scispace - formally typeset
Search or ask a question

Showing papers in "Chemical Reviews in 2021"


Journal ArticleDOI
TL;DR: A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in deep eutectic solvents, and highlights recent research efforts to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding.
Abstract: Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.

911 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent achievements, challenges, and opportunities of four important "beyond Li-ion" technologies: Na-ion batteries, K-ion, all-solid-state batteries, and multivalent batteries.
Abstract: The tremendous improvement in performance and cost of lithium-ion batteries (LIBs) have made them the technology of choice for electrical energy storage. While established battery chemistries and cell architectures for Li-ion batteries achieve good power and energy density, LIBs are unlikely to meet all the performance, cost, and scaling targets required for energy storage, in particular, in large-scale applications such as electrified transportation and grids. The demand to further reduce cost and/or increase energy density, as well as the growing concern related to natural resource needs for Li-ion have accelerated the investigation of so-called "beyond Li-ion" technologies. In this review, we will discuss the recent achievements, challenges, and opportunities of four important "beyond Li-ion" technologies: Na-ion batteries, K-ion batteries, all-solid-state batteries, and multivalent batteries. The fundamental science behind the challenges, and potential solutions toward the goals of a low-cost and/or high-energy-density future, are discussed in detail for each technology. While it is unlikely that any given new technology will fully replace Li-ion in the near future, "beyond Li-ion" technologies should be thought of as opportunities for energy storage to grow into mid/large-scale applications.

485 citations


Journal ArticleDOI
TL;DR: Considering the great influence and synthetic potential of these reactions, this review provides a summary of the state of art visible light-driven radical-mediated C-C bond cleavage/functionalization strategies with a specific emphasis on the working models.
Abstract: Thermal C-C bond cleavage reactions allow the construction of structurally diverse molecular skeletons via predictable and efficient bond reorganizations. Visible light photoredox-catalyzed radical-mediated C-C bond cleavage reactions have recently emerged as a powerful alternative method for overcoming the thermodynamic and kinetic barrier of C-C bond cleavage in diverse molecular scaffolds. In recent years, a plethora of elegant and useful reactions have been invented, and the products are sometimes otherwise inaccessible by classic thermal reactions. Considering the great influence and synthetic potential of these reactions, we provide a summary of the state of art visible light-driven radical-mediated C-C bond cleavage/functionalization strategies with a specific emphasis on the working models. We hoped that this review will be useful for medicinal and synthetic organic chemists and will inspire further reaction development in this interesting area.

480 citations


Journal ArticleDOI
TL;DR: The merger of photoredox catalysis with transition metal catalysis has become a mainstay in synthetic methodology over the past decade as discussed by the authors, which has combined the unparalleled capacity of transition metal catalysts for bond formation with the broad utility of photoinduced electron and energy-transfer processes.
Abstract: The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.

408 citations


Journal ArticleDOI
TL;DR: In this article, a clear chemical perspective of borates is presented in order to stimulate and facilitate the discovery of new borate-based optical materials, which can be used for optical applications.
Abstract: The primary goal of this review is to present a clear chemical perspective of borates in order to stimulate and facilitate the discovery of new borate-based optical materials. These materials, whic...

398 citations


Journal ArticleDOI
TL;DR: In this article, the fundamental principles of energy storage in dielectric capacitors are introduced and a comprehensive review of the state-of-the-art is presented. But the authors do not consider the use of lead-free materials in high-temperature applications, since their toxicity raises concern over their use in consumer applications.
Abstract: Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.

396 citations


Journal ArticleDOI
TL;DR: In this paper, a review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, to provide intuitive, vivid, and specific insights to the readers.
Abstract: This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.

391 citations


Journal ArticleDOI
TL;DR: In this article, the recent advances in the design, synthesis, and functional applications of metal-organic frameworks (MOFs) based hierarchically porous materials are summarized, and a comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers) are also indicated.
Abstract: Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.

387 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the above progress with particular focus on molecular design strategies for the exploitation of functional material properties, and point out the remaining issues and offer perspectives on how this class of materials can shape the future in ways that are complementary with classical thermoplastic and thermoset polymers.
Abstract: Dynamic covalent polymer networks (DCPN) have historically attracted attention for their unique roles in chemical recycling and self-healing, which are both relevant for sustainable societal development. Efforts in these directions have intensified in the past decade with notable progress in newly discovered dynamic covalent chemistry, fundamental material concepts, and extension toward emerging applications including energy and electronic devices. Beyond that, the values of DCPN in discovering/designing functional properties not offered by classical thermoplastic and thermoset polymers have recently gained traction. In particular, the dynamic bond exchangeability of DCPN has shown unparalleled design versatility in various areas including shape-shifting materials/devices, artificial muscles, and microfabrication. Going beyond this basic bond exchangeability, various molecular mechanisms to manipulate network topologies (topological transformation) have led to opportunities to program polymers, with notable concepts such as living networks and topological isomerization. In this review, we provide an overview of the above progress with particular focuses on molecular design strategies for the exploitation of functional material properties. Based on this, we point out the remaining issues and offer perspectives on how this class of materials can shape the future in ways that are complementary with classical thermoplastic and thermoset polymers.

381 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an overview of applications of ML-based force fields and the chemical insights that can be obtained from them, and a step-by-step guide for constructing and testing them from scratch is given.
Abstract: In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.

362 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices and provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D halide perovskites.
Abstract: Two-dimensional (2D) halide perovskites have emerged as outstanding semiconducting materials thanks to their superior stability and structural diversity. However, the ever-growing field of optoelectronic device research using 2D perovskites requires systematic understanding of the effects of the spacer on the structure, properties, and device performance. So far, many studies are based on trial-and-error tests of random spacers with limited ability to predict the resulting structure of these synthetic experiments, hindering the discovery of novel 2D materials to be incorporated into high-performance devices. In this review, we provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices. We first provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D perovskites. Second, we provide our insights on what kind of spacer cations can stabilize 2D perovskites followed by an extensive review of the spacer cations, which have been shown to stabilize 2D perovskites with an emphasis on the effects of the spacer on the structure and optical properties. Next, we provide a similar explanation for the methods used to fabricate films and their desired properties. Like the synthesis section, we will then focus on various spacers that have been used in devices and how they influence the film structure and device performance. With a comprehensive understanding of these effects, a rational selection of novel spacers can be made, accelerating this already exciting field.

Journal ArticleDOI
TL;DR: This review provides a comprehensive summary of the recent progress in the synthesis and catalytic properties of the encapsulated metal nanoparticles, including their encapsulation in nanoshells of inorganic oxides and carbon, porous materials, and organic capsules.
Abstract: Metal nanoparticles have drawn great attention in heterogeneous catalysis One challenge is that they are easily deactivated by migration-coalescence during the catalysis process because of their high surface energy With the rapid development of nanoscience, encapsulating metal nanoparticles in nanoshells or nanopores becomes one of the most promising strategies to overcome the stability issue of the metal nanoparticles Besides, the activity and selectivity could be simultaneously enhanced by taking advantage of the synergy between the metal nanoparticles and the encapsulating materials as well as the molecular sieving property of the encapsulating materials In this review, we provide a comprehensive summary of the recent progress in the synthesis and catalytic properties of the encapsulated metal nanoparticles This review begins with an introduction to the synthetic strategies for encapsulating metal nanoparticles with different architectures developed to date, including their encapsulation in nanoshells of inorganic oxides and carbon, porous materials (zeolites, metal-organic frameworks, and covalent organic frameworks), and organic capsules (dendrimers and organic cages) The advantages of the encapsulated metal nanoparticles are then discussed, such as enhanced stability and recyclability, improved selectivity, strong metal-support interactions, and the capability of enabling tandem catalysis, followed by the introduction of some representative applications of the encapsulated metal nanoparticles in thermo-, photo-, and electrocatalysis At the end of this review, we discuss the remaining challenges associated with the encapsulated metal nanoparticles and provide our perspectives on the future development of the field

Journal ArticleDOI
TL;DR: In this paper, a review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and non-biaryl atropisomers documented between 2015 and 2020.
Abstract: Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.

Journal ArticleDOI
TL;DR: In this paper, a review aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogel to achieve multiple combined mechanical, physical, chemical, and biological properties.
Abstract: Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?

Journal ArticleDOI
TL;DR: In this paper, the authors review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease, Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research.
Abstract: Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of different aspects of 2D MOF layered architectures such as topology, interpenetration, structural transformations, properties, and applications.
Abstract: Among the recent developments in metal-organic frameworks (MOFs), porous layered coordination polymers (CPs) have garnered attention due to their modular nature and tunable structures. These factors enable a number of properties and applications, including gas and guest sorption, storage and separation of gases and small molecules, catalysis, luminescence, sensing, magnetism, and energy storage and conversion. Among MOFs, two-dimensional (2D) compounds are also known as 2D CPs or 2D MOFs. Since the discovery of graphene in 2004, 2D materials have also been widely studied. Several 2D MOFs are suitable for exfoliation as ultrathin nanosheets similar to graphene and other 2D materials, making these layered structures useful and unique for various technological applications. Furthermore, these layered structures have fascinating topological networks and entanglements. This review provides an overview of different aspects of 2D MOF layered architectures such as topology, interpenetration, structural transformations, properties, and applications.

Journal ArticleDOI
TL;DR: The materials science and materials chemistry of magnetic skyrmions are described using the classification scheme of theskyrmion forming microscopic mechanisms, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect.
Abstract: Skyrmion, a concept originally proposed in particle physics half a century ago, can now find the most fertile field for its applicability, that is, the magnetic skyrmion realized in helimagnetic materials. The spin swirling vortex-like texture of the magnetic skyrmion can define the particle nature by topology; that is, all the constituent spin moments within the two-dimensional sheet wrap the sphere just one time. Such a topological nature of the magnetic skyrmion can lead to extraordinary metastability via topological protection and the driven motion with low electric-current excitation, which may promise future application to spintronics. The skyrmions in the magnetic materials frequently show up as the crystal lattice form, e.g., hexagonal lattice, but sometimes as isolated or independent particles. These skyrmions in magnets were initially found in acentric magnets, such as chiral, polar, and bilayered magnets endowed with antisymmetric spin exchange interaction, while the skyrmion host materials have been explored in a broader family of compounds including centrosymmetric magnets. This review describes the materials science and materials chemistry of magnetic skyrmions using the classification scheme of the skyrmion forming microscopic mechanisms. The emergent phenomena and functions mediated by skyrmions are described, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect. The other important magnetic topological defects in two or three dimensions, such as biskyrmions, antiskyrmions, merons, and hedgehogs, are also reviewed in light of their interplay with the skyrmions.

Journal ArticleDOI
TL;DR: This review article provides a comprehensive account of recent progress in the development of noble-metal nanocrystals with controlled shapes, in addition to their remarkable performance in a large number of catalytic and electrocatalytic reactions.
Abstract: The successful synthesis of noble-metal nanocrystals with controlled shapes offers many opportunities to not only maneuver their physicochemical properties but also optimize their figures of merit in a wide variety of applications. In particular, heterogeneous catalysis and surface science have benefited enormously from the availability of this new class of nanomaterials as the atomic structure presented on the surface of a nanocrystal is ultimately determined by its geometric shape. The immediate advantages may include significant enhancement in catalytic activity and/or selectivity and substantial reduction in materials cost while providing a well-defined model system for mechanistic study. With a focus on the monometallic system, this review article provides a comprehensive account of recent progress in the development of noble-metal nanocrystals with controlled shapes, in addition to their remarkable performance in a large number of catalytic and electrocatalytic reactions. We hope that this review article offers the impetus and roadmap for the development of next-generation catalysts vital to a broad range of industrial applications.

Journal ArticleDOI
TL;DR: A review of the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogel technologies, and how they relate to translational applications in medicine and the environment is presented in this paper.
Abstract: Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.

Journal ArticleDOI
TL;DR: This Review summarizes the progress in the utilization of atomically precise metal nanoclusters for catalysis, a new class of model catalysts that have enabled heterogeneous catalysis research at the single-atom and single-electron levels.
Abstract: Heterogeneous catalysis involves solid-state catalysts, among which metal nanoparticles occupy an important position. Unfortunately, no two nanoparticles from conventional synthesis are the same at the atomic level, though such regular nanoparticles can be highly uniform at the nanometer level (e.g., size distribution ∼5%). In the long pursuit of well-defined nanocatalysts, a recent success is the synthesis of atomically precise metal nanoclusters protected by ligands in the size range from tens to hundreds of metal atoms (equivalently 1-3 nm in core diameter). More importantly, such nanoclusters have been crystallographically characterized, just like the protein structures in enzyme catalysis. Such atomically precise metal nanoclusters merge the features of well-defined homogeneous catalysts (e.g., ligand-protected metal centers) and enzymes (e.g., protein-encapsulated metal clusters of a few atoms bridged by ligands). The well-defined nanoclusters with their total structures available constitute a new class of model catalysts and hold great promise in fundamental catalysis research, including the atomically precise size dependent activity, control of catalytic selectivity by metal structure and surface ligands, structure-property relationships at the atomic-level, insights into molecular activation and catalytic mechanisms, and the identification of active sites on nanocatalysts. This Review summarizes the progress in the utilization of atomically precise metal nanoclusters for catalysis. These nanocluster-based model catalysts have enabled heterogeneous catalysis research at the single-atom and single-electron levels. Future efforts are expected to achieve more exciting progress in fundamental understanding of the catalytic mechanisms, the tailoring of active sites at the atomic level, and the design of new catalysts with high selectivity and activity under mild conditions.

Journal ArticleDOI
TL;DR: A comprehensive review of the synthetic applications of photocatalyzed d-HAT can be found in this article, where the authors provide a comprehensive overview of the main applications of PCHAT.
Abstract: Direct photocatalyzed hydrogen atom transfer (d-HAT) can be considered a method of choice for the elaboration of aliphatic C-H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic cleavage of such bonds in organic compounds. Selective C-H bond elaboration may be achieved by a judicious choice of the hydrogen abstractor (key parameters are the electronic character and the molecular structure), as well as reaction additives. Different are the classes of PCsHAT available, including aromatic ketones, xanthene dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin and a tris(amino)cyclopropenium radical dication. The processes (mainly C-C bond formation) are in most cases carried out under mild conditions with the help of visible light. The aim of this review is to offer a comprehensive survey of the synthetic applications of photocatalyzed d-HAT.

Journal ArticleDOI
TL;DR: A comprehensive review of Fenton chemistry and its application in cancer therapy can be found in this paper, where basic information regarding Fenton reactions and Fenton-like reactions are provided.
Abstract: Since the first connection between Fenton chemistry and biomedicine, numerous studies have been presented in this field. Comprehensive presentation of the guidance from Fenton chemistry and a summary of its representative applications in cancer therapy would help us understand and promote the further development of this field. This comprehensive review first supplies basic information regarding Fenton chemistry, including Fenton reactions and Fenton-like reactions. Subsequently, the current progress of Fenton chemistry is discussed, with some corresponding representative examples presented. Furthermore, the current strategies for further optimizing the performance of chemodynamic therapy guided by Fenton chemistry are highlighted. Most importantly, future perspectives on the combination of biomedicine with Fenton chemistry or a wider range of catalytic chemistry approaches are presented. We hope that this review will attract positive attention in the chemistry, materials science, and biomedicine fields and further tighten their connections.

Journal ArticleDOI
TL;DR: The fundamental principles of the XAS method are discussed and the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X- Ray absorption fine structure (EXAFS) spectra are described.
Abstract: During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst’s interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.

Journal ArticleDOI
TL;DR: A review of the characterization methodologies used for enzyme/MOF-immobilized enzymes can be found in this article, where the authors discuss enzyme protection via encapsulation, pore infiltration and surface adsorption and summarizes strategies to form multicomponent composites.
Abstract: Because of their efficiency, selectivity, and environmental sustainability, there are significant opportunities for enzymes in chemical synthesis and biotechnology. However, as the three-dimensional active structure of enzymes is predominantly maintained by weaker noncovalent interactions, thermal, pH, and chemical stressors can modify or eliminate activity. Metal-organic frameworks (MOFs), which are extended porous network materials assembled by a bottom-up building block approach from metal-based nodes and organic linkers, can be used to afford protection to enzymes. The self-assembled structures of MOFs can be used to encase an enzyme in a process called encapsulation when the MOF is synthesized in the presence of the biomolecule. Alternatively, enzymes can be infiltrated into mesoporous MOF structures or surface bound via covalent or noncovalent processes. Integration of MOF materials and enzymes in this way affords protection and allows the enzyme to maintain activity in challenge conditions (e.g., denaturing agents, elevated temperature, non-native pH, and organic solvents). In addition to forming simple enzyme/MOF biocomposites, other materials can be introduced to the composites to improve recovery or facilitate advanced applications in sensing and fuel cell technology. This review canvasses enzyme protection via encapsulation, pore infiltration, and surface adsorption and summarizes strategies to form multicomponent composites. Also, given that enzyme/MOF biocomposites straddle materials chemistry and enzymology, this review provides an assessment of the characterization methodologies used for MOF-immobilized enzymes and identifies some key parameters to facilitate development of the field.

Journal ArticleDOI
TL;DR: In this paper, the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal are discussed.
Abstract: Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.

Journal ArticleDOI
TL;DR: It is concluded that IR and Raman spectroscopy can be applied in combinations with other techniques to explicitly establish the structure, properties, and reactivity of MOFs.
Abstract: The variety of functionalities and porous structures inherent to metal-organic frameworks (MOFs) together with the facile tunability of their properties makes these materials suitable for a wide range of existing and emerging applications. Many of these applications are based on processes involving interaction of MOFs with guest molecules. To optimize a certain process or successfully design a new one, a thorough knowledge is required about the physicochemical characteristics of materials and the mechanisms of their interaction with guest molecules. To obtain such important information, various complementary analytical techniques are applied, among which vibrational spectroscopy (IR and Raman) plays an important role and is indispensable in many cases. In this review, we critically examine the reported applications of IR and Raman spectroscopies as powerful tools for initial characterization of MOF materials and for studying processes of their interaction with various gases. Both the advantages and the limitations of the technique are considered, and the cases where IR or Raman spectroscopy is preferable are highlighted. Peculiarities of MOFs interaction with specific gases and some inconsistent band assignments are also emphasized. Summarizing the broad analytical possibilities of the IR and Raman spectroscopies, we conclude that it can be applied in combinations with other techniques to explicitly establish the structure, properties, and reactivity of MOFs.

Journal ArticleDOI
TL;DR: The current arsenal of antifungals used in the treatment of invasive mycoses is described and the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention are detailed.
Abstract: Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an introduction to Gaussian process regression (GPR) machine learning methods in computational materials science and chemistry, focusing on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian approximation potential (GAP) framework.
Abstract: We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data generation, representation, and regression, as well as the question of how a data-driven model may be validated, are reviewed and critically discussed. A survey of applications to a variety of research questions in chemistry and materials science illustrates the rapid growth in the field. A vision is outlined for the development of the methodology in the years to come.

Journal ArticleDOI
Tadashi Mori1
TL;DR: In this paper, a review of the chemistry of multiple helicenes from the viewpoint of chiroptical properties is presented, highlighting the impact of the molecular symmetry on the chiroptic responses.
Abstract: Helicenes have attracted considerable attention due to their inherent helical chirality and extended π-conjugation. Recently, rapid progress has been witnessed in the preparation of double, triple, quadruple, quintuple, and sextuple helicenes, where plural helicene moieties are symmetrically arranged in a single molecule. While synthetic efforts and X-ray crystallographic analyses devoted to these multiple helicenes and theoretical investigations on their isomerization and racemization behaviors have been relatively well documented and reviewed in the literature, the chiroptical properties of the multiple helicities have been somewhat overlooked. This review discourses the cumulative and systematic investigations on the chiroptical properties such as the circular dichroism (CD) and circularly polarized luminescence (CPL) of multiple helicenes. Although the number and structural variations of multiple helicenes reported to date have been fairly limited, this review overviews the current status of the chemistry of multiple helicenes from the viewpoint of chiroptical properties and provides insights into the design principle for advanced chiroptical materials through the proper arrangement of multiple helices, highlighting the impact of the molecular symmetry on the chiroptical responses.

Journal ArticleDOI
TL;DR: The use of photoredox catalysis in C-H functionalization reactions has garnered enormous interest and utility in the past several decades as discussed by the authors, including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis.
Abstract: The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class-either sp2 or sp3 C-H functionalization-lends perspective and tactical strategies for use of these methods in synthetic applications.