. PROTACs have shown great therapeutic potential by degrading many disease-causing proteins, such as the androgen receptor and BRD4. The PROTAC technology has advanced significantly in the last two decades, with the repertoire of PROTAC targets increased tremendously. Herein, we describe recent developments of PROTAC technology, focusing on mechanistic and kinetic studies, pharmacokinetic study, spatiotemporal control of PROTACs, covalent PROTACs, resistance to PROTACs, and new E3 ligands.

67 citations


Journal ArticleDOI
TL;DR: This review highlights general concepts in photo‐biocatalysis, gives various examples of photo‐chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discusses strategies to address the limitations.
Abstract: In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.

53 citations


Journal ArticleDOI
TL;DR: An overview of the life cycle and routes of transmission of SARS‐CoV‐2 is provided and the therapeutic effects of two drugs which can potentially tackle COVID‐19 are discussed based on current published data.
Abstract: The human world is currently influenced largely by the outbreak of pandemic COVID-19. At this moment, most researchers focus on developing treatment strategies and measures to work against COVID-19. Treatment strategies specific for COVID-19 are lacking. This article provides an overview of the life cycle and routes of transmission of SARS-CoV-2. The therapeutic effects of two drugs [i. e., remdesivir (RDV) and favipiravir (FPV)] which can potentially tackle COVID-19 are discussed based on current published data. This review can serve as a reference for future studies.

43 citations


Journal ArticleDOI
TL;DR: The kinetic and structural characteristics of human SQOR are reviewed, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H2S are reviewed.
Abstract: Hydrogen sulfide (H2 S) is an environmental toxin and a heritage of ancient microbial metabolism that has stimulated new interest following its discovery as a neuromodulator. While many physiological responses have been attributed to low H2 S levels, higher levels inhibit complex IV in the electron transport chain. To prevent respiratory poisoning, a dedicated set of enzymes that make up the mitochondrial sulfide oxidation pathway exists to clear H2 S. The committed step in this pathway is catalyzed by sulfide quinone oxidoreductase (SQOR), which couples sulfide oxidation to coenzyme Q10 reduction in the electron transport chain. The SQOR reaction prevents H2 S accumulation and generates highly reactive persulfide species as products; these can be further oxidized or can modify cysteine residues in proteins by persulfidation. Here, we review the kinetic and structural characteristics of human SQOR, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H2 S. This dual role of SQOR makes it a promising target for H2 S-based therapeutics.

43 citations


Journal ArticleDOI
TL;DR: In this paper, structural and biomolecular simulation techniques were used to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2.
Abstract: The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.

38 citations


Journal ArticleDOI
TL;DR: In this article, a kinetic framework for comparison of PET hydrolases (or other plastic-degrading enzymes) acting on the insoluble substrate has been established, which is linked to nonspecific adsorption, which promotes the nearness of enzyme and attack sites.
Abstract: The potential of bioprocessing in a circular plastic economy has strongly stimulated research into the enzymatic degradation of different synthetic polymers. Particular interest has been devoted to the commonly used polyester, poly(ethylene terephthalate) (PET), and a number of PET hydrolases have been described. However, a kinetic framework for comparisons of PET hydrolases (or other plastic-degrading enzymes) acting on the insoluble substrate has not been established. Herein, we propose such a framework, which we have tested against kinetic measurements for four PET hydrolases. The analysis provided values of kcat and KM , as well as an apparent specificity constant in the conventional units of M-1 s-1 . These parameters, together with experimental values for the number of enzyme attack sites on the PET surface, enabled comparative analyses. A variant of the PET hydrolase from Ideonella sakaiensis was the most efficient enzyme at ambient conditions; it relied on a high kcat rather than a low KM . Moreover, both soluble and insoluble PET fragments were consistently hydrolyzed much faster than intact PET. This suggests that interactions between polymer strands slow down PET degradation, whereas the chemical steps of catalysis and the low accessibility associated with solid substrate were less important for the overall rate. Finally, the investigated enzymes showed a remarkable substrate affinity, and reached half the saturation rate on PET when the concentration of attack sites in the suspension was only about 50 nM. We propose that this is linked to nonspecific adsorption, which promotes the nearness of enzyme and attack sites.

37 citations


Journal ArticleDOI
TL;DR: This review examines the long and storied career of TrpS from the perspective of its application in ncAA synthesis and biocatalytic cascades.
Abstract: Tryptophan synthase (TrpS) has emerged as a paragon of noncanonical amino acid (ncAA) synthesis and is an ideal biocatalyst for synthetic and biological applications. TrpS catalyzes an irreversible, C-C bond-forming reaction between indole and serine to make l-tryptophan; native TrpS complexes possess fairly broad specificity for indole analogues, but are difficult to engineer to extend substrate scope or to confer other useful properties due to allosteric constraints and their heterodimeric structure. Directed evolution freed the catalytically relevant TrpS β-subunit (TrpB) from allosteric regulation by its TrpA partner and has enabled dramatic expansion of the enzyme's substrate scope. This review examines the long and storied career of TrpS from the perspective of its application in ncAA synthesis and biocatalytic cascades.

35 citations


Journal ArticleDOI
TL;DR: In this article, the metal complexes that have been reported to show antiviral activity against SARS-CoV-2 or one of its target proteins are described and their proposed mechanisms of action are discussed.
Abstract: The severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the infectious agent responsible for COVID-19 - has caused more than 2.5 million deaths worldwide and triggered a global pandemic. Even with successful vaccines being delivered, there is an urgent need for novel treatments to combat SARS-CoV-2, and other emerging viral diseases. While several organic small molecule drug candidates are in development, some effort has also been devoted towards the application of metal complexes as potential antiviral agents against SARS-CoV-2. Herein, the metal complexes that have been reported to show antiviral activity against SARS-CoV-2 or one of its target proteins are described and their proposed mechanisms of action are discussed.

35 citations


Journal ArticleDOI
TL;DR: This work pinpoints the specific residue (in the virus) to residue ( in the cell) contacts during the initial recognition and binding and shows that the virus-cell interaction is mainly due to an extensive network of hydrogen bonds and to a large surface of noncovalent interactions.
Abstract: The magnified infectious power of the SARS-CoV-2 virus compared to its precursor SARS-CoV is intimately linked to an enhanced ability in the mutated virus to find available hydrogen-bond sites in the host cells. This characteristic is acquired during virus evolution because of the selective pressure exerted at the molecular level. We pinpoint the specific residue (in the virus) to residue (in the cell) contacts during the initial recognition and binding and show that the virus⋅⋅⋅cell interaction is mainly due to an extensive network of hydrogen bonds and to a large surface of noncovalent interactions. In addition to the formal quantum characterization of bonding interactions, computation of absorption spectra for the specific virus⋅⋅⋅cell interacting residues yields significant shifts of Δλmax =47 and 66 nm in the wavelength for maximum absorption in the complex with respect to the isolated host and virus, respectively.

27 citations


Journal ArticleDOI
TL;DR: A review of the state of the art can be found in this paper, where three complementary lines of investigation are discussed: orthogonal chemistry approaches, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells.
Abstract: Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.

Journal ArticleDOI
TL;DR: Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan as mentioned in this paper.
Abstract: Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.

Journal ArticleDOI
TL;DR: The complex roles of RGD‐integrins in tumors, the steps towards selective ligands and the current usefulness of such ligands are described.
Abstract: Integrins are heterodimeric transmembrane proteins able to connect cells with the micro-environment. They represent a family of receptors involved in almost all the hallmarks of cancer. Integrins recognizing the Arg-Gly-Asp (RGD) peptide in their natural extracellular matrix ligands have been particularly investigated as tumoral therapeutic targets. In the last 30 years, intense research has been dedicated to designing specific RGD-like ligands able to discriminate selectively the different RGD-recognizing integrins. Chemists' efforts have led to the proposition of modified peptide or peptidomimetic libraries to be used for tumor targeting and/or tumor imaging. Here we review, from the biological point of view, the rationale underlying the need to clearly delineate each RGD-integrin subtype by selective tools. We describe the complex roles of RGD-integrins (mainly the most studied αvβ3 and α5β1 integrins) in tumors, the steps towards selective ligands and the current usefulness of such ligands. Although the impact of integrins in cancer is well acknowledged, the biological characteristics of each integrin subtype in a specific tumor are far from being completely resolved. Selective ligands might help us to reconsider integrins as therapeutic targets in specific clinical settings.

Journal ArticleDOI
TL;DR: This work highlights select examples of natural product biosynthesis using cell‐free systems and proposes how cell-free technologies could facilitate the authors' ability to access and modify these structures to transform synthetic and chemical biology.
Abstract: Natural products and secondary metabolites comprise an indispensable resource from living organisms that have transformed areas of medicine, agriculture, and biotechnology. Recent advances in high-throughput DNA sequencing and computational analysis suggest that the vast majority of natural products remain undiscovered. To accelerate the natural product discovery pipeline, cell-free metabolic engineering approaches used to develop robust catalytic networks are being repurposed to access new chemical scaffolds, and new enzymes capable of performing diverse chemistries. Such enzymes could serve as flexible biocatalytic tools to further expand the unique chemical space of natural products and secondary metabolites, and provide a more sustainable route to manufacture these molecules. Herein, we highlight select examples of natural product biosynthesis using cell-free systems and propose how cell-free technologies could facilitate our ability to access and modify these structures to transform synthetic and chemical biology.

Journal ArticleDOI
TL;DR: This work presents a chemical reason for the difficulty in treating the SARS‐CoV‐2 virus with drugs targeting its spike protein and helps to explain its infectiousness.
Abstract: The SARS-CoV-2 pandemic is the biggest health concern today, but until now there is no treatment. One possible drug target is the receptor binding domain (RBD) of the coronavirus' spike protein, which recognizes the human angiotensin-converting enzyme 2 (hACE2). Our in silico study discusses crucial structural and thermodynamic aspects of the interactions involving RBDs from the SARS-CoV and SARS-CoV-2 with the hACE2. Molecular docking and molecular dynamics simulations explain why the chemical affinity of the new SARS-CoV-2 for hACE2 is much higher than in the case of SARS-CoV, revealing an intricate pattern of hydrogen bonds and hydrophobic interactions and estimating a free energy of binding, which is consistently much more negative in the case of SARS-CoV-2. This work presents a chemical reason for the difficulty in treating the SARS-CoV-2 virus with drugs targeting its spike protein and helps to explain its infectiousness.

Journal ArticleDOI
TL;DR: This work aims to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane, and gives an overview of possible quantification methods for the determination of expansion factors of intracellular organelles.
Abstract: Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.

Journal ArticleDOI
TL;DR: The PR10/Bet v1‐like proteins are a subset of PR proteins characterized by an ability to bind a wide range of lipophilic ligands, uniquely positioning them as contributors to specialized biosynthetic pathways.
Abstract: Pathogenesis-related (PR) proteins constitute a broad class of plant proteins with analogues found throughout nature from bacteria to higher eukaryotes. PR proteins were first noted in plants as part of the hypersensitive response, but have since been assigned an array of biological roles. The PR10/Bet v1-like proteins are a subset of PR proteins characterized by an ability to bind a wide range of lipophilic ligands, uniquely positioning them as contributors to specialized biosynthetic pathways. PR10/Bet v1-like proteins participate in the production of plant alkaloids and phenolics including flavonoids, both as general binding proteins and in special cases as catalysts. Owing initially to the perceived allergenic properties of PR10/Bet v1-like proteins, many were studied at the structural level to elucidate the basis for ligand binding. These studies provided a foundation for more recent efforts to understand higher-level structural order and how PR10/Bet v1-like proteins catalyse key reactions in plant pathways. Synthetic biology aimed at reconstituting plant-specialized metabolism in microorganisms uses knowledge of these proteins to fine-tune performance in new systems.

Journal ArticleDOI
TL;DR: The use of extracellular vesicles (EVs) as delivery vehicles for the CRISPR/Cas system to achieve therapeutic gene editing for disease treatment, with a focus on various strategies to achieve selective delivery to a particular type of cells and efficient packaging of the genome editing tools in the VEs as discussed by the authors.
Abstract: Therapeutic genome editing harnesses the power of genome editing tools to correct erroneous genes associated with disease pathology. To bring the CRISPR/Cas9 tool from the bench to the bedside, a critical hurdle is to safely and efficiently deliver the nucleic acid tool to the desired type of cells in patients. This review discusses the use of natural-born carriers, extracellular vesicles (EVs), in particular exosomes, to fill up the gap. Exosomes are lipid-containing nanovesicle released by various types of cells to mediate cell-cell communications. Their inherent long-distance transportation capability, biocompatibility, and engineerability have made EVs potential vehicles for delivering therapeutic drugs. We summarize the recent progress of harnessing exosomes as delivery vehicles for the CRISPR/Cas system to achieve therapeutic gene editing for disease treatment, with a focus on various strategies to achieve selective delivery to a particular type of cells and efficient packaging of the genome editing tools in the vesicles. Critical issues and possible solutions in the design and engineering of the targeting vehicles are highlighted. Taken together, we manifest EV/exosome-mediated packaging of the nucleic acid/protein tools and the cell/tissue-targeted delivery as a viable way towards the clinical translation of the CRISPR/Cas9 technology.

Journal ArticleDOI
TL;DR: This review describes the successes and limitations of seven cysteine‐rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.
Abstract: Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.

Journal ArticleDOI
TL;DR: In this article, the photostability of CvFAP can be improved by the administration of medium-chain length carboxylic acids such as caprylic acid indicating that the best way of maintaining Cv-FAP stability is to keep the enzyme busy.
Abstract: The fatty acid photodecarboxylase from Chlorella variabilis NC64 A (CvFAP) catalyses the light-dependent decarboxylation of fatty acids. Photoinactivation of CvFAP still represents one of the major limitations of this interesting enzyme en route to practical application. In this study we demonstrate that the photostability of CvFAP can easily be improved by the administration of medium-chain length carboxylic acids such as caprylic acid indicating that the best way of maintaining CvFAP stability is ‘to keep the enzyme busy’.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that human breast milk lactoferrin has antimicrobial and anti-biofilm activity against Group B Streptococcus (GBS) and inhibits its adherence to human gestational membranes.
Abstract: Group B Streptococcus (GBS) is an encapsulated Gram-positive human pathogen that causes invasive infections in pregnant hosts and neonates, as well as immunocompromised individuals. Colonization of the human host requires the ability to adhere to mucosal surfaces and circumnavigate the nutritional challenges and antimicrobial defenses associated with the innate immune response. Biofilm formation is a critical process to facilitate GBS survival and establishment of a replicative niche in the vertebrate host. Previous work has shown that the host responds to GBS infection by producing the innate antimicrobial glycoprotein lactoferrin, which has been implicated in repressing bacterial growth and biofilm formation. Additionally, lactoferrin is highly abundant in human breast milk and could serve a protective role against invasive microbial pathogens. This study demonstrates that human breast milk lactoferrin has antimicrobial and anti-biofilm activity against GBS and inhibits its adherence to human gestational membranes. Together, these results indicate that human milk lactoferrin could be used as a prebiotic chemotherapeutic strategy to limit the impact of bacterial adherence and biofilm formation on GBS-associated disease outcomes.

Journal ArticleDOI
TL;DR: In this article, the authors compared the canonical MVA pathway to the non-canonical isopentenol utilization (IU) pathway to produce linalool using the optimised bLinS variant.
Abstract: Linalool is a monoterpenoid used as a fragrance ingredient, and is a promising source for alternative fuels. Synthetic biology offers attractive alternative production methods compared to extraction from natural sources and chemical synthesis. Linalool/nerolidol synthase (bLinS) from Streptomyces clavuligerus is a bifunctional enzyme, producing linalool as well as the sesquiterpenoid nerolidol when expressed in engineered Escherichia coli harbouring a precursor terpenoid pathway such as the mevalonate (MVA) pathway. Here we identified two residues important for substrate selection by bLinS, L72 and V214, where the introduction of bulkier residues results in variants with reduced nerolidol formation. Terpenoid production using canonical precursor pathways is usually limited by numerous and highly regulated enzymatic steps. Here we compared the canonical MVA pathway to the non-canonical isopentenol utilization (IU) pathway to produce linalool using the optimised bLinS variant. The IU pathway uses isoprenol and prenol to produce linalool in only five steps. Adjusting substrate, plasmid system, inducer concentration, and cell strain directs the flux towards monoterpenoids. Our integrated approach, combining enzyme engineering with flux control using the artificial IU pathway, resulted in high purity production of the commercially attractive monoterpenoid linalool, and will guide future efforts towards efficient optimisation of terpenoid production in engineered microbes.

Journal ArticleDOI
TL;DR: The applications of these DNAzymes as biosensors for Zn2+, as therapeutic agents to cleave intracellular RNA, and as chemical biology tools to manipulate DNA are discussed, with an emphasis on RNA‐/DNA‐cleaving reactions.
Abstract: Since 1994, deoxyribozymes or DNAzymes have been in vitro selected to catalyze various types of reactions. Metal ions play a critical role in DNAzyme catalysis, and Zn2+ is a very important one among them. Zn2+ has good biocompatibility and can be used for intracellular applications. Chemically, Zn2+ is a Lewis acid and it can bind to both the phosphate backbone and the nucleobases of DNA. Zn2+ undergoes hydrolysis even at neutral pH, and the partially hydrolyzed polynuclear complexes can affect the interactions with DNA. These features have made Zn2+ a unique cofactor for DNAzyme reactions. This review summarizes Zn2+ -dependent DNAzymes with an emphasis on RNA-/DNA-cleaving reactions. A key feature is the sharp Zn2+ concentration and pH-dependent activity for many of the DNAzymes. The applications of these DNAzymes as biosensors for Zn2+ , as therapeutic agents to cleave intracellular RNA, and as chemical biology tools to manipulate DNA are discussed. Future studies can focus on the selection of new DNAzymes with improved performance and detailed biochemical characterizations to understand the role of Zn2+ , which can facilitate practical applications of Zn2+ -dependent DNAzymes.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of general rules that may be used to better evaluate quadruplex thermodynamic stabilities but also discuss present challenges in predicting most stable folds for a given sequence and environment.
Abstract: G-quadruplexes have attracted growing interest in recent years due to their occurrence in vivo and their possible biological functions. In addition to being promising targets for drug design, these four-stranded nucleic acid structures have also been recognized as versatile tools for various technological applications. Whereas a large number of studies have yielded insight into their remarkable structural diversity, our current knowledge on G-quadruplex stabilities as a function of sequence and environmental factors only gradually emerges with an expanding collection of thermodynamic data. This minireview provides an overview of general rules that may be used to better evaluate quadruplex thermodynamic stabilities but also discusses present challenges in predicting most stable folds for a given sequence and environment.

Journal ArticleDOI
TL;DR: Recent progress in amperometric measurements for monitoring exocytosis in single cells and electrochemical cytometry measurements of vesicular neurotransmitter content in individual vesicles are summarized.
Abstract: Exocytosis plays an essential role in the communication between cells in the nervous system. Understanding the regulation of neurotransmitter release during exocytosis and the amount of neurotransmitter content that is stored in vesicles is of importance, as it provides fundamental insights to understand how the brain works and how neurons elicit a certain behavior. In this minireview, we summarize recent progress in amperometric measurements for monitoring exocytosis in single cells and electrochemical cytometry measurements of vesicular neurotransmitter content in individual vesicles. Important steps have increased our understanding of the different mechanisms of exocytosis. Increasing evidence is firmly establishing that partial release is the primary mechanism of release in multiple cell types.

Journal ArticleDOI
TL;DR: This minireview presents an update of bioorthogonal reactions that have been carried out in animals for various applications, and outlines the advances made in the understanding of fundamental biological processes, and the development of innovative imaging and therapeutic strategies using bioorthogsonal chemistry.
Abstract: The advent of bioorthogonal chemistry has led to the development of powerful chemical tools that enable increasingly ambitious applications. In particular, these tools have made it possible to achieve what is considered to be the holy grail of many researchers involved in chemical biology: to perform unnatural chemical reactions within living organisms. In this minireview, we present an update of bioorthogonal reactions that have been carried out in animals for various applications. We outline the advances made in the understanding of fundamental biological processes, and the development of innovative imaging and therapeutic strategies using bioorthogonal chemistry.

Journal ArticleDOI
TL;DR: Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology as discussed by the authors, and have been used in many applications in the literature.
Abstract: Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.

Journal ArticleDOI
TL;DR: In this article, SIRT2 was used as an eraser for post-translational modification (PTM) in the context of CRISPR-Cas9 and it was shown that SIRT 2 controls the abundance of this PTM both globally and on chromatin.
Abstract: Post-translational modifications (PTMs) play roles in both physiological and pathophysiological processes through the regulation of enzyme structure and function. We recently identified a novel PTM, lactoylLys, derived through a nonenzymatic mechanism from the glycolytic by-product, lactoylglutathione. Under physiologic scenarios, glyoxalase 2 prevents the accumulation of lactoylglutathione and thus lactoylLys modifications. What dictates the site-specificity and abundance of lactoylLys PTMs, however, remains unknown. Here, we report sirtuin 2 as a lactoylLys eraser. Using chemical biology and CRISPR-Cas9, we show that SIRT2 controls the abundance of this PTM both globally and on chromatin. These results address a major gap in our understanding of how nonenzymatic PTMs are regulated and controlled.

Journal ArticleDOI
TL;DR: The results from multi-scale atomistic simulations suggest that amine-functionalized COFs with a large surface area (more than 1000 m(2)/gr) have the potential to prevent A beta aggregation as discussed by the authors.
Abstract: Cytotoxic aggregation of misfolded beta-amyloid (A beta) proteins is the main culprit suspected to be behind the development of Alzheimer's disease (AD). In this study, A beta interactions with the novel two-dimensional (2D) covalent organic frameworks (COFs) as therapeutic options for avoiding beta-amyloid aggregation have been investigated. The results from multi-scale atomistic simulations suggest that amine-functionalized COFs with a large surface area (more than 1000 m(2)/gr) have the potential to prevent A beta aggregation. Gibb's free energy analysis confirmed that COFs could prevent protofibril self-assembly in addition to inhibiting beta-amyloid aggregation. Additionally, it was observed that the amine functional group and high contact area could improve the inhibitory effect of COFs on A beta aggregation and enhance the diffusivity of COFs through the blood-brain barrier (BBB). In addition, microsecond coarse-grained (CG) simulations with three hundred amyloids reveal that the presence of COFs creates instability in the structure of amyloids and consequently prevents the fibrillation. These results suggest promising applications of engineered COFs in the treatment of AD and provide a new perspective on future experimental research.

Journal ArticleDOI
TL;DR: This minireview focuses on recent advances in the field of directed sortase evolution and applications of these tailor‐made enzymes in biochemistry.
Abstract: The transpeptidase sortase A of Staphylococcus aureus (Sa-SrtA) is a valuable tool in protein chemistry. The native enzyme anchors surface proteins containing a highly conserved LPxTG sorting motif to a terminal glycine residue of the peptidoglycan layer in Gram-positive bacteria. This reaction is exploited for sortase-mediated ligation (SML), allowing the site-specific linkage of synthetic peptides and recombinant proteins by a native peptide bond. However, the moderate catalytic efficiency and specificity of Sa-SrtA fueled the development of new biocatalysts for SML, including the screening of sortase A variants form microorganisms other than S. aureus and the directed protein evolution of the Sa-SrtA enzyme itself. Novel display platforms and screening formats were developed to isolate sortases with altered properties from mutant libraries. This yielded sortases with strongly enhanced catalytic activity and enzymes recognizing new sorting motifs as substrates. This minireview focuses on recent advances in the field of directed sortase evolution and applications of these tailor-made enzymes in biochemistry.