scispace - formally typeset
Search or ask a question

Showing papers in "Chemical Society Reviews in 2015"


Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations


Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations


Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations


Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations


Journal ArticleDOI
TL;DR: The most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis are reviewed to provide insights into the remaining challenges and directions for future perspectives and research.
Abstract: Developing highly efficient catalysts for the oxygen reduction reaction (ORR) is key to the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Herein, we review the most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis. This review covers catalyst material selection, design, synthesis, and characterization, as well as the theoretical understanding of the catalysis process and mechanisms. The integration of these catalysts into fuel cell operations and the resulting performance/durability are also discussed. Finally, we provide insights into the remaining challenges and directions for future perspectives and research.

1,752 citations


Journal ArticleDOI
TL;DR: This paper reviews the different approaches and scales of hybrids, materials, electrodes and devices striving to advance along the diagonal of Ragone plots, providing enhanced energy and power densities by combining battery and supercapacitor materials and storage mechanisms.
Abstract: The hybrid approach allows for a reinforcing combination of properties of dissimilar components in synergic combinations. From hybrid materials to hybrid devices the approach offers opportunities to tackle much needed improvements in the performance of energy storage devices. This paper reviews the different approaches and scales of hybrids, materials, electrodes and devices striving to advance along the diagonal of Ragone plots, providing enhanced energy and power densities by combining battery and supercapacitor materials and storage mechanisms. Furthermore, some theoretical aspects are considered regarding the possible hybrid combinations and tactics for the fabrication of optimized final devices. All of it aiming at enhancing the electrochemical performance of energy storage systems.

1,633 citations


Journal ArticleDOI
TL;DR: This critical review will introduce the recent progress in hybrid nanoarchitectures based on 2D TMD nanosheets, and their synthetic strategies, properties, and applications are systematically summarized and discussed, with emphasis on those new appealing structures, properties and functions.
Abstract: Ultrathin two-dimensional (2D) nanosheets of layered transition metal dichalcogenides (TMDs), such as MoS2, TiS2, TaS2, WS2, MoSe2, WSe2, etc., are emerging as a class of key materials in chemistry and electronics due to their intriguing chemical and electronic properties. The ability to prepare these TMD nanosheets in high yield and large scale via various methods has led to increasing studies on their hybridization with other materials to create novel functional composites, aiming to engineer their chemical, physical and electronic properties and thus achieve good performance for some specific applications. In this critical review, we will introduce the recent progress in hybrid nanoarchitectures based on 2D TMD nanosheets. Their synthetic strategies, properties and applications are systematically summarized and discussed, with emphasis on those new appealing structures, properties and functions. In addition, we will also give some perspectives on the challenges and opportunities in this promising research area.

1,329 citations


Journal ArticleDOI
TL;DR: It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.
Abstract: Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

1,261 citations


Journal ArticleDOI
TL;DR: An overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues is given.
Abstract: This article gives an overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues. Following an introduction and a discussion of merits of fluorescent NPs compared to molecular fluorophores, labels and probes, the article assesses the kinds and specific features of nanomaterials often used in bioimaging. These include fluorescently doped silicas and sol–gels, hydrophilic polymers (hydrogels), hydrophobic organic polymers, semiconducting polymer dots, quantum dots, carbon dots, other carbonaceous nanomaterials, upconversion NPs, noble metal NPs (mainly gold and silver), various other nanomaterials, and dendrimers. Another section covers coatings and methods for surface modification of NPs. Specific examples on the use of nanoparticles in (a) plain fluorescence imaging of cells, (b) targeted imaging, (c) imaging of chemical species, and (d) imaging of temperature are given next. A final section covers aspects of multimodal imaging (such as fluorescence/nmr), imaging combined with drug and gene delivery, or imaging combined with therapy or diagnosis. The electronic supplementary information (ESI) gives specific examples for materials and methods used in imaging, sensing, multimodal imaging and theranostics such as imaging combined with drug delivery or photodynamic therapy. The article contains 273 references in the main part, and 157 references in the ESI.

1,249 citations


Journal ArticleDOI
TL;DR: An overview of the design principles underlying small fluorescent probes that have been applied to the ratiometric detection of various analytes, including cations, anions, and biomolecules in solution and in biological samples are provided.
Abstract: Quantitative determination of specific analytes is essential for a variety of applications ranging from life sciences to environmental monitoring. Optical sensing allows non-invasive measurements within biological milieus, parallel monitoring of multiple samples, and less invasive imaging. Among the optical sensing methods currently being explored, ratiometric fluorescence sensing has received particular attention as a technique with the potential to provide precise and quantitative analyses. Among its advantages are high sensitivity and inherent reliability, which reflect the self-calibration provided by monitoring two (or more) emissions. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed for sensing, imaging, and biomedical applications. In this research highlight, we provide an overview of the design principles underlying small fluorescent probes that have been applied to the ratiometric detection of various analytes, including cations, anions, and biomolecules in solution and in biological samples. This highlight is designed to be illustrative, not comprehensive.

1,243 citations


Journal ArticleDOI
TL;DR: This review article traces back to the research history on black phosphorus of over 100 years from the synthesis to material properties, and extends the topic from black phosphorus to phosphorene, in which the physical properties can be tremendously different from its bulk counterpart.
Abstract: Phosphorus is one of the most abundant elements preserved in earth, and it comprises a fraction of ∼0.1% of the earth crust. In general, phosphorus has several allotropes, and the two most commonly seen allotropes, i.e. white and red phosphorus, are widely used in explosives and safety matches. In addition, black phosphorus, though rarely mentioned, is a layered semiconductor and has great potential in optical and electronic applications. Remarkably, this layered material can be reduced to one single atomic layer in the vertical direction owing to the van der Waals structure, and is known as phosphorene, in which the physical properties can be tremendously different from its bulk counterpart. In this review article, we trace back to the research history on black phosphorus of over 100 years from the synthesis to material properties, and extend the topic from black phosphorus to phosphorene. The physical and transport properties are highlighted for further applications in electronic and optoelectronics devices.

Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

Journal ArticleDOI
TL;DR: This review has summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework.
Abstract: Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions. MOFs combine the benefits of heterogeneous catalysis like easy post reaction separation, catalyst reusability, high stability and homogeneous catalysis such as high efficiency, selectivity, controllability and mild reaction conditions. The possible organization of active centers like metallic nodes, organic linkers, and their chemical synthetic functionalization on the nanoscale shows potential to build up MOFs particularly modified for catalytic challenges. In this review, we have summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework. Examples of their post functionalization, inclusion of active guest species and metal nanoparticles have been discussed. Finally, the use of MOFs as catalysts for asymmetric heterogeneous catalysis and stability of MOFs has been presented as separate sections.

Journal ArticleDOI
TL;DR: The recent progress in the investigation of black TiO2 nanomaterials has been reviewed here, and special emphasis has been given on their fabrication methods along with their various chemical/physical properties and applications.
Abstract: In the past few decades, there has been a wide research interest in titanium dioxide (TiO2) nanomaterials due to their applications in photocatalytic hydrogen generation and environmental pollution removal. Improving the optical absorption properties of TiO2 nanomaterials has been successfully demonstrated to enhance their photocatalytic activities, especially in the report of black TiO2 nanoparticles. The recent progress in the investigation of black TiO2 nanomaterials has been reviewed here, and special emphasis has been given on their fabrication methods along with their various chemical/physical properties and applications.

Journal ArticleDOI
TL;DR: Recent progress in the "bottom-up" chemical syntheses of structurally well-defined nanographenes, namely graphene molecules and GNRs are described.
Abstract: Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting renewed and more widespread attention since the first experimental demonstration of graphene in 2004. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. The precise synthesis of quasi-zero-dimensional nanographenes, i.e. graphene molecules, has witnessed rapid developments over the past few years, and these developments can be summarized in four categories: (1) non-conventional methods, (2) structures incorporating seven- or eight-membered rings, (3) selective heteroatom doping, and (4) direct edge functionalization. On the other hand, one-dimensional extension of the graphene molecules leads to the formation of graphene nanoribbons (GNRs) with high aspect ratios. The synthesis of structurally well-defined GNRs has been achieved by extending nanographene synthesis to longitudinally extended polymeric systems. Access to GNRs thus becomes possible through the solution-mediated or surface-assisted cyclodehydrogenation, or “graphitization,” of tailor-made polyphenylene precursors. In this review, we describe recent progress in the “bottom-up” chemical syntheses of structurally well-defined nanographenes, namely graphene molecules and GNRs.

Journal ArticleDOI
TL;DR: Advances in the development of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based fluorescent probes for biological studies over the past decade are covered.
Abstract: Fluorescence imaging techniques have been widely used to visualize biological molecules and phenomena. In particular, several studies on the development of small-molecule fluorescent probes have been carried out, because their fluorescence properties can be easily tuned by synthetic chemical modification. For this reason, various fluorescent probes have been developed for targeting biological components, such as proteins, peptides, amino acids, and ions, to the interior and exterior of cells. In this review, we cover advances in the development of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based fluorescent probes for biological studies over the past decade.

Journal ArticleDOI
TL;DR: The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility and current progress made with graphene-based electrodes is summarized.
Abstract: The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

Journal ArticleDOI
TL;DR: The fundamental properties of CBn homologues and their cyclic derivatives are discussed with a focus on their synthesis and their applications in catalysis.
Abstract: In the wide area of supramolecular chemistry, cucurbit[n]urils (CBn) present themselves as a young family of molecular containers, able to form stable complexes with various guests, including drug molecules, amino acids and peptides, saccharides, dyes, hydrocarbons, perfluorinated hydrocarbons, and even high molecular weight guests such as proteins (e.g., human insulin). Since the discovery of the first CBn, CB6, the field has seen tremendous growth with respect to the synthesis of new homologues and derivatives, the discovery of record binding affinities of guest molecules in their hydrophobic cavity, and associated applications ranging from sensing to drug delivery. In this review, we discuss in detail the fundamental properties of CBn homologues and their cyclic derivatives with a focus on their synthesis and their applications in catalysis.

Journal ArticleDOI
TL;DR: This review will introduce to the reader the most recent and important progress regarding the production of sustainable carbon materials, whilst also highlighting their application in important environmental and energy related fields.
Abstract: Carbon-based structures are the most versatile materials used in the modern field of renewable energy (i.e., in both generation and storage) and environmental science (e.g., purification/remediation). However, there is a need and indeed a desire to develop increasingly more sustainable variants of classical carbon materials (e.g., activated carbons, carbon nanotubes, carbon aerogels, etc.), particularly when the whole life cycle is considered (i.e., from precursor "cradle" to "green" manufacturing and the product end-of-life "grave"). In this regard, and perhaps mimicking in some respects the natural carbon cycles/production, utilization of natural, abundant and more renewable precursors, coupled with simpler, lower energy synthetic processes which can contribute in part to the reduction in greenhouse gas emissions or the use of toxic elements, can be considered as crucial parameters in the development of sustainable materials manufacturing. Therefore, the synthesis and application of sustainable carbon materials are receiving increasing levels of interest, particularly as application benefits in the context of future energy/chemical industry are becoming recognized. This review will introduce to the reader the most recent and important progress regarding the production of sustainable carbon materials, whilst also highlighting their application in important environmental and energy related fields.

Journal ArticleDOI
TL;DR: This Tutorial Review presents an overview of the AIE phenomenon and its mechanism, and summarizes the structural design and working principle of AIE biosensors developed recently.
Abstract: Fluorescent biosensors are powerful analytical tools for studying biological events in living systems. Luminescent materials with aggregation-induced emission (AIE) attributes have attracted much research interest and have been identified as a novel class of luminogens to develop fluorescent turn-on biosensors with superior sensitivity. In this Tutorial Review, we present an overview of the AIE phenomenon and its mechanism. We summarize the structural design and working principle of AIE biosensors developed recently. Typical examples of AIE biosensors are presented.

Journal ArticleDOI
TL;DR: This review highlights the recent progress on probing and steering charge kinetics toward designing highly efficient photocatalysts and elucidate the fundamentals behind the combinative use of controlled synthesis, characterization techniques and theoretical simulations in photocatalysis studies.
Abstract: Charge kinetics is highly critical in determining the quantum efficiency of solar-to-chemical conversion in photocatalysis, and this includes, but is not limited to, the separation of photoexcited electron–hole pairs, utilization of plasmonic hot carriers and delivery of photo-induced charges to reaction sites, as well as activation of reactants by energized charges. In this review, we highlight the recent progress on probing and steering charge kinetics toward designing highly efficient photocatalysts and elucidate the fundamentals behind the combinative use of controlled synthesis, characterization techniques (with a focus on spectroscopic characterizations) and theoretical simulations in photocatalysis studies. We first introduce the principles of various processes associated with charge kinetics that account for or may affect photocatalysis, from which a set of parameters that are critical to photocatalyst design can be summarized. We then outline the design rules for photocatalyst structures and their corresponding synthetic approaches. The implementation of characterization techniques and theoretical simulations in different steps of photocatalysis, together with the associated fundamentals and working mechanisms, are also presented. Finally, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

Journal ArticleDOI
TL;DR: This tutorial review aims to present the latest groundbreaking advances in both the theoretical and experimental chemical science and engineering of graphene-based membranes, including their design, fabrication and application.
Abstract: Graphene is a well-known two-dimensional material that exhibits preeminent electrical, mechanical and thermal properties owing to its unique one-atom-thick structure. Graphene and its derivatives (e.g., graphene oxide) have become emerging nano-building blocks for separation membranes featuring distinct laminar structures and tunable physicochemical properties. Extraordinary molecular separation properties for purifying water and gases have been demonstrated by graphene-based membranes, which have attracted a huge surge of interest during the past few years. This tutorial review aims to present the latest groundbreaking advances in both the theoretical and experimental chemical science and engineering of graphene-based membranes, including their design, fabrication and application. Special attention will be given to the progresses in processing graphene and its derivatives into separation membranes with three distinct forms: a porous graphene layer, assembled graphene laminates and graphene-based composites. Moreover, critical views on separation mechanisms within graphene-based membranes will be provided based on discussing the effect of inter-layer nanochannels, defects/pores and functional groups on molecular transport. Furthermore, the separation performance of graphene-based membranes applied in pressure filtration, pervaporation and gas separation will be summarized. This article is expected to provide a compact source of relevant and timely information and will be of great interest to all chemists, physicists, materials scientists, engineers and students entering or already working in the field of graphene-based membranes and functional films.

Journal ArticleDOI
TL;DR: The recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices are reviewed.
Abstract: The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

Journal ArticleDOI
TL;DR: A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review.
Abstract: The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.

Journal ArticleDOI
TL;DR: Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems.
Abstract: Hydrogen sulfide (H2S), a gaseous species produced by both bacteria and higher eukaryotic organisms, including mammalian vertebrates, has attracted attention in recent years for its contributions to human health and disease. H2S has been proposed as a cytoprotectant and gasotransmitter in many tissue types, including mediating vascular tone in blood vessels as well as neuromodulation in the brain. The molecular mechanisms dictating how H2S affects cellular signaling and other physiological events remain insufficiently understood. Furthermore, the involvement of H2S in metal-binding interactions and formation of related RSS such as sulfane sulfur may contribute to other distinct signaling pathways. Owing to its widespread biological roles and unique chemical properties, H2S is an appealing target for chemical biology approaches to elucidate its production, trafficking, and downstream function. In this context, reaction-based fluorescent probes offer a versatile set of screening tools to visualize H2S pools in living systems. Three main strategies used in molecular probe development for H2S detection include azide and nitro group reduction, nucleophilic attack, and CuS precipitation. Each of these approaches exploits the strong nucleophilicity and reducing potency of H2S to achieve selectivity over other biothiols. In addition, a variety of methods have been developed for the detection of other reactive sulfur species (RSS), including sulfite and bisulfite, as well as sulfane sulfur species and related modifications such as S-nitrosothiols. Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems.

Journal ArticleDOI
TL;DR: In this article, the basic lattice vibrations of 2D transition metal dichalcogenide (TMD) nanosheets are discussed, including highfrequency optical phonons, interlayer shear and layer breathing phonons.
Abstract: Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the representative MoS2, WS2, WSe2 and MoSe2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atoms within each layer in 2D TMDs are joined together by covalent bonds, while van der Waals interactions keep the layers together. This makes the physical and chemical properties of 2D TMDs layer-dependent. In this review, we discuss the basic lattice vibrations of 2D TMDs from monolayer, multilayer to bulk material, including high-frequency optical phonons, interlayer shear and layer breathing phonons, the Raman selection rule, layer-number evolution of phonons, multiple phonon replica and phonons at the edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in investigating the properties of TMDs are discussed, such as interlayer coupling, spin–orbit splitting and external perturbations. The interlayer vibrational modes are used in rapid and substrate-free characterization of the layer number of multilayer TMDs and in probing interface coupling in TMD heterostructures. The success of Raman spectroscopy in investigating TMD nanosheets paves the way for experiments on other 2D crystals and related van der Waals heterostructures.

Journal ArticleDOI
TL;DR: Synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here.
Abstract: Core–shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core–shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stober method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.

Journal ArticleDOI
TL;DR: The ability to tune the chemistry by choosing a unique combination of transition metals and chalcogen atoms along with controlling their properties by phase engineering allows new functionalities to be realized with TMDs.
Abstract: Transition metal dichalcogenides (TMDs) represent a family of materials with versatile electronic, optical, and chemical properties. Most TMD bulk crystals are van der Waals solids with strong bonding within the plane but weak interlayer bonding. The individual layers can be readily isolated. Single layer TMDs possess intriguing properties that are ideal for both fundamental and technologically relevant research studies. We review the structure and phases of single and few layered TMDs. We also describe recent progress in phase engineering in TMDs. The ability to tune the chemistry by choosing a unique combination of transition metals and chalcogen atoms along with controlling their properties by phase engineering allows new functionalities to be realized with TMDs.

Journal ArticleDOI
TL;DR: A fundamental understanding of energy transfer in lanthanide-supported photon upconversion is presented and the emerging progress in excitation selection based on the energy transfer within lanthanides ions or activation from antennae is introduced.
Abstract: Lanthanide pairs, which can upconvert low energy photons into higher energy photons, are promising for efficient upconversion emission. A typical system with Yb3+ as a sensitizer can convert short NIR into visible/ultraviolet light via energy transfer between lanthanide ions. Such upconverting nanocrystals doped with lanthanide ions have found significant potential in bioimaging, photochemical reactions and energy conversion. This review presents a fundamental understanding of energy transfer in lanthanide-supported photon upconversion. We introduce the emerging progress in excitation selection based on the energy transfer within lanthanide ions or activation from antennae, with an outlook in the development and applications of the lanthanide upconversion emissions.

Journal ArticleDOI
TL;DR: This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials, and several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length.
Abstract: Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.